
M A N N I N G

Prabath Siriwardena
Nuwan Dias

Microservices Security in Action

Microservices Security
in Action

PRABATH SIRIWARDENA
AND NUWAN DIAS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Marina Michaels
20 Baldwin Road Technical development editor: Jonathan Thoms and
PO Box 761 Joshua White
Shelter Island, NY 11964 Review editor: Ivan Martinović

Production editor: Deirdre S. Hiam
Copy editor: Sharon Wilkey
Proofreader: Keri Hales

Technical proofreader: Thorsten P. Weber
Typesetter and cover designer: Marija Tudor

ISBN 9781617295959
Printed in the United States of America

www.manning.com

To Dr. Sanjiva Weerawarana,
our mentor for more than a decade
and for many more years to come!

vi

brief contents
PART 1 OVERVIEW .. 1

1 ■ Microservices security landscape 3
2 ■ First steps in securing microservices 32

PART 2 EDGE SECURITY .. 55
3 ■ Securing north/south traffic with an API gateway 57
4 ■ Accessing a secured microservice via a single-page application 83
5 ■ Engaging throttling, monitoring, and access control 109

PART 3 SERVICE-TO-SERVICE COMMUNICATIONS 135
6 ■ Securing east/west traffic with certificates 137
7 ■ Securing east/west traffic with JWT 161
8 ■ Securing east/west traffic over gRPC 179
9 ■ Securing reactive microservices 196

PART 4 SECURE DEPLOYMENT ... 227
10 ■ Conquering container security with Docker 229
11 ■ Securing microservices on Kubernetes 262
12 ■ Securing microservices with Istio service mesh 296

PART 5 SECURE DEVELOPMENT ... 339
13 ■ Secure coding practices and automation 341
vii

BRIEF CONTENTSviii

contents
preface xvii
acknowledgments xix
about this book xxi
about the authors xxv
about the cover illustration xxvi

PART 1 OVERVIEW ... 1

1 Microservices security landscape 3
1.1 How security works in a monolithic application 5
1.2 Challenges of securing microservices 7

The broader the attack surface, the higher the risk of
attack 7 ■ Distributed security screening may result in poor
performance 8 ■ Deployment complexities make bootstrapping trust
among microservices a nightmare 8 ■ Requests spanning multiple
microservices are harder to trace 9 ■ Immutability of containers
challenges how you maintain service credentials and access-control
policies 10 ■ The distributed nature of microservices makes sharing
user context harder 11 ■ Polyglot architecture demands more
security expertise on each development team 11

1.3 Key security fundamentals 12
Authentication protects your system against spoofing 12 ■ Integrity
protects your system from data tampering 13 ■ Nonrepudiation:
Do it once, and you own it forever 14 ■ Confidentiality protects
your systems from unintended information disclosure 14
ix

CONTENTSx
Availability: Keep the system running, no matter what 16
Authorization: Nothing more than you’re supposed to do 18

1.4 Edge security 18
The role of an API gateway in a microservices deployment 19
Authentication at the edge 20 ■ Authorization at the edge 22
Passing client/end-user context to upstream microservices 22

1.5 Securing service-to-service communication 22
Service-to-service authentication 23 ■ Service-level
authorization 26 ■ Propagating user context among
microservices 27 ■ Crossing trust boundaries 28

2 First steps in securing microservices 32
2.1 Building your first microservice 33

Downloading and installing the required software 34 ■ Clone
samples repository 34 ■ Compiling the Order Processing
microservice 35 ■ Accessing the Order Processing
microservice 36 ■ What is inside the source code directory? 37
Understanding the source code of the microservice 38

2.2 Setting up an OAuth 2.0 server 39
The interactions with an authorization server 39 ■ Running the
OAuth 2.0 authorization server 42 ■ Getting an access token from
the OAuth 2.0 authorization server 43 ■ Understanding the access
token response 44

2.3 Securing a microservice with OAuth 2.0 45
Security based on OAuth 2.0 45 ■ Running the sample 46

2.4 Invoking a secured microservice from a client application 48
2.5 Performing service-level authorization with OAuth 2.0

scopes 50
Obtaining a scoped access token from the authorization server 50
Protecting access to a microservice with OAuth 2.0 scopes 52

PART 2 EDGE SECURITY ... 55

3 Securing north/south traffic with an API gateway 57
3.1 The need for an API gateway in a microservices

deployment 58
Decoupling security from the microservice 59 ■ The inherent
complexities of microservice deployments make them harder to
consume 62 ■ The rawness of microservices does not make
them ideal for external exposure 63

CONTENTS xi
3.2 Security at the edge 64
Understanding the consumer landscape of your microservices 64
Delegating access 65 ■ Why not basic authentication to secure
APIs? 66 ■ Why not mutual TLS to secure APIs? 66
Why OAuth 2.0? 67

3.3 Setting up an API gateway with Zuul 68
Compiling and running the Order Processing microservice 68
Compiling and running the Zuul proxy 69 ■ Enforcing OAuth
2.0–based security at the Zuul gateway 71

3.4 Securing communication between Zuul and the
microservice 79
Preventing access through the firewall 79 ■ Securing the
communication between the API gateway and microservices by
using mutual TLS 80

4 Accessing a secured microservice via a single-page
application 83
4.1 Running a single-page application with Angular 84

Building and running an Angular application from the source
code 84 ■ Looking behind the scenes of a single-page
application 85

4.2 Setting up cross-origin resource sharing 89
Using the same-origin policy 89 ■ Using cross-origin resource
sharing 91 ■ Inspecting the source that allows cross-origin
requests 92 ■ Proxying the resource server with an API
gateway 93

4.3 Securing a SPA with OpenID Connect 95
Understanding the OpenID Connect login flow 96 ■ Inspecting
the code of the applications 100

4.4 Using federated authentication 104
Multiple trust domains 105 ■ Building trust between domains 106

5 Engaging throttling, monitoring, and access control 109
5.1 Throttling at the API gateway with Zuul 110

Quota-based throttling for applications 111 ■ Fair usage policy for
users 113 ■ Applying quota-based throttling to the Order
Processing microservice 114 ■ Maximum handling capacity of a
microservice 118 ■ Operation-level throttling 120 ■ Throttling
the OAuth 2.0 token and authorize endpoints 121 ■ Privilege-
based throttling 121

CONTENTSxii
5.2 Monitoring and analytics with Prometheus and
Grafana 122
Monitoring the Order Processing microservice 123

Behind the scenes of using Prometheus for monitoring 127

5.3 Enforcing access-control policies at the API gateway with
Open Policy Agent 129
Running OPA as a Docker container 130 ■ Feeding the OPA
engine with data 130 ■ Feeding the OPA engine with access-
control policies 131 ■ Evaluating OPA policies 132
Next steps in using OPA 133

PART 3 SERVICE-TO-SERVICE COMMUNICATIONS 135

6 Securing east/west traffic with certificates 137
6.1 Why use mTLS? 138

Building trust between a client and a server with a certificate
authority 138 ■ Mutual TLS helps the client and the server to
identify each other 138 ■ HTTPS is HTTP over TLS 140

6.2 Creating certificates to secure access to microservices 140
Creating a certificate authority 140 ■ Generating keys for the
Order Processing microservice 141 ■ Generating keys for the
Inventory microservice 141 ■ Using a single script to generate all
the keys 141

6.3 Securing microservices with TLS 142
Running the Order Processing microservice over TLS 143
Running the Inventory microservice over TLS 145 ■ Securing
communications between two microservices with TLS 146

6.4 Engaging mTLS 149
6.5 Challenges in key management 151

Key provisioning and bootstrapping trust 151 ■ Certificate
revocation 153

6.6 Key rotation 159
6.7 Monitoring key usage 159

7 Securing east/west traffic with JWT 161
7.1 Use cases for securing microservices with JWT 162

Sharing user context between microservices with a shared JWT 162
Sharing user context with a new JWT for each service-to-service

CONTENTS xiii
interaction 163 ■ Sharing user context between microservices
in different trust domains 165 ■ Self-issued JWTs 166
Nested JWTs 167

7.2 Setting up an STS to issue a JWT 168
7.3 Securing microservices with JWT 170
7.4 Using JWT as a data source for access control 172
7.5 Securing service-to-service communications with JWT 173
7.6 Exchanging a JWT for a new one with a new

audience 175

8 Securing east/west traffic over gRPC 179
8.1 Service-to-service communications over gRPC 180
8.2 Securing gRPC service-to-service communications with

mTLS 185
8.3 Securing gRPC service-to-service communications

with JWT 190

9 Securing reactive microservices 196
9.1 Why reactive microservices? 197
9.2 Setting up Kafka as a message broker 202
9.3 Developing a microservice to push events to a Kafka

topic 205
9.4 Developing a microservice to read events from a Kafka

topic 207
9.5 Using TLS to protect data in transit 210

Creating and signing the TLS keys and certificates for Kafka 210
Configuring TLS on the Kafka server 212 ■ Configuring TLS on
the microservices 212

9.6 Using mTLS for authentication 214
9.7 Controlling access to Kafka topics with ACLs 217

Enabling ACLs on Kafka and identifying the clients 219
Defining ACLs on Kafka 220

9.8 Setting up NATS as a message broker 222

PART 4 SECURE DEPLOYMENT 227

10 Conquering container security with Docker 229
10.1 Running the security token service on Docker 230

CONTENTSxiv
10.2 Managing secrets in a Docker container 231
Externalizing secrets from Docker images 233 ■ Passing secrets as
environment variables 235 ■ Managing secrets in a Docker
production deployment 237

10.3 Using Docker Content Trust to sign and verify Docker
images 237
The Update Framework 237 ■ Docker Content Trust 238
Generating keys 238 ■ Signing with DCT 240 ■ Signature
verification with DCT 241 ■ Types of keys used in DCT 241
How DCT protects the client application from replay attacks 243

10.4 Running the Order Processing microservice on
Docker 244

10.5 Running containers with limited privileges 247
Running a container with a nonroot user 248 ■ Dropping
capabilities from the root user 250

10.6 Running Docker Bench for security 251
10.7 Securing access to the Docker host 253

Enabling remote access to the Docker daemon 254 ■ Enabling
mTLS at the NGINX server to secure access to Docker APIs 256

10.8 Considering security beyond containers 260

11 Securing microservices on Kubernetes 262
11.1 Running an STS on Kubernetes 263

Defining a Kubernetes Deployment for the STS in YAML 263
Creating the STS Deployment in Kubernetes 263
Troubleshooting the Deployment 264 ■ Exposing the STS outside
the Kubernetes cluster 265

11.2 Managing secrets in a Kubernetes environment 267
Using ConfigMap to externalize configurations in Kubernetes 268
Defining a ConfigMap for application.properties file 268
Defining ConfigMaps for keystore.jks and jwt.jks files 269
Defining a ConfigMap for keystore credentials 270 ■ Creating
ConfigMaps by using the kubectl client 270 ■ Consuming
ConfigMaps from a Kubernetes Deployment 271 ■ Loading
keystores with an init container 272

11.3 Using Kubernetes Secrets 274
Exploring the default token secret in every container 275
Updating the STS to use Secrets 276 ■ Understanding how
Kubernetes stores Secrets 278

CONTENTS xv
11.4 Running the Order Processing microservice
in Kubernetes 278
Creating ConfigMaps/Secrets for the Order Processing
microservice 280 ■ Creating a Deployment for the Order
Processing microservice 281 ■ Creating a Service for the Order
Processing microservice 282 ■ Testing the end-to-end flow 282

11.5 Running the Inventory microservice in Kubernetes 284
11.6 Using Kubernetes service accounts 287

Creating a service account and associating it with a Pod 288
Benefits of running a Pod under a custom service account 289

11.7 Using role-based access control in Kubernetes 290
Talking to the Kubernetes API server from the STS 292
Associating a service account with a ClusterRole 293

12 Securing microservices with Istio service mesh 296
12.1 Setting up the Kubernetes deployment 297

Enabling Istio autoinjection 298 ■ Clean up any previous
work 299 ■ Deploying microservices 299 ■ Redeploying Order
Processing and STS as NodePort Services 300 ■ Testing end-to-end
flow 301

12.2 Enabling TLS termination at the Istio Ingress gateway 302
Deploying TLS certificates to the Istio Ingress gateway 303
Deploying VirtualServices 308 ■ Defining a permissive
authentication policy 310 ■ Testing end-to-end flow 311

12.3 Securing service-to-service communications
with mTLS 314

12.4 Securing service-to-service communications with JWT 317
Enforcing JWT authentication 317 ■ Testing end-to-end flow with
JWT authentication 318 ■ Peer authentication and request
authentication 321 ■ How to use JWT in service-to-service
communications 323 ■ A closer look at JSON Web Key 324

12.5 Enforcing authorization 324
A closer look at the JWT 324 ■ Enforcing role-based access
control 325 ■ Testing end-to-end flow with RBAC 328
Improvements to role-based access control since Istio 1.4.0 331

12.6 Managing keys in Istio 333
Key provisioning and rotation via volume mounts 333
Limitations in key provisioning and rotation via volume
mounts 335 ■ Key provisioning and rotation with SDS 335

CONTENTSxvi
PART 5 SECURE DEVELOPMENT 339

13 Secure coding practices and automation 341
13.1 OWASP API security top 10 342

Broken object-level authorization 342 ■ Broken
authentication 344 ■ Excessive data exposure 345 ■ Lack of
resources and rate limiting 345 ■ Broken function-level
authorization 346 ■ Mass assignment 346 ■ Security
misconfiguration 347 ■ Injection 347 ■ Improper asset
management 348 ■ Insufficient logging and monitoring 348

13.2 Running static code analysis 349
13.3 Integrating security testing with Jenkins 352

Setting up and running Jenkins 353 ■ Setting up a build pipeline
with Jenkins 355

13.4 Running dynamic analysis with OWASP ZAP 359
Passive scanning vs. active scanning 359 ■ Performing
penetration tests with ZAP 360

appendix A OAuth 2.0 and OpenID Connect 367

appendix B JSON Web Token 386

appendix C Single-page application architecture 397

appendix D Observability in a microservices deployment 401

appendix E Docker fundamentals 409

appendix F Open Policy Agent 448

appendix G Creating a certificate authority and related keys with
OpenSSL 470

appendix H Secure Production Identity Framework for Everyone 474

appendix I gRPC fundamentals 488

appendix J Kubernetes fundamentals 499

appendix K Service mesh and Istio fundamentals 536

index 569

preface
While working at WSO2 for more than a decade, we’ve seen how the integration
domain evolved over time from SOAP-based services to JSON/RESTful services and
then to microservices. We spent most of our early days at WSO2 contributing to the
Apache Axis2 project, which was a popular SOAP engine in those days, and to the
Apache Rampart project, which implements many Organization for the Advancement
of Structured Information Standards (OASIS) standards for web services security.
Even though SOAP was quite promising in those days, it started to fade rapidly over
time, and clearly JSON/RESTful services had won. Most of the microservice imple-
mentations we see today follow RESTful design principles.

 In the last two to three years, we’ve seen a genuine interest from many companies
we’ve worked with to move into microservices architecture, and projects starting from
scratch are adopting microservices principles. Most of the early adopters of microser-
vices just wanted to get things done, and worried mostly about implementing func-
tional requirements. They didn’t worry too much about security, although they should
have. In many cases, securing microservices would mean securing the interactions
among microservices with Transport Layer Security (TLS), and may be, for some,
enforcing mutual TLS for service-to-service authentication. But none of them are
quite adequate. There are two main reasons many didn’t worry much about security:
complexity and awareness.

 Some time back, we found that most tools for securing microservices were not easy
to use or couldn’t address the challenges specific to microservices deployments. This
complexity was a barrier to securing microservices. At the same time, people who
didn’t put much effort into security weren’t fully aware of the risks. We started hearing
these stories from many of our customers as well as from the extended open source
community we work with. That motivated us to write this book on securing microser-
xvii

PREFACExviii
vices. Bringing an idea from inception to reality takes considerable time and effort.
We lived with this idea of writing a book for more than two years until Manning
reached out to us. During that period, with the increased adoption of microservices,
the infrastructure around microservices security also evolved.

 Writing a book about a rapidly evolving domain is bit of a challenge; you never
know when your book will be obsolete. After discussing this challenge with the pub-
lisher, we decided to put more weight on principles and patterns, and use tools just to
demonstrate how to apply those principles and patterns in practice. This was our
ground rule in picking up the technology stack for the book. We use Spring Boot /
Java to develop all the samples, though we don’t expect you to know either Java or
Spring Boot in detail. If you have development experience in any programming lan-
guage, you should be able to follow all the samples in the book with no difficulty.

 Security itself is a larger domain. Securing microservices can mean different things
to different people, based on their experiences and expectations. This fact was high-
lighted by one of the reviewers of the book, who comes from a security testing back-
ground. In our book, we wanted to focus on managing access to microservices. In
other words, we wanted to focus on securing access to microservices with authentica-
tion and authorization. So, the book doesn’t talk about protecting microservices
against different types of attacks, such as SQL injection, cross-site scripting (XSS),
cross-site request forgery, and so on.

 After a marathon effort that spanned slightly more than two years, we are glad to
see that our book on microservices security is out. We are also excited that this is the
very first book on securing microservices. We hope you will enjoy reading it!

acknowledgments
This book would not have been possible without the support of many amazing people:

 Brian Sawyer, senior acquisitions editor at Manning, reached out to us and
helped us structure our book proposal.

 Marina Michaels, development editor at Manning, was very patient and tolerant
of us throughout the publishing process and provided invaluable advice during
the writing process.

 To the rest of the staff at Manning: Deirdre Hiam, the project editor; Sharon
Wilkey, the copyeditor; Keri Hales, the proofreader; and Ivan Martinović , the
review editor.

 All the Manning Early Access Program (MEAP) subscribers of the book.
 Thorsten P. Weber, technical proofreader, who helped us review the code to

make sure all the code samples work as expected.
 Tim Hinrichs, one of the creators of the Open Policy Agent (OPA) project, and

Andrew Jessup, one of the creators of the SPIFFE project, who helped us by
reviewing the appendices on OPA and SPIFFE.

 Sanjiva Weerawarana, the founder and CEO of WSO2, and Paul Fremantle, the
CTO of WSO2, who have constantly mentored us for many years.

 To all the reviewers: Andrew Bovill, Björn Nordblom, Bruno Vernay, Eros Pedrini,
Evgeny Shmarnev, Gerd Koenig, Gustavo Gomes, Harinath Mallepally, Joel
Holmes, John Guthrie, Jonas Medina, Jonathan Levine, Jorge Ezequiel Bo, Leo-
nardo Gomes da Silva, Lukáš Hozda, Massimo Siani, Matthew Rudy Jacobs,
Mostafa Siraj, Philip Taffet, Raushan Jha, Salvatore Campagna, Simeon Leyzer-
zon, Srihari Sridharan, Stephan Pirnbaum, Thilo Käsemann, Tim van Deurzen,
Ubaldo Pescatore, Yurii Bodarev—your suggestions helped make this a better
book.
xix

ACKNOWLEDGMENTSxx
PRABATH SIRIWARDENA: My wife, Pavithra, and my little daughter, Dinadi, supported
me throughout the writing process. Thank you very much, Pavithra and Dinadi. My
parents and my sister are with me all the time. I am grateful to them for everything
they have done for me. And also, my wife’s parents—they were amazingly helpful.

NUWAN DIAS: My family, including my wife, Kasun, and son, Jason. I would not have
been able to make the effort required to contribute to this book if not for their consis-
tent support and patience throughout. My parents and in-laws are always a strength to
me and back me up in everything I do.

about this book
Microservices Security in Action teaches you how to secure your microservices applica-
tions code and infrastructure. After a straightforward introduction to the challenges
of microservices security, you’ll learn fundamentals needed to secure both the appli-
cation perimeter and service-to-service communications. Following a hands-on exam-
ple, you’ll explore how to deploy and secure microservices behind an API gateway as
well as how to access microservices via a single-page application (SPA).

 Along the way, the book highlights important concepts including throttling, ana-
lytics gathering, access control at the API gateway, and microservice-to-microservice
communications. You’ll also discover how to securely deploy microservices by using
state-of-the-art technologies, including Kubernetes, Docker, and the Istio service
mesh.

 Lots of hands-on exercises secure your learning as you go, and this straightforward
guide wraps up with a security process review and best practices. When you’re finished
reading, you’ll be planning, designing, and implementing microservices applications
with the priceless confidence that comes with knowing they’re secure!

Who should read this book

Microservices Security in Action is for developers who are well versed in microservices
design principles and have a basic familiarity with Java. Even if you are not a Java
developer, but are familiar with any object-oriented programming language such as
C++ or C#, and understand basic programming constructs well, you’ll still get much
out of this book. While some documents and blog posts exist online, this book brings
together everything in a clear, easy-to-follow format that will benefit anyone wanting
to get a thorough understanding of securing microservices.
xxi

ABOUT THIS BOOKxxii
How this book is organized: A roadmap

The book has five sections and 13 chapters. Part 1 takes you through the fundamen-
tals in securing microservices:

 Chapter 1 teaches you why securing microservices is challenging, and takes you
through the key principles in securing a microservices deployment.

 Chapter 2 teaches you how to build your first microservice in Spring Boot and
secure it with OAuth 2.0. You will also learn how to set up an OAuth 2.0 token
issuer.

Part 2 takes you through securing a microservice at the edge (or entry point) in a typ-
ical microservices deployment:

 Chapter 3 takes you through the consumer landscape of your microservices and
teaches you how to deploy a Spring Boot microservice behind the Zuul API
gateway. You will also learn how to enforce OAuth 2.0-based security at the Zuul
API gateway.

 Chapter 4 teaches you how to develop a single-page application (SPA) with
Angular. You will also learn how to secure a SPA with OpenID Connect.

 Chapter 5 teaches you how to extend the use case you built in chapter 4 by
engaging throttling, monitoring, and access control at the Zuul API gateway.

Part 3 takes you through the process of securing interactions among microservices
once a request from a client application passes through the security at the edge and
enters into your microservices deployment:

 Chapter 6 teaches you how to secure communications among microservices
that take place over HTTP, with mutual Transport Layer Security (mTLS).

 In chapter 7, you learn how to share contextual data (for example, the end user
context) among microservices by using JSON Web Token (JWT).

 Chapter 8 teaches you how to secure communications among microservices
that take place over gRPC, with mTLS and JWT.

 Chapter 9 teaches you how to secure reactive microservices. It also teaches you
how to set up Kafka as a message broker, and how to enforce access-control pol-
icies for Kafka topics.

Part 4 takes you through deploying and securing microservices in a containerized
environment:

 Chapter 10 teaches you how to deploy your microservices in Docker and to
secure service-to-service interactions with mTLS and JWT. You also learn some
of the built-in security features related to Docker.

 Chapter 11 teaches you how to deploy your microservices as Docker containers
in Kubernetes and to secure service-to-service communications with JWT over
mTLS.

ABOUT THIS BOOK xxiii
 Chapter 12 teaches you how to offload the security processing overhead from
your microservices by using the Istio service mesh.

Part 5 takes you through security testing in the development process:

 Chapter 13 teaches you how to automate security testing of your microservices
with SonarQube, Jenkins, and OWASP ZAP.

In general, you should be sure to read the first two chapters so that you have the right
mindset to take on the challenges of securing microservices and that you’ve gotten
your feet wet and are ready to build more complex security patterns, which the book
teaches you. The appendices provide information on OAuth 2.0, JWT, gRPC, Docker,
Kubernetes, Istio, Open Policy Agent (OPA), and SPIFFE. This information supple-
ments the chapters.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (\). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations highlight
important concepts and significant lines of code in many of the listings.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/microservices-security-in-action.

liveBook discussion forum

Purchase of Microservices Security in Action includes free access to a private web forum
run by Manning Publications, where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/books/
microservices-security-in-action. You can also learn more about Manning's forums and
the rules of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!
The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

www.manning.com/books/microservices-security-in-action
www.manning.com/books/microservices-security-in-action
https://livebook.manning.com/#!/discussion
http://www.manning.com/books/microservices-security-in-action

ABOUT THIS BOOKxxiv
Other online resources

Need additional help?

 You can ask any questions related to the content of this book from the Microser-
vices Security Slack channel: https://bit.ly/microservices-security.

 The OAuth IETF working group is a good place to ask any questions on OAuth
2.0 and related standards. You can subscribe to the OAuth IETF working group
mailing list with the information available at https://datatracker.ietf.org/wg
/oauth/about.

 The JOSE IETF working group is a good place to ask any questions on JSON
Web Token (JWT) and the related standards. You can subscribe to the JOSE
IETF working group mailing list with the information available at https://
datatracker.ietf.org/wg/jose/about.

 You can ask any questions related to Kubernetes security from the Slack chan-
nel: https://slack.k8s.io/.

 You can ask any questions related to the Open Policy Agent (OPA) project from
the Slack channel: https://slack.openpolicyagent.org/.

 You can ask any questions related to the SPIFFE project from the Slack channel:
https://slack.spiffe.io/.

 To get updates on the conference/meetup talks the authors of this book do reg-
ularly, you can subscribe to the YouTube channel: http://vlog.facilelogin.com/.

https://bit.ly/microservices-security
https://datatracker.ietf.org/wg/oauth/about
https://datatracker.ietf.org/wg/oauth/about
https://datatracker.ietf.org/wg/jose/about
https://datatracker.ietf.org/wg/jose/about
https://slack.k8s.io/
https://slack.openpolicyagent.org/
https://slack.spiffe.io/
http://vlog.facilelogin.com/

about the authors
PRABATH SIRIWARDENA is the vice president of security architecture at WSO2, and has
been working in the identity management and security domain since 2007.

NUWAN DIAS is the director of API architecture at WSO2 and has worked in the soft-
ware industry since 2012, most of which he has spent focusing on the API manage-
ment domain.

xxv

about the cover illustration
The figure on the cover of Microservices Security in Action is captioned “Homme Islan-
dois,” or a man from Iceland. The illustration is taken from a collection of dress cos-
tumes from various countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled
Costumes de Différents Pays, published in France in 1797. Each illustration is finely
drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just 200
years ago. Isolated from each other, people spoke different dialects and languages. In
the streets or in the countryside, it was easy to identify where they lived and what their
trade or station in life was just by their dress.

 The way we dress has changed since then, and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xxvi

Part 1

Overview

Microservices are no longer a novelty. We’re seeing large-scale micro-
services deployments with thousands of services. But whether we have one or two
services or thousands, security is a top priority. This part of the book takes you
through the fundamentals in securing microservices.

 Chapter 1 teaches you why securing microservices is challenging, and takes
you through the key principles in securing a microservices deployment.

 Chapter 2 teaches you how to build your first microservice in Spring Boot
and secure it with OAuth 2.0. You will also learn how to set up an OAuth 2.0
token issuer.

 When you’re finished with these two chapters, you’ll have the right mindset
to take on the challenges of securing microservices. After getting your feet wet in
this part of the book, you’ll be ready to build more complex security patterns
(which we teach you in the rest of the book) on top of your first microservice.

2 CHAPTER

Microservices
security landscape
Fail fast, fail often is a mantra in Silicon Valley. Not everyone agrees, but we love it!
It’s an invitation to experiment with new things, accept failures, fix problems, and
try again. Not everything in ink looks pretty in practice. Fail fast, fail often is only
hype unless the organizational leadership, the culture, and the technology are pres-
ent and thriving.

 We find microservices to be a key enabler for fail fast, fail often. Microservices
architecture has gone beyond technology and architectural principles to become a
culture. Netflix, Amazon, Lyft, Uber, and eBay are the front-runners in building
that culture. Neither the architecture nor the technology behind microservices—
but the discipline practiced in an organizational culture—lets your team build

This chapter covers
 Why microservices security is challenging

 Principles and key elements of a microservices
security design

 Edge security and the role of an API gateway

 Patterns and practices in securing service-to-
service communications
3

4 CHAPTER 1 Microservices security landscape
stable products, deploy them in a production environment with less hassle, and intro-
duce frequent changes with no negative impact on the overall system.

 Speed to production and evolvability are the two key outcomes of microservices
architecture. International Data Corporation (IDC) has predicted that by 2022, 90%
of all apps will feature microservices architectures that improve the ability to design,
debug, update, and leverage third-party code.1

 We assume that you’re well versed in microservices design principles, applications,
and benefits. If you’re new to microservices and have never been (or are only slightly)
involved in development projects, we recommend that you read a book on microser-
vices first, such as Spring Microservices in Action by John Carnell (Manning, 2017).
Microservices Patterns by Chris Richardson (Manning, 2018) and Microservices in Action
by Morgan Bruce and Paulo A. Pereira (Manning, 2018) are two other good books on
the subject. Microservices for the Enterprise: Designing, Developing, and Deploying by Prabath
Siriwardena (a coauthor of this book) and Kasun Indrasiri (Apress, 2018) is another
beginner’s book on microservices.

 In this book, we focus on microservices security. When you make the decision to go
ahead with microservices architecture to build all your critical business operations,
security is of topmost importance. A security breach could result in many unpleasant
outcomes, from losing customer confidence to bankruptcy. Emphasis on security
today is higher than at any time in the past. Microservices are becoming key enablers
of digital transformation, so microservices security must be consciously planned,
designed, and implemented.

 This book introduces you to the key fundamentals, security principles, and best
practices involved in securing microservices. We’ll be using industry-leading open
source tools along with Java code samples developed with Spring Boot for demonstra-
tions. You may pick better, competitive tools later in your production environment,
of course.

 This book will give you a good understanding of how to implement microservices
security concepts in real life, even if you’re not a Java developer. If you’re familiar with
any object-oriented programming language (such as C++ or C#) and understand basic
programming constructs well, you’ll still enjoy reading the book, even though its sam-
ples are in Java. Then again, security is a broader topic. It’s a discipline with multiple
subdisciplines. In this book, we mostly focus on application developers and architects
who worry about managing access to their microservices. Access management itself is
another broader subdiscipline of the larger security discipline. We do not focus on
pen testing, developing threat models, firewalls, system-level configurations to harden
security, and so on.

1 You can read more about IDC’s predictions for 2019 and beyond at https://www.forbes.com/sites/
louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019.

https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019
https://www.forbes.com/sites/louiscolumbus/2018/11/04/idc-top-10-predictions-for-worldwide-it-2019

5How security works in a monolithic application
1.1 How security works in a monolithic application
A monolithic application has few entry points. An entry point for an application is anal-
ogous to a door in a building. Just as a door lets you into a building (possibly after
security screening), an application entry point lets your requests in.

 Think about a web application (see figure 1.1) running on the default HTTP port
80 on a server carrying the IP address 192.168.0.1. Port 80 on server 192.168.0.1 is an
entry point to that web application. If the same web application accepts HTTPS
requests on the same server on port 443, you have another entry point. When you
have more entry points, you have more places to worry about securing. (You need to
deploy more soldiers when you have a longer border to protect, for example, or to
build a wall that closes all entry points.) The more entry points to an application, the
broader the attack surface is.

 Most monolithic applications have only a couple of entry points. Not every compo-
nent of a monolithic application is exposed to the outside world and accepts requests
directly.

 In a typical Java Platform, Enterprise Edition (Java EE) web application such as the
one in figure 1.1, all requests are scanned for security at the application level by a servlet
filter.2 This security screening checks whether the current request is associated with a
valid web session and, if not, challenges the requesting party to authenticate first.

Figure 1.1 A monolithic application typically has few entry points. Here, there are two: ports 80 and 443.

2 If you aren’t familiar with servlet filters, think of them as interceptors running in the same process with the
web application, intercepting all the requests to the web application.

A web portal rendered
on a browser acts as a
client application for
the monolithic application.

Entry point to the
monolithic application

Server IP:
192.168.0.1.

Entry point to the
monolithic application

A monolithic application
is deployed in a Tomcat
web server.

Port 80 Port 443

Monolithic Application

6 CHAPTER 1 Microservices security landscape
Further access-control checks may validate that the requesting party has the necessary
permissions to do what they intend to do. The servlet filter (the interceptor) carries
out such checks centrally to make sure that only legitimate requests are dispatched to
the corresponding components. Internal components need not worry about the legit-
imacy of the requests; they can rightly assume that if a request lands there, all the
security checks have already been done.

 In case those components need to know who the requesting party (or user) is or to
find other information related to the requesting party, such information can be retri-
eved from the web session, which is shared among all the components (see figure 1.2).
The servlet filter injects the requesting-party information into the web session during
the initial screening process, after completing authentication and authorization.

 Once a request is inside the application layer, you don’t need to worry about secu-
rity when one component talks to another. When the Order Processing component
talks to the Inventory component, for example, you don’t necessarily need to enforce
any additional security checks (but, of course, you can if you need to enforce more
granular access-control checks at the component level). These are in-process calls and
in most cases are hard for a third party to intercept.

Figure 1.2 Multiple entry points (ports 80 and 443) are funneled to a single servlet filter. The filter acts as a
centralized policy enforcement point.

An entry point
to the monolithic
application

Monolithic
application

Port 80

Servlet Filter (Interceptor)

Web Session

Order
Processing Billing

Supplier
Management Inventory

Delivery

Port 443

Servlet filter acts as the security
enforcement point. Only the
legitimate requests pass through
to the application components.

An entry point to the
monolithic application

All the application components
share the same web session, and
user context is injected into the
session so that it is available for
all the components.

7Challenges of securing microservices
In most monolithic applications, security is enforced centrally, and individual compo-
nents need not worry about carrying out additional checks unless there is a desperate
requirement to do so. As a result, the security model of a monolithic application is
much more straightforward than that of an application built around microservices
architecture.

1.2 Challenges of securing microservices
Mostly because of the inherent nature of microservices architecture, security is chal-
lenging. In this section, we discuss the challenges of securing microservices without
discussing in detail how to overcome them. In the rest of the book, we discuss multiple
ways to address these challenges.

1.2.1 The broader the attack surface, the higher the risk of attack

In a monolithic application, communication among internal components happens
within a single process—in a Java application, for example, within the same Java Vir-
tual Machine (JVM). Under microservices architecture, those internal components
are designed as separate, independent microservices, and those in-process calls
among internal components become remote calls. Also, each microservice now inde-
pendently accepts requests or has its own entry points (see figure 1.3).

Figure 1.3 As opposed to a monolithic application with few entry points, a microservices-based application has
many entry points that all must be secured.

Port 443

Supplier
Management

Service

Port 443

Inventory
Service

The service-to-service communications among
microservices may be protected with certificates.
In such a case, each node should be provisioned with
a public/private key pair.

Each
microservice
has its own
entry point(s).

At the entry point, each
microservice has to do
a security check.

Port 443

Delivery
Service

Each
microservice
is deployed
in its own
container.

Microservices
deployment

Port 443

Order
Processing

Service

Port 443

Billing
Service

8 CHAPTER 1 Microservices security landscape
Instead of a couple of entry points, as in a monolithic application, now you have a
large number of entry points. As the number of entry points to the system increases,
the attack surface broadens too. This situation is one of the fundamental challenges
in building a security design for microservices. Each entry point to each microservice
must be protected with equal strength. The security of a system is no stronger than the
strength of its weakest link.

1.2.2 Distributed security screening may result in poor performance

Unlike in a monolithic application, each microservice in a microservices deployment
has to carry out independent security screening. From the viewpoint of a monolithic
application, in which the security screening is done once and the request is dis-
patched to the corresponding component, having multiple security screenings at the
entry point of each microservice seems redundant. Also, while validating requests at
each microservice, you may need to connect to a remote security token service (STS).
These repetitive, distributed security checks and remote connections could contribute
heavily to latency and considerably degrade the performance of the system.

 Some do work around this by simply trusting the network and avoiding security
checks at each and every microservice. Over time, trust-the-network has become an
antipattern, and the industry is moving toward zero-trust networking principles. With
zero-trust networking principles, you carry out security much closer to each resource
in your network. Any microservices security design must take overall performance
into consideration and must take precautions to address any drawbacks.

1.2.3 Deployment complexities make bootstrapping trust among
microservices a nightmare

Security aside, how hard would it be to manage 10, 15, or hundreds of independent
microservices instead of one monolithic application in a deployment? We have even
started seeing microservices deployments with thousands of services talking to each
other.

 Capital One, one of the leading financial institutions in the United States,
announced in July 2019 that its microservices deployment consists of thousands of
microservices on several thousands of containers, with thousands of Amazon Elastic
Compute Cloud (EC2) instances. Monzo, another financial institution based in the
United Kingdom, recently mentioned that it has more than 1,500 services running in
its microservices deployment. Jack Kleeman, a backend engineer at Monzo, explains
in a blog (http://mng.bz/gyAx) how they built network isolation for 1,500 services to
make Monzo more secure. The bottom line is, large-scale microservices deployments
with thousands of services have become a reality.

 Managing a large-scale microservices deployment with thousands of services would
be extremely challenging if you didn’t know how to automate. If the microservices
concept had popped up at a time when the concept of containers didn’t exist, few
people or organizations would have the guts to adopt microservices. Fortunately,

http://mng.bz/gyAx

9Challenges of securing microservices
things didn’t happen that way, and that’s why we believe that microservices and con-
tainers are a match made in heaven. If you’re new to containers or don’t know what
Docker is, think of containers as a way to make software distribution and deployment
hassle-free. Microservices and containers (Docker) were born at the right time to
complement each other nicely. We talk about containers and Docker later in the
book, in chapter 10.

 Does the deployment complexity of microservices architecture make security more
challenging? We’re not going to delve deep into the details here, but consider one
simple example. Service-to-service communication happens among multiple micro-
services. Each of these communication channels must be protected. You have many
options (which we discuss in detail in chapters 6 and 7), but suppose that you use
certificates.

 Now each microservice must be provisioned with a certificate (and the correspond-
ing private key), which it will use to authenticate itself to another microservice during
service-to-service interactions. The recipient microservice must know how to validate
the certificate associated with the calling microservice. Therefore, you need a way to
bootstrap trust between microservices. Also, you need to be able to revoke certificates
(in case the corresponding private key gets compromised) and rotate certificates
(change the certificates periodically to minimize any risks in losing the keys unknow-
ingly). These tasks are cumbersome, and unless you find a way to automate them,
they’ll be tedious in a microservices deployment.

1.2.4 Requests spanning multiple microservices are harder to trace

Observability is a measure of what you can infer about the internal state of a system
based on its external outputs. Logs, metrics, and traces are known as the three pillars of
observability.

 A log can be any event you record that corresponds to a given service. A log, for
example, can be an audit trail that says that the Order Processing microservice
accessed the Inventory microservice to update the inventory on April 15th, 2020, at
10:15.12 p.m. on behalf of the user Peter.

 Aggregating a set of logs can produce metrics. In a way, metrics reflect the state of
the system. In terms of security, the average invalid access requests per hour is a
metric, for example. A high number probably indicates that the system is under attack
or the first-level defense is weak. You can configure alerts based on metrics. If the
number of invalid access attempts for a given microservice goes beyond a preset
threshold value, the system can trigger an alert.

 Traces are also based on logs but provide a different perspective of the system.
Tracing helps you track a request from the point where it enters the system to the
point where it leaves the system. This process becomes challenging in a microservices
deployment. Unlike in a monolithic application, a request to a microservices deploy-
ment may enter the system via one microservice and span multiple microservices
before it leaves the system.

10 CHAPTER 1 Microservices security landscape
 Correlating requests among microservices is challenging, and you have to rely on
distributed tracing systems like Jaeger and Zipkin. In chapter 5, we discuss how to use
Prometheus and Grafana to monitor all the requests coming to a microservices
deployment.

1.2.5 Immutability of containers challenges how you maintain service
credentials and access-control policies

A server that doesn’t change its state after it spins up is called an immutable server. The
most popular deployment pattern for microservices is container based. (We use the
terms container and Docker interchangeably in this book, and in this context, both
terms have the same meaning.) Each microservice runs in its own container, and as a
best practice, the container has to be an immutable server.3 In other words, after the
container has spun up, it shouldn’t change any of the files in its filesystem or maintain
any runtime state within the container itself.

 The whole purpose of expecting servers to be immutable in a microservices
deployment is to make deployment clean and simple. At any point, you can kill a run-
ning container and create a new one with the base configuration without worrying
about runtime data. If the load on a microservice is getting high, for example, you
need more server instances to scale horizontally. Because none of the running server
instances maintains any runtime state, you can simply spin up a new container to
share the load.

 What impact does immutability have on security, and why do immutable servers
make microservices security challenging? In microservices security architecture, a
microservice itself becomes a security enforcement point.4 As a result, you need to
maintain a list of allowed clients (probably other microservices) that can access the
given microservice, and you need a set of access-control policies.

 These lists aren’t static; both the allowed clients and access-control policies get
updated. With an immutable server, you can’t maintain such updates in the server’s
filesystem. You need a way to get all the updated policies from some sort of policy
administration endpoint at server bootup and then update them dynamically in mem-
ory, following a push or pull model. In the push model, the policy administration end-
point pushes policy updates to the interested microservices (or security enforcement
points). In the pull model, each microservice has to poll the policy administration end-
point periodically for policy updates. Section 1.5.2 explains in detail service-level
authorization.

 Each microservice also has to maintain its own credentials, such as certificates. For
better security, these credentials need to be rotated periodically. It’s fine to keep them

3 In “What Is Mutable vs. Immutable Infrastructure,” Armon Dadger explains the trade-offs between the two
infrastructure types: http://mng.bz/90mr.

4 This isn’t 100% precise, and we discuss why in chapter 12. In many cases, it’s not the microservice itself that
becomes the security enforcement point, but another proxy, which is deployed collocated with the microser-
vice itself. Still, the argument we present here related to immutability is valid.

http://mng.bz/90mr

11Challenges of securing microservices
with the microservice itself (in the container filesystem), but you should have a way to
inject them into the microservice at the time it boots up. With immutable servers,
maybe this process can be part of the continuous delivery pipeline, without baking the
credentials into the microservice itself.

1.2.6 The distributed nature of microservices makes sharing
user context harder

In a monolithic application, all internal components share the same web session, and
anything related to the requesting party (or user) is retrieved from it. In microservices
architecture, you don’t enjoy that luxury. Nothing is shared among microservices (or
only a very limited set of resources), and the user context has to be passed explicitly
from one microservice to another. The challenge is to build trust between two micro-
services so that the receiving microservice accepts the user context passed from the
calling microservice. You need a way to verify that the user context passed among
microservices isn’t deliberately modified.5

 Using a JSON Web Token (JWT) is one popular way to share user context among
microservices; we explore this technique in chapter 7. For now, you can think of a
JWT as a JSON message that helps carry a set of user attributes from one microservice
to another in a cryptographically safe manner.

1.2.7 Polyglot architecture demands more security expertise
on each development team

In a microservices deployment, services talk to one another over the network. They
depend not on each service’s implementation, but on the service interface. This situa-
tion permits each microservice to pick its own programming language and the tech-
nology stack for implementation. In a multiteam environment, in which each team
develops its own set of microservices, each team has the flexibility to pick the optimal
technology stack for its requirements. This architecture, which enables the various
components in a system to pick the technology stack that is best for them, is known as
a polyglot architecture.

 A polyglot architecture makes security challenging. Because different teams use
different technology stacks for development, each team has to have its own security
experts. These experts should take responsibility for defining security best practices
and guidelines, research security tools for each stack for static code analysis and
dynamic testing, and integrate those tools into the build process. The responsibilities
of a centralized, organization-wide security team are now distributed among different
teams. In most cases, organizations use a hybrid approach, with a centralized security
team and security-focused engineers on each team who build microservices.

5 User context carries information related to the user who invokes a microservice. This user can be a human
user or a system, and the information related to the user can be a name, email address, or any other user
attribute.

12 CHAPTER 1 Microservices security landscape
1.3 Key security fundamentals
Adhering to fundamentals is important in any security design. There’s no perfect or
unbreakable security. How much you should worry about security isn’t only a technical
decision, but also an economic decision. There’s no point in having a burglar-alarm
system to secure an empty garage, for example. The level of security you need
depends on the assets you intend to protect. The security design of an e-commerce
application could be different from that of a financial application.

 In any case, adhering to security fundamentals is important. Even if you don’t fore-
see some security threats, following the fundamentals helps you protect your system
against such threats. In this section, we walk you through key security fundamentals
and show you how they’re related to microservices security.

1.3.1 Authentication protects your system against spoofing

Authentication is the process of identifying the requesting party to protect your system
against spoofing. The requesting party can be a system (a microservice) or a system
requesting access on behalf of a human user or another system (see figure 1.4). It’s
rather unlikely that a human user will access a microservice directly, though. Before
creating a security design for a given system, you need to identify the audience. The
authentication method you pick is based on the audience.

Figure 1.4 A system (for example, a web/mobile application), just by being itself or on behalf of a
human user or another system, can access microservices via an API gateway.

Human users indirectly
access a microservice via a
web app, a mobile app, and
so on.

API Gateway

Order
Processing

Service

Inventory
Service

Microservices are exposed
to client applications via an
API gateway.

A system may directly
access a microservice
by itself or on behalf
of another user.

One microservice talks to another
microservice on behalf of another
system or a human user.

13Key security fundamentals
If you’re worried about a system accessing a microservice on behalf of a human user,
you need to think about how to authenticate the system as well as the human user. In
practice, this can be a web application, which is accessing a microservice, on behalf of
a human user who logs into the web application. In these kinds of delegated use cases,
in which a system requests access on behalf of another system or a human user, OAuth
2.0 is the de facto standard for security. We discuss OAuth 2.0 in detail in appendix A.

 To authenticate the human user to a system (for example, a web application), you
could request the username and password with another factor for multifactor authen-
tication (MFA). Whether MFA is required is mostly a business decision, based on how
critical your business assets are or how sensitive the data you want to share with users.
The most popular form of MFA is the one-time passcode (OTP) sent over SMS. Even
though it’s not the best method in terms of security, it’s the most usable form of MFA,
mostly because a large portion of the world population has access to mobile phones
(which don’t necessarily need to be smartphones). MFA helps reduce account
breaches by almost 99.99%.6 Much stronger forms of MFA include biometrics, certifi-
cates, and Fast Identity Online (FIDO).

 You have multiple ways to authenticate a system. The most popular options are cer-
tificates and JWTs. We discuss both these options in detail, with a set of examples, in
chapters 6 and 7.

1.3.2 Integrity protects your system from data tampering

When you transfer data from your client application to a microservice or from one
microservice to another microservice—depending on the strength of the communica-
tion channel you pick—an intruder could intercept the communication and change
the data for their advantage. If the channel carries data corresponding to an order, for
example, the intruder could change its shipping address to their own. Systems pro-
tected for integrity don’t ignore this possibility; they introduce measures so that if a
message is altered, the recipient can detect and discard the request.

 The most common way to protect a message for integrity is to sign it. Any data in
transit over a communication channel protected with Transport Layer Security (TLS),
for example, is protected for integrity. If you use HTTPS for communications among
microservices (that communication is, in fact, HTTP over TLS), your messages are
protected for integrity while in transit.

 Along with the data in transit, the data at rest must be protected for integrity. Of all
your business data, audit trails matter most for integrity checks. An intruder who gets
access to your system would be happiest if they could modify your audit trails to wipe
out any evidence. In a microservices deployment based on containers, audit logs
aren’t kept at each node that runs the microservice; they’re published in some kind of
a distributed tracing system like Jaeger or Zipkin. You need to make sure that the data
maintained in those systems is protected for integrity.

6 See “Basics and Black Magic: Defending Against Current and Emerging Threats” by Alex Weinert at www
.youtube.com/watch?v=Nmkeg0wPRGE for more details.

www.youtube.com/watch?v=Nmkeg0wPRGE for more details
www.youtube.com/watch?v=Nmkeg0wPRGE for more details

14 CHAPTER 1 Microservices security landscape
 One way is to periodically calculate the message digests of audit trails, encrypt
them, and store them securely. In a research paper, Gopalan Sivathanu, Charles P.
Wright, and Erez Zadok of Stony Brook University highlight the causes of integrity vio-
lations in storage and present a survey of available integrity assurance techniques.7 The
paper explains several interesting applications of storage integrity checking; apart
from security it also discusses implementation issues associated with those techniques.

1.3.3 Nonrepudiation: Do it once, and you own it forever

Nonrepudiation is an important aspect of information security that prevents you from
denying anything you’ve done or committed. Consider a real-world example. When
you lease an apartment, you agree to terms and conditions with the leasing company.
If you leave the apartment before the end of the lease, you’re obliged to pay the rent
for the remaining period or find another tenant to sublease the apartment. All the
terms are in the leasing agreement, which you accept by signing it. After you sign it,
you can’t dispute the terms and conditions to which you agreed. That’s nonrepudia-
tion in the real world. It creates a legal obligation. Even in the digital world, a signa-
ture helps you achieve nonrepudiation; in this case, you use a digital signature.

 In an e-commerce application, for example, after a customer places an order, the
Order Processing microservice has to talk to the Inventory microservice to update
inventory. If this transaction is protected for nonrepudiation, the Order Processing
microservice can’t later deny that it updated inventory. If the Order Processing
microservice signs a transaction with its private key, it can’t deny later that the transac-
tion was initiated from that microservice. With a digital signature, only the owner of
the corresponding private key can generate the same signature; so make sure that you
never lose the key!

 Validating the signature alone doesn’t help you achieve nonrepudiation, however.
You also need to make sure that you record transactions along with the timestamp and
the signature—and maintain those records for a considerable amount of time. In case
the initiator disputes a transaction later, you’ll have it in your records.

1.3.4 Confidentiality protects your systems from unintended
information disclosure

When you send order data from a client application to the Order Processing microser-
vice, you expect that no party can view the data other than the Order Processing
microservice itself. But based on the strength of the communication channel you
pick, an intruder can intercept the communication and get hold of the data. Along
with the data in transit, the data at rest needs to be protected for confidentiality (see
figure 1.5). An intruder who gets access to your data storage or backups has direct
access to all your business-critical data unless you’ve protected it for confidentiality.

7 See “Ensuring Data Integrity in Storage: Techniques and Applications” at http://mng.bz/eQVP.

http://mng.bz/eQVP

15Key security fundamentals
Figure 1.5 To protect a system for confidentiality, both the data in transit and at rest
must be protected. The data in transit can be protected with TLS, and data at rest
can be protected by encryption.

DATA IN TRANSIT

Encryption helps you achieve confidentiality. A cryptographic operation makes sure
that the encrypted data is visible only to the intended recipient. TLS is the most popu-
lar way of protecting data for confidentiality in transit. If one microservice talks to
another over HTTPS, you’re using TLS underneath, and only the recipient microser-
vice will be able to view the data in cleartext.

 Then again, the protection provided by TLS is point to point. At the point where
the TLS connection terminates, the security ends. If your client application connects
to a microservice over a proxy server, your first TLS connection terminates at the
proxy server, and a new TLS connection is established between the proxy server and
the microservice. The risk is that anyone who has access to the proxy server can log
the messages in cleartext as soon as the data leaves the first connection.

 Most proxy servers support two modes of operation with respect to TLS: TLS
bridging and TLS tunneling. TLS bridging terminates the first TLS connection at the

Data at rest can be protected
with message-level encryption
or disk-level encryption.

A man in the middle cannot see
data in transit when TLS is used.

Protected
with TLS

API Gateway

Protected
with TLS

Inventory
Service

Order
Processing

Service

Protected
with TLS

Protected
with TLS

16 CHAPTER 1 Microservices security landscape
proxy server, and creates a new TLS connection between the proxy server and the
next destination of the message. If your proxy server uses TLS bridging, don’t trust it
and possibly put your data at risk, even though you use TLS (or HTTPS). If you use
TLS bridging, the messages are in cleartext while transiting through the proxy server.
TLS tunneling creates a tunnel between your client application and the microservices,
and no one in the middle will be able to see what’s going through, not even the proxy
server. If you are interested in reading more about TLS, we recommend having a look
at SSL and TLS: Designing and Building Secure Systems by Eric Rescorla (Addison-Wesley
Professional, 2000).

NOTE Encryption has two main flavors: public-key encryption and symmetric-
key encryption. With public-key encryption, the data is encrypted using the
recipient’s public key, and only the party who owns the corresponding private
key can decrypt the message and see what’s in it. With symmetric-key encryption,
the data is encrypted with a key known to both the sender and the recipient.
TLS uses both flavors. Symmetric-key encryption is used to encrypt the data,
while public-key encryption is used to encrypt the key used in symmetric-key
encryption. If you are interested in reading more about encryption and cryp-
tography, we recommend having a look at Real-World Cryptography by David
Wong (Manning, to be published in 2021).

DATA AT REST

Encryption should also apply to data at rest to protect it from intruders who get direct
access to the system. This data can be credentials for other systems stored in the file-
system or business-critical data stored in a database. Most database management sys-
tems provide features for automatic encryption, and disk-level encryption features are
available at the operating-system level. Application-level encryption is another option,
in which the application itself encrypts the data before passing it over to the filesystem
or to a database.

 Of all these options, the one that best fits your application depends on the criticality
of your business operations. Also keep in mind that encryption is a resource-intensive
operation that would have considerable impact on your application’s performance
unless you find the optimal solution.8

1.3.5 Availability: Keep the system running, no matter what

The whole point of building any kind of a system is to make it available to its users.
Every minute (or even second) that the system is down, your business loses money.
Amazon was down for 20 minutes in March 2016, and the estimated revenue loss was
$3.75 million. In January 2017, more than 170 Delta Airlines flights were canceled
because of a system outage, which resulted in an estimated loss of $8.5 million.

8 See “Performance Evaluation of Encryption Techniques for Confidentiality of Very Large Databases” by Malik
Sikander et al. at www.ijcte.org/papers/410-G1188.pdf.

www.ijcte.org/papers/410-G1188.pdf

17Key security fundamentals
 It’s not only the security design of a system that you need to worry about to keep a
system up and running, but also the overall architecture. A bug in the core functional-
ity of an application can take the entire system down. To some extent, these kinds of
situations are addressed in the core design principles of microservices architecture.
Unlike in monolithic applications, in a microservices deployment, the entire system
won’t go down if a bug is found in one component or microservice. Only that
microservice will go down; the rest should be able to function.

 Of all the factors that can take a system down, security has a key role to play in mak-
ing a system constantly available to its legitimate stakeholders. In a microservices
deployment, with many entry points (which may be exposed to the internet), an
attacker can execute a denial-of-service (DoS) or a distributed denial-of-service
(DDoS) attack and take the system down.

 Defenses against such attacks can be built on different levels. On the application
level, the best thing you could do is reject a message (or a request) as soon as you find
that it’s not legitimate. Having layered security architecture helps you design each layer
to take care of different types of attacks and reject an attacker at the outermost layer.

 As shown in figure 1.6, any request to a microservice first has to come through the
API gateway. The API gateway centrally enforces security for all the requests entering
the microservices deployment, including authentication, authorization, throttling,
and message content validation for known security threats. We get into the details of
each topic in chapters 3, 4, and 5.

Figure 1.6 Multiple security enforcement points at multiple layers help improve the level of security of a
microservices deployment.

API Gateway

Firewall

Inventory
Service

Order
Processing

Service

The firewall applies
access-control rules
and protects the
system from attacks.

Performs message
content validation
to prevent known
threats

Firewalls cannot
mitigate all the types
of DDoS attacks.

The firewall denies
requests based
on IP addresses.

Performs authentication,
authorization, and throttling

18 CHAPTER 1 Microservices security landscape
The network perimeter level is where you should have the best defense against DoS/
DDoS attacks. A firewall is one option; it runs at the edge of the network and can be
used to keep malicious users away. But firewalls can’t protect you completely from a
DDoS attack. Specialized vendors provide DDoS prevention solutions for use outside
corporate firewalls. You need to worry about those solutions only if you expose your
system to the internet. Also, all the DDoS protection measures you take at the edge
aren’t specific to microservices. Any endpoint that’s exposed to the internet must be
protected from DoS/DDoS attacks.

1.3.6 Authorization: Nothing more than you’re supposed to do

Authentication helps you learn about the user or the requesting party. Authorization
determines the actions that an authenticated user can perform on the system. In an
e-commerce application, for example, any customer who logs into the system can
place an order, but only the inventory managers can update the inventory.

 In a typical microservices deployment, authorization can happen at the edge (the
entry point to the microservices deployment, which could be intercepted by a gate-
way) and at each service level. In section 1.4.3, we discuss how authorization policies
are enforced at the edge and your options for enforcing authorization policies in
service-to-service communication at the service level.

1.4 Edge security
In a typical microservices deployment, microservices are not exposed directly to client
applications. In most cases, microservices are behind a set of APIs that is exposed to
the outside world via an API gateway. The API gateway is the entry point to the
microservices deployment, which screens all incoming messages for security.

 Figure 1.7 depicts a microservices deployment that resembles Netflix’s, in which all
the microservices are fronted by the Zuul API gateway.9 Zuul provides dynamic rout-
ing, monitoring, resiliency, security, and more. It acts as the front door to Netflix’s
server infrastructure, handling traffic from Netflix users around the world. In figure
1.7, Zuul is used to expose the Order Processing microservice via an API. Other
microservices in the deployment, Inventory and Delivery, don’t need to be exposed
from the API gateway because they don’t need to be invoked by external applications.
A typical microservices deployment can have a set of microservices that external appli-
cations can access, and another set of microservices that external applications don’t
need to access; only the first set of microservices is exposed to the outside world via an
API gateway.

9 Zuul (https://github.com/Netflix/zuul) is a gateway service that provides dynamic routing, monitoring, resil-
iency, security, and more.

https://github.com/Netflix/zuul

19Edge security
Figure 1.7 A typical microservices deployment with an API gateway: the API gateway is the entry point,
which screens all incoming messages for security.

1.4.1 The role of an API gateway in a microservices deployment

Over time, APIs have become the public face of many companies. We’re not exagger-
ating by saying that a company without an API is like a computer without the internet.
If you’re a developer, you surely know how life would look with no internet!

 APIs have also become many companies’ main revenue-generation channel. At
Expedia, for example, 90% of revenue comes through APIs; at Salesforce, APIs
account for 50% of revenue; and at eBay, APIs account for 60% of revenue.10 Netflix is
another company that has heavily invested in APIs. Netflix accounts for a considerable
percentage of all internet traffic in North America and also globally, all of which
comes through Netflix APIs.

 APIs and microservices go hand in hand. Most of the time, a microservice that
needs to be accessed by a client application is exposed as an API via an API gateway.
The key role of the API gateway in a microservices deployment is to expose a selected

10 See “The Strategic Value of APIs” by Bala Iyer and Mohan Subramaniam at https://hbr.org/2015/01/the
-strategic-value-of-apis.

API Gateway

Order
Processing

Service

Delivery
Service

Inventory
Service

Notification
Service

Policy
Administration

Point (PAP)

Message
Queue

The embedded PDP in
each microservice pulls
the corresponding policies
when there is an update
at the PAP.

Each microservice will
be notified whenever
a new policy is added
or updated.

Whenever there is a policy
add/update, events are
published to the message queue.

Policies are defined at the PAP.

https://hbr.org/2015/01/the-strategic-value-of-apis
https://hbr.org/2015/01/the-strategic-value-of-apis

20 CHAPTER 1 Microservices security landscape
set of microservices to the outside world as APIs and build quality-of-service (QoS) fea-
tures. These QoS features are security, throttling, and analytics.

 Exposing a microservice to the outside world, however, doesn’t necessarily mean
making it public-facing or exposed to the internet. You could expose it only outside
your department, allowing users and systems from other departments within the same
organizational boundary to talk to the upstream microservices via an API gateway. In
chapter 3, we discuss in detail the role that an API gateway plays in a microservices
deployment.

1.4.2 Authentication at the edge

Similar to microservices, even for APIs the audience is a system that acts on behalf of
itself or on behalf of a human user or another system (see figure 1.8). It’s unlikely
(but not impossible) for human users to interact directly with APIs. In most cases, an
API gateway deals with systems. In the following sections, we discuss options for
authenticating a system (or a client application) at the API gateway.

Figure 1.8 Authentication at the edge is enforced by the API gateway. Only the authenticated requests
are dispatched to the upstream microservices.

API Gateway

Order
Processing

Service

Inventory
Service

Human users indirectly access
a microservice via a web app,
a mobile app, and so on.

Microservices are exposed
to client applications via an
API gateway.

One microservice talks to another
microservice on behalf of another
system or a human user.

A system may directly
access a microservice
by itself or on behalf
of another user.

21Edge security
CERTIFICATE-BASED AUTHENTICATION

Certificate-based authentication protects an API at the edge with mutual Transport Layer
Security (mTLS). In the Netflix microservices deployment, access to the APIs is pro-
tected with certificates. Only a client provisioned with a valid certificate can access
Netflix APIs. The role of the API gateway here is to make sure that only clients carry-
ing a trusted certificate can access the APIs and that only those requests are routed to
the upstream microservices. In chapter 3, we discuss how to secure APIs at the API
gateway with mTLS.

OAUTH 2.0–BASED ACCESS DELEGATION

Anyone can create an application to consume Twitter and Facebook APIs. These can
be web or mobile applications (refer to figure 1.8). An application can access an API
as itself or on behalf of a human user. OAuth 2.0, which is an authorization framework
for delegated access control, is the recommended approach for protecting APIs when
one system wants to access an API on behalf of another system or a user.

 We explain OAuth 2.0 in chapter 3 and appendix A; don’t worry if you don’t
know what it is. Even if you don’t know what OAuth 2.0 is, you use it if you use Face-
book to log into third-party web applications, because Facebook uses OAuth 2.0 to
protect its APIs.

The role of the API gateway is to validate the OAuth 2.0 security tokens that come with
each API request. The OAuth 2.0 security token represents both the third-party appli-
cation and the user who delegated access to the third-party application to access an
API on their behalf.

 Those who know about OAuth 2.0 probably are raising their eyebrows at seeing it
mentioned in a discussion of authentication. We agree that it’s not an authentication
protocol at the client application end, but at the resource server end, which is the API
gateway. We discuss this topic further in appendix A.

Cambridge Analytica/Facebook scandal
The Cambridge Analytica/Facebook privacy scandal happened in early 2018, when
public media accounts reported that British political consulting firm Cambridge Ana-
lytica had collected the personal Facebook data of more than 87 million people with-
out their consent for use in targeted political campaign advertising. The data was
collected by a third-party application called This Is Your Digital Life, created by
researcher Alexander Kogan, and was sold to Cambridge Analytica.

The third-party application acted as a system, accessing the Facebook API secured
with OAuth 2.0, on behalf of legitimate Facebook users to collect their personal data.
These Facebook users directly or indirectly delegated access to their personal data
to this third-party application; users were under the impression they were taking a per-
sonality quiz that would be used by a university for academic purposes.

22 CHAPTER 1 Microservices security landscape
1.4.3 Authorization at the edge

In addition to figuring out who the requesting party is during the authentication pro-
cess, the API gateway could enforce corporatewide access-control policies, which are
probably coarse-grained. More fine-grained access-control policies are enforced at the
service level by the microservice itself (or by a proxy to the microservice, which we dis-
cuss in chapter 12). In section 1.5.2, we discuss service-level authorization in detail.

1.4.4 Passing client/end-user context to upstream microservices

The API gateway terminates all the client connections at the edge, and if everything
looks good, it dispatches the requests to the corresponding upstream microservices.
But you need a way to protect the communication channels between the gateway and
the corresponding microservice, as well as a way to pass the initial client/user context.
User context carries basic information about the end user, and client context carries infor-
mation about the client application. This information probably could be used by
upstream microservices for service-level access control.

 As you may have rightly guessed, communication between the API gateway and the
microservices is system to system, so you probably can use mTLS authentication to
secure the channel. But how do you pass the user context to the upstream microser-
vices? You have a couple of options: pass the user context in an HTTP header, or cre-
ate a JWT with the user data. The first option is straightforward but raises some trust
concerns when the first microservice passes the same user context in an HTTP header
to another microservice. The second microservice doesn’t have any guarantee that the
user context isn’t altered. But with JWT, you have an assurance that a man in the mid-
dle can’t change its content and go undetected, because the issuer of the JWT signs it.

 We explain JWT in detail in appendix B; for now, think of it as a signed payload
that carries data (in this case, the user context) in a cryptographically safe manner.
The gateway or an STS connected to the gateway can create a JWT that includes the
user context (and the client context) and passes it to the upstream microservices. The
recipient microservices can validate the JWT by verifying the signature with the public
key of the STS that issued the JWT.

1.5 Securing service-to-service communication
The frequency of service-to-service communication is higher in a microservices
deployment. Communication can occur between two microservices within the same
trust domain or between two trust domains. A trust domain represents the ownership.
Microservices developed, deployed, and managed together probably fall under one
trust domain, or the trust boundaries can be defined at the organizational level by tak-
ing many other factors into account.

 The security model that you develop to protect service-to-service communication
should consider the communication channels that cross trust boundaries, as well as
how the actual communication takes place between microservices: synchronously or
asynchronously. In most cases, synchronous communication happens over HTTP.
Asynchronous communication can happen over any kind of messaging system, such as

23Securing service-to-service communication
RabbitMQ, Kafka, ActiveMQ, or even Amazon Simple Queue Service (SQS). In chap-
ters 6, 7, and 8, we discuss various security models to secure synchronous communica-
tion among microservices, and chapter 9 covers securing event-driven microservices.

1.5.1 Service-to-service authentication

You have three common ways to secure communications among services in a micro-
services deployment: trust the network, mTLS, and JWTs.

TRUST THE NETWORK

The trust-the-network approach is an old-school model in which no security is enforced
in service-to-service communication; rather, the model relies on network-level security
(see figure 1.9). Network-level security must guarantee that no attacker can intercept
communications among microservices. Also, each microservice is a trusted system.
Whatever it claims about itself and the end user is trusted by other microservices. You
should make this deployment choice based on the level of security you expect and the
trust you keep on every component in the network.

 Another school of thought, known as the zero-trust network approach, opposes the
trust-the-network approach. The zero-trust network approach assumes that the net-
work is always hostile and untrusted, and it never takes anything for granted. Each

API Gateway

Order
Processing

Service

Delivery
Service

Inventory
Service

Notification
Service Network perimeter.

Only the trusted
connections are
allowed to come in.

Network-level security makes sure no one outside the
network perimeter can intercept communications.

All the components within
the network perimeter are
considered to be trusted.

Figure 1.9 The trusted network makes sure that communications among microservices are secured.
No one on a system outside the trusted network can see the traffic flows among microservices in the
trusted network.

24 CHAPTER 1 Microservices security landscape
request must be authenticated and authorized at each node before being accepted for
further processing. If you are interested in reading more about zero-trust networks,
we recommend Zero Trust Networks: Building Secure Systems in Untrusted Networks by Evan
Gilman and Doug Barth (O'Reilly Media, 2017).

MUTUAL TLS
Mutual TLS is another popular way to secure service-to-service communications in a
microservices deployment (see figure 1.10). In fact, this method is the most common
form of authentication used today. Each microservice in the deployment has to carry a
public/private key pair and uses that key pair to authenticate to the recipient
microservices via mTLS.

 TLS provides confidentiality and integrity for the data in transit, and helps the cli-
ent identify the service. The client microservice knows which microservice it’s going to
talk with. But with TLS (one-way), the recipient microservice can’t verify the identity
of the client microservice. That’s where mTLS comes in. mTLS lets each microservice
in communication identify the others.

Figure 1.10 Communications among microservices are secured with mTLS. All the microservices that
communicate with each other trust the certificate authority (CA) in the deployment.

Zuul

Order
Processing

Service

Delivery
Service

Inventory
Service

Notification
Service

This channel between the client
and the Zuul API gateway can
be protected with either certificates,
or OAuth 2.0, or a combination of both.

Passes the end-user
context to upstream
microservices in an
HTTP header or in
a JWT

Propagates the user
context from one
microservice to the other

Service-to-service
communications can be
protected with mutual TLS.

Systems or applications
access APIs on behalf of
themselves or on behalf of a
human user or another system.

An API gateway, which
performs security
screening and throttling,
and publishes analytics
to an analytics server

Asynchronous
communication between
two microservices using
a notification service as
the message broker

25Securing service-to-service communication
Challenges in mTLS include bootstrapping trust and provisioning keys/certificates to
workloads/microservices, key revocation, key rotation, and key monitoring. We dis-
cuss those challenges and possible solutions in detail in chapter 6.

JSON WEB TOKENS

JSON Web Token is the third approach for securing service-to-service communications
in a microservices deployment (see figure 1.11). Unlike mTLS, JWT works at the
application layer, not at the transport layer. JWT is a container that can carry a set of
claims from one place to another.

 These claims can be anything, such as end-user attributes (email address, phone
number), end-user entitlements (what the user can do), or anything the calling
microservice wants to pass to the recipient microservice. The JWT includes these
claims and is signed by the issuer of the JWT. The issuer can be an external STS or the
calling microservice itself.

 The latter example is a self-issued JWT. As in mTLS, if we use self-issued JWT-based
authentication, each microservice must have its own key pair, and the corresponding
private key is used to sign the JWT. In most cases, JWT-based authentication works
over TLS; JWT provides authentication, and TLS provides confidentiality and integrity
of data in transit.

Figure 1.11 Communications among microservices are secured with JWT. Each microservice uses a certificate
issued to it by the certificate authority to sign JWTs.

API Gateway

Order
Processing

Service

Delivery
Service

Inventory
Service

Notification
Service

Accepts a request
from a client only if the
certificate used to sign
the JWT from the client
microservice is known
and trusted.

Service-to-service
communications are
secured with
JWT over TLS.

All the certificates issued to each
microservice are signed by this
trusted certificate authority.

Each microservice has
its own public/private
key pair, and the private
key is used to sign the
JWT.

Certificate
Authority

JWT

26 CHAPTER 1 Microservices security landscape
1.5.2 Service-level authorization

In a typical microservices deployment, authorization can happen at the edge (with the
API gateway), at the service, or in both places. Authorization at the service level gives
each service more control to enforce access-control policies in the way it wants. Two
approaches are used to enforce authorization at the service level: the centralized pol-
icy decision point (PDP) model and the embedded PDP model.

 In the centralized PDP model, all the access-control policies are defined, stored, and
evaluated centrally (see figure 1.12). Each time the service wants to validate a request,
it has to talk to an endpoint exposed by the centralized PDP. This method creates a lot
of dependency on the PDP and also increases the latency because of the cost of calling
the remote PDP endpoint. In some cases, the effect on latency can be prevented by
caching policy decisions at the service level, but other than cache expiration time,
there’s no way to communicate policy update events to the service. In practice, policy
updates happen less frequently, and cache expiration may work in most cases.

 With embedded PDPs, policies are defined centrally but are stored and evaluated at
the service level. The challenge with embedded PDPs is how to get policy updates
from the centralized policy administration point (PAP).

Figure 1.12 Each microservice is connected to a centralized PDP to authorize requests.
All the access-control policies are defined, stored, and evaluated centrally.

API Gateway

Order
Processing

Service

Delivery
Service

Inventory
Service

Policy Decision
Point (PDP)

Notification
Service

Each microservice
talks to a centralized
PDP to authorize each
request it receives.

Policies are defined, stored,
and evaluated at the PDP.

27Securing service-to-service communication
There are two common methods. One approach is to poll the PAP continuously after
a set period and then pull new and updated policies from PAP. The other approach is
based on a push mechanism. Whenever a new policy or policy update is available, the
PAP publishes an event to a topic (see figure 1.13). Each microservice acts as an event
consumer and registers for the events it’s interested in. Whenever a microservice
receives an event for a registered topic, it pulls the corresponding policy from the PAP
and updates the embedded PDP.

 Some people believe that both these approaches are overkill, however. They load
policies to the embedded PDP only when the server starts up from a shared location.
Whenever a new policy or a policy update is available, each service has to restart.

Figure 1.13 Each microservice embeds a PDP. The embedded PDPs pull the policies from the policy
administration point upon receiving a notification.

1.5.3 Propagating user context among microservices

When one microservice invokes another microservice, it needs to carry both the end-
user identity and the identity of the microservice itself. When one microservice authen-
ticates to another microservice with mTLS or JWT, the identity of the calling microser-
vice can be inferred from the embedded credentials. There are three common ways to
pass the end-user context from one microservice to another microservice:

 Send the user context as an HTTP header. This technique helps the recipient
microservice identify the user but requires the recipient to trust the calling

API Gateway

Order
Processing

Service

Delivery
Service

Inventory
Service

Notification
Service

Policy
Administration

Point (PAP)

Message
Queue

The embedded PDP in
each microservice pulls
the corresponding policies
when there is an update
at the PAP.

Each microservice will
be notified whenever
a new policy is added
or updated.

Whenever there is a policy
add/update, events are
published to the message queue. Policies are defined at the PAP.

28 CHAPTER 1 Microservices security landscape
microservice. If the calling microservice wants to fool the recipient microser-
vice, it can do so easily by setting any name it wants as the HTTP header.

 Use a JWT. This JWT carries the user context from the calling microservice to
the recipient microservice and is also passed in the HTTP request as a header.
This approach has no extra value in terms of security over the first approach if
the JWT that carries the user context is self-issued. A self-issued JWT is signed by
the calling service itself, so it can fool the recipient microservice by adding any
name it wants to add.

 Use a JWT issued by an external STS that is trusted by all the microservices in the deploy-
ment. The user context included in this JWT can’t be altered, as alteration
would invalidate the signature of the JWT. This is the most secure approach.
When you have the JWT from an external STS, the calling microservice can
embed that JWT in the new JWT it creates to make a nested JWT (if JWT-based
authentication is used among microservices) or pass the original JWT as-is, as
an HTTP header (if mTLS is being used among microservices).

1.5.4 Crossing trust boundaries

In a typical microservices deployment, you find multiple trust domains. We can define
these trust domains by the teams having control and governance over the microser-
vices or organizational boundaries. The purchasing department, for example, might
manage all its microservices and create its own trust domain.

 In terms of security, when one microservice talks to another microservice, and
both microservices are in the same trust domain, each microservice may trust one STS
in the same domain or a certificate authority in the same domain. Based on this trust,
the recipient microservice can validate a security token sent to it by a calling microser-
vice. Typically, in a single trust domain, all the microservices trust one STS and accept
only security tokens issued by that STS.

 When one microservice wants to talk to another microservice in a different trust
domain, it can take one of two primary approaches. In the first approach (see figure
1.14), the calling microservice (Order Processing) in the foo trust domain wants to
talk to the recipient microservice (Delivery) of the bar trust domain. First, it has to
obtain a security token that is trusted by all the microservices in the bar trust domain.
In other words, it needs to obtain a security token from the STS of the recipient trust
domain.

 Here’s the numbered flow shown in figure 1.14:

 Step 1—The API gateway routes the request from the client application to the
Order Processing microservice in the foo trust domain, along with a JWT
signed by the gateway (or by an STS attached to it). Because all the microser-
vices in the foo trust domain trust the top-level STS (the one attached to the
API gateway), the Order Processing microservice accepts the token as valid.
The JWT has an attribute called aud that defines the target system of the JWT.
In this case, the value of aud is set to the Order Processing microservice of the

29Securing service-to-service communication
foo trust domain. Ideally, if the Order Processing microservice receives a JWT
with a different aud value, it must reject that JWT, even if its signature is valid.
We discuss JWT in detail in appendix B.

 Step 2—The Order Processing microservice passes the original JWT that it got
from the gateway (or STS at the top level) to the STS at the foo trust domain.
Once again, the foo STS has to validate the aud value in the JWT it gets. If it
cannot identify the audience of the token, the foo STS must reject it.

 Step 3—The foo STS returns a new JWT, which is signed by it and has an aud
value targeting the STS in the bar trust domain.

 Steps 4 and 5—The Order Processing microservice accesses the STS of the bar
trust domain and exchanges the JWT from step 3 to a new JWT signed by the
STS of the bar trust domain, with an aud value targeting the Delivery micro-
service.

 Step 6—The Order Processing microservice accesses the Delivery microservice
with the JWT obtained from step 5. Because the STS of the bar domain signs
this JWT and has a matching aud value, the Delivery microservice will accept
the token.

In the second approach, the Order Processing microservice from the foo trust
domain doesn’t talk directly to the Delivery microservice of the bar trust domain.

API Gateway

Delivery
Service

Order
Processing

Service

Security Token
Service (STS)

Security Token
Service (STS)

foo bar

1

2

6

3

5

4

Figure 1.14 Cross-domain security between two trust domains behind a single trusted API gateway
(and an STS). Each trust domain has its own STS.

30 CHAPTER 1 Microservices security landscape
Each trust domain has its own API gateway, and communication among microservices
happens via the gateways (see figure 1.15).

 Here’s the numbered flow shown in figure 1.15:

 Step 1—The API gateway of the foo trust domain routes the request from the
client application to the Order Processing microservice, along with a JWT
signed by the gateway (or the foo STS, which is attached to the foo API gate-
way). Because all the microservices in the foo trust domain trust the foo STS,
the Order Processing microservice accepts the token as valid.

 Step 2—The Order Processing microservice passes the original JWT that it got
from the gateway (or the foo STS) to its own STS (which is also the foo STS).

 Step 3—The foo STS returns a new JWT, which is signed by it and has an aud
value targeting the API gateway of the bar trust domain.

 Step 4—The Order Processing microservice accesses the Delivery microservice of
the bar domain with the JWT obtained from step 3. Because the API gateway of
the bar domain trusts the foo domain STS, it accepts the JWT as valid. The JWT
is signed by the foo STS and has an aud value to match the bar API gateway.

 Step 5—The bar API gateway talks to the bar STS to create its own JWT (signed
by the bar STS) with an aud value to match the Delivery microservice.

<<TRUSTS>>

API Gateway

A
P

I G
at

ew
ay

Delivery
Service

Order
Processing

Service

Security Token
Service (STS)

Security Token
Service (STS)

foo bar

1

2

6

3

5

4

Figure 1.15 Cross-domain security between two trust domains behind two API gateways (and STSs)

31Summary
 Step 6—The bar API gateway forwards the request to the Delivery microservice
along with the new JWT issued by the bar STS. Because the Delivery microser-
vice trusts its own STS, the token is accepted as valid.

Summary
 Securing microservices is quite challenging with respect to securing a mono-

lithic application, mostly because of the inherent nature of the microservices
architecture.

 A microservices security design starts by defining a process to streamline devel-
opment and engage security-scanning tools to the build system, so that we can
discover the code-level vulnerabilities at a very early stage in the development
cycle.

 We need to worry about edge security of a microservices deployment and secur-
ing communications among microservices.

 Edge security is about authenticating and authorizing requests coming into the
microservices deployment from client applications, at the edge, probably with
an API gateway.

 Securing communications among microservices is the most challenging part.
We discussed multiple techniques in this chapter, and which you choose will
depend on many factors, such as the level of security, the type of communica-
tion (synchronous or asynchronous), and trust boundaries.

First steps in
securing microservices
You build applications as a collection of smaller/modular services or components
when you adhere to architectural principles of microservices. A system by itself, or a
system on behalf of a human user or another system, can invoke a microservice.
In all three cases, we need to properly authenticate and authorize all the requests
that reach the microservice. A microservice may also consume one or more other
microservices in order to cater to a request. In such cases, it is also necessary to prop-
agate user context (from downstream services or client applications) to upstream
microservices.

 In this chapter, we explain how the security validation of the incoming requests
happens, and in chapter 3, we discuss how to propagate the user context to

This chapter covers
 Developing a microservice in Spring Boot/Java

 Running and testing a Spring Boot/Java
microservice with curl

 Securing a microservice at the edge with OAuth 2.0

 Enforcing authorization at the service level with
OAuth 2.0 scopes
32

33Building your first microservice
upstream microservices. The focus of this chapter is to get you started with a straight-
forward deployment. The design of the samples presented in this chapter is far from a
production deployment. As we proceed in the book, we explain how to fill the gaps
and how to build a production-grade microservices security design step by step.

2.1 Building your first microservice
In this section, we discuss how to write, compile, and run your first microservice using
Spring Boot. You will learn some basics about the Spring Boot framework and how
you can use it to build microservices. Throughout this book, we use a retail store
application as an example, which we build with a set of microservices. In this section,
we build our first microservice, which accepts requests to create and manage orders,
using Spring Boot (https://spring.io/projects/spring-boot).

 Spring Boot is a framework based on the Spring platform that allows you to convert
functions written in the Java programming language to network-accessible functions,
known as services or APIs, by decorating your code with a special set of annotations. If
you’re not familiar with Java, you still have nothing to worry about, because we don’t
expect you to write code yourself. All the code samples you see in this book are avail-
able on GitHub (https://github.com/microservices-security-in-action/samples). As
long as you are or have been a software developer, you’ll find it easy to understand
the code.

 Figure 2.1 shows a set of microservices, which are part of the retail store applica-
tion we are building, with a set of consumer applications. The consumer applications,
in fact, are the consumers of the microservices we build.

Figure 2.1 In this typical microservices deployment, consumer applications (a web app or
a mobile app) access microservices on behalf of their end users, while microservices
communicate with each other.

Order
Processing

Service

Inventory
Service

A client application of the Order
Processing microservice, which can
be a web app or a mobile app A microservice

accessing another
microservice

Users accessing a microservice through
an application (or an application accessing
a microservice on behalf of users)

https://spring.io/projects/spring-boot
https://github.com/microservices-security-in-action/samples

34 CHAPTER 2 First steps in securing microservices
2.1.1 Downloading and installing the required software

To build and run samples we use in this chapter and throughout the rest of this book,
you need to have a development environment set up with the Java Development Kit
(JDK), Apache Maven, the curl command-line tool, and the Git command-line client.

INSTALLING THE JDK
The JDK is required to compile the source code in the samples. You can download the
latest JDK from http://mng.bz/OMmo. We used Java version 11 to test all the samples.

INSTALLING APACHE MAVEN

Maven is a project management and comprehension tool that makes it easy to declare
third-party (external) dependencies of your Java project required in the compile/
build phase. It has various plugins such as the compiler plugin, which compiles your
Java source code and produces the runnable artifact (binary). You can download
Maven from the Apache website (https://maven.apache.org/download.cgi). Follow
the installation instructions at https://maven.apache.org/install.html to install Maven
on your operating system. We used Maven version 3.5 to test all the samples. To work
with the samples in the book, we do not expect you to know Maven in detail, and where
required, the book provides all the necessary commands. If you are interested in learn-
ing Maven, we recommend Mastering Apache Maven 3 (Packt Publishing, 2014) by
Prabath Siriwardena, a coauthor of this book.

INSTALLING CURL

Download and install the curl command-line tool from the curl website (https://
curl.haxx.se/download.html). You use curl in the book as a client application to access
microservices. Most of the operating systems do have curl installed out of the box.

INSTALLING THE GIT COMMAND-LINE TOOL

Download and install the Git command-line client on your computer, based on your
operating system. You use the Git client only once to clone our samples Git repository.
It’s not a must to install the Git client; you can also download the complete sample
Git repository as a zip file from https://github.com/microservices-security-in-action/
samples. When you click the Clone or Download button, you will find a link to down-
load a zip file.

2.1.2 Clone samples repository

Once you complete the steps in section 2.1.1, and you’d like to clone the samples Git
repository, rather than download it as a zip file, you can run the following command.
Once successfully executed, it creates a directory called samples in your local file-
system, with all the samples we have for the book:

\> git clone \
https://github.com/microservices-security-in-action/samples.git

http://mng.bz/OMmo
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

35Building your first microservice
2.1.3 Compiling the Order Processing microservice

Once you complete the preceding steps, it’s time to get your hands dirty and run your
first microservice. First, open the command-line tool in your operating system, and
navigate to the location on your filesystem where you cloned the samples repository;
in the rest of the book, we identify this location as [samples]:

\> cd [samples]/chapter02/sample01

Inside the chapter02/sample01 directory, you’ll find the source code corresponding
to the Order Processing microservice. From within that directory, execute the follow-
ing command to build the Order Processing microservice:

\> mvn clean install

If you run into problems while running the command, old and incompatible depen-
dencies might reside in your local Maven repository. To get rid of such problems,
try removing (or renaming) the .m2 directory that resides in your home directory
(~/.m2/). The preceding command instructs Maven to compile your source code
and produce a runnable artifact known as a Java Archive (JAR) file. Note that you
need to have Java and Maven installed to execute this step successfully. If your build is
successful, you’ll see the message BUILD SUCCESS.

 If this is the first time you’re using Maven to build a Spring Boot project, Maven
downloads all the Spring Boot dependencies from their respective repositories; there-
fore, an internet connection is required in the build phase. The first-time build is
expected to take slightly longer than the next attempts. After the first build, Maven
installs all the dependencies in your local filesystem, and that takes the build times
down considerably for the subsequent attempts.

 If the build is successful, you should see a directory named target within your cur-
rent directory. The target directory should contain a file named com.manning
.mss.ch02.sample01-1.0.jar. (Other files will be within the target directory, but you’re
not interested in them at the moment.) Then run the following command from the
chapter02/sample01/ directory to spin up the Order Processing microservice. Here,
we use a Maven plugin called spring-boot:

\> mvn spring-boot:run

If the microservice started successfully, you should see a bunch of messages being
printed on the terminal. At the bottom of the message stack, you should see this
message:

Started OrderApplication in <X> seconds

By default, Spring Boot starts the microservice on HTTP port 8080. If you have any
other services running on your local machine on port 8080, make sure to stop them;

36 CHAPTER 2 First steps in securing microservices
alternatively, you can change the default port of the Order Processing microservice by
changing the value of the server.port property as appropriate in the chapter02/
sample01/src/main/resources/application.properties file. But, then again, it would
be much easier to follow the rest of the samples in the chapter, with minimal changes,
if you keep the Order Processing microservice running on the default port.

2.1.4 Accessing the Order Processing microservice

By default, Spring Boot runs an embedded Apache Tomcat web server that listens for
HTTP requests on port 8080. In this section, you access your microservice using curl
as the client application. In case you run the Order Processing microservice on a cus-
tom port, make sure to replace the value of the port (8080) in the following command
with the one you used. To invoke the microservice, open your command-line client
and execute the following curl command:

\> curl -v http://localhost:8080/orders \
-H 'Content-Type: application/json' \
--data-binary @- << EOF
{
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}
EOF

You should see this message on your terminal:

{
 "orderId":"1633c9bd-7b9b-455f-965e-91d41331063c",
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}

If you see this message, you’ve successfully developed, deployed, and tested your first
microservice!

37Building your first microservice
NOTE All samples in this chapter use HTTP (not HTTPS) endpoints to spare
you from having to set up proper certificates and to make it possible for you
to inspect messages being passed on the wire (network), if required. In pro-
duction systems, we do not recommend using HTTP for any endpoint. You
should expose all the endpoints only over HTTPS. In chapter 6, we discuss
how to secure microservices with HTTPS.

When you executed the preceding command, curl initiated an HTTP POST request to
the /orders resource located on the server localhost on port 8080 (local machine).
The content (payload) of the request represents an order placed for two items to be
shipped to a particular address. The Spring Boot server runtime (embedded Tomcat)
dispatched this request to the placeOrder function (in the Java code) of your Order
Processing microservice, which responded with the message.

2.1.5 What is inside the source code directory?

Let’s navigate inside the sample01 directory and inspect its contents. You should see a
file named pom.xml and a directory named src. Navigate to the src/main/java/com/
manning/mss/ch02/sample01/service/ directory. You’ll see two files: OrderApplica-
tion.java and OrderProcesingService.java.

 Before you dig into the contents of these files, let us explain what you’re trying to
build here. As you’ll recall, a microservice is a collection of network-accessible functions.
In this context, network-accessible means that these functions are accessible over HTTP
(https://tools.ietf.org/html/rfc2616) through applications such as web browsers and
mobile applications, or software such as curl (https://curl.haxx.se/) that’s capable
of communicating over HTTP. Typically, a function in a microservice is exposed as
an action over a REST resource (https://spring.io/guides/tutorials/rest/). Often, a
resource represents an object or entity that you intend to inspect or manipulate. When
mapped to HTTP, a resource is usually identified by a request URI, and an action is
represented by an HTTP method; see sections 5.1.1 and 5.1.2 of the HTTP specifica-
tion or RFC 2616 (https://tools.ietf.org/html/rfc2616#page-35).

 Consider a scenario in which an e-commerce application uses a microservice to
retrieve the details of an order. An HTTP request template that maps to that particu-
lar function in the microservice looks similar to the following:

GET /orders/{orderid}

GET is the HTTP method used in this case, since you’re performing a data-retrieval
operation. /orders/{orderid} is the resource path on the server that hosts the
corresponding microservice. This path can be used to uniquely identify an order
resource. {orderid} is a variable that needs to be replaced with proper values in the
actual HTTP request. Something like GET /orders/d59dbd56-6e8b-4e06-906f-
59990ce2e330 would ask the microservice to retrieve details of the order with ID
d59dbd56-6e8b-4e06-906f-59990ce2e330.

https://tools.ietf.org/html/rfc2616#page-35
https://spring.io/guides/tutorials/rest/
https://curl.haxx.se/
https://tools.ietf.org/html/rfc2616

38 CHAPTER 2 First steps in securing microservices
2.1.6 Understanding the source code of the microservice

Now that you have a fair understanding of how to expose a microservice as an HTTP
resource, let’s look at the code samples to see how to develop a function in Java and
use Spring Boot to expose it as an HTTP resource. Use the file browser in your operat-
ing system to open the directory located at sample01/src/main/java/com/manning/
mss/ch02/sample01/service, and open the OrderProcessingService.java file in a text
editor. If you’re familiar with Java integrated development environments (IDEs) such
as Eclipse, NetBeans, IntelliJ IDEA, or anything similar, you can import the sample as
a Maven project to the IDE. The following listing shows what the content of the
OrderProcessingService.java file looks like.

@RestController
@RequestMapping("/orders")
public class OrderProcessingService {

 private Map<String, Order> orders = new HashMap<>();

 @PostMapping
 public ResponseEntity<Order> placeOrder(@RequestBody Order order) {

 System.out.println("Received Order For "
 + order.getItems().size() + " Items");
 order.getItems().forEach((lineItem) ->
 System.out.println("Item: " + lineItem.getItemCode() +
 " Quantity: " + lineItem.getQuantity()));

 String orderId = UUID.randomUUID().toString();
 order.setOrderId(orderId);
 orders.put(orderId, order);
 return new ResponseEntity<Order>(order, HttpStatus.CREATED);
}

This code is a simple Java class with a function named placeOrder. As you may
notice, we decorated the class with the @RestController annotation to inform the
Spring Boot runtime that you’re interested in exposing this class as a microservice.
The @RequestMapping annotation specifies the path under which all the resources
of the service exist. We also decorated the placeOrder function with the @Post-
Mapping annotation, which informs the Spring Boot runtime to expose this function
as a POST HTTP method (action) on the /orders context. The @RequestBody
annotation says that the payload in the HTTP request is to be assigned to an object of
type Order.

Listing 2.1 The content of the OrderProcessingService.java file

Informs the Spring Boot runtime
that you’re interested in exposing
this class as a microservice

Specifies the path under
which all the resources
of the service exist

Informs the Spring
Boot runtime to
expose this function as
a POST HTTP method

39Setting up an OAuth 2.0 server
 Another file within the same directory is named OrderApplication.java. Open this
file with your text editor and inspect its content, which looks like the following:

@SpringBootApplication
public class OrderApplication {
 public static void main(String args[]) {
 SpringApplication.run(OrderApplication.class, args);
 }
}

This simple Java class has only the main function. The @SpringBootApplication
annotation informs the Spring Boot runtime that this application is a Spring Boot
application. It also makes the runtime check for Controller classes (such as the
OrderProcessingService class you saw earlier) within the same package of the
OrderApplication class. The main function is the function invoked by the JVM
when you command it to run the particular Java program. Within the main function,
start the Spring Boot application through the run utility function of the Spring-
Application class, which resides within the Spring framework.

2.2 Setting up an OAuth 2.0 server
Now that you have your first microservice up and running, we can start getting to the
main focus of this book: securing microservices. You’ll be using OAuth 2.0 to secure
your microservice at the edge.

 If you are unfamiliar with OAuth 2.0, we recommend you first go through appen-
dix A, which provides a comprehensive overview of the OAuth 2.0 protocol and how it
works. In chapter 3, we discuss in detail why we opted for OAuth2.0 over options such
as basic authentication and certificate-based authentication. For now, know that
OAuth 2.0 is a clean mechanism for solving the problems related to providing your
username and password to an application that you don’t trust to access your data.

 When combined with JWT, OAuth2.0 can be a highly scalable authentication and
authorization mechanism, which is critical when it comes to securing microservices.1

Those who know about OAuth 2.0 probably are raising their eyebrows at seeing it men-
tioned as a way of authentication. We agree that it’s not an authentication protocol at
the client application end, but at the resource server end, which is the microservice.

2.2.1 The interactions with an authorization server

In an OAuth 2.0 flow, the client application, the end user, and the resource server all
interact directly with the authorization server, in different phases (see figure 2.2).
Before requesting a token from an authorization server, the client applications have to
register themselves with it.

1 As you may recall from chapter 1, a JSON Web Token (JWT) is a container that carries different types of asser-
tions or claims from one place to another in a cryptographically safe manner. If you are new to JWT, please
check appendix B.

40 CHAPTER 2 First steps in securing microservices

Figure 2.2 Actors in an OAuth2.0 flow: in a typical access delegation flow, a client—on behalf of the
end user—accesses a resource that is hosted on a resource server by using a token provided by the
authorization server.

An authorization server issues tokens only for the client applications it knows. Some
authorization servers support Dynamic Client Registration Protocol (https://
tools.ietf.org/html/rfc7591), which allows clients to register themselves on the autho-
rization server on the fly or on demand (see figure 2.3).

Figure 2.3 A client application is requesting an access token from the authorization server.
The authorization server issues tokens to only known client applications. A client application
must register at the authorization server first.

OAuth 2.0
Authorization

Server

Order
Processing

Service

The client application gets a token
from the authorization server to
access the microservices.

End users are the
direct consumers
of client applications.
They do not access
microservices directly.

End users

The client application can be a
web application, a mobile
application, and so on. Client applications consume

microservices on behalf of the
end users.

The Order Processing service
talks to the authorization server
to validate the access token it
gets from the client application.

According to OAuth 2.0 terminology,
the Order Processing service acts
as a resource server.

1

2

3

4

The client application registers with
the authorization server and gets
a set of credentials to access it.

The authorization server sends back the access
token along with the related token metadata.

The client application authenticates
and requests an access token.

Authorization
Server

1

2

3

https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591

41Setting up an OAuth 2.0 server
The Order Processing microservice, which plays the role of the resource server here,
would receive the token issued by the authorization server from the client, usually as
an HTTP header or as a query parameter when the client makes an HTTP request
(see step 1 in figure 2.4). It’s recommended that the client communicate with the
microservice over HTTPS and send the token in an HTTP header instead of a query
parameter. Because query parameters are sent in the URL, those can be recorded in
server logs. Hence, anyone who has access to the logs can see this information.

 Having TLS to secure the communication (or in other words, the use of HTTPS)
between all the entities in an OAuth 2.0 flow is extremely important. The token
(access token) that the authorization server issues to access a microservice (or a
resource) must be protected like a password. We do not send passwords over plain
HTTP and always use HTTPS. Hence we follow the same process when sending access
tokens over the wire.

Figure 2.4 A client application is passing the OAuth access token in the
HTTP Authorization header to access a resource from the resource server.

Upon receipt of the access token, the Order Processing microservice should validate it
against the authorization server before granting access to its resources. An OAuth 2.0
authorization server usually supports the OAuth 2.0 token introspection profile
(https://tools.ietf.org/html/rfc7662) or a similar alternative for resource servers to
check the validity of an access token (see figure 2.5). If the access token is a self-
contained JWT, the resource server can validate it, by itself, without talking to the
authorization server. We discuss self-contained JWT in detail in chapter 6.

Client sends a request with an access
token in the HTTP header. Each request
must carry this token.

The Order Processing service
validates the token and sends
a response back to the client.

Order
Processing

Service
Authorization: Bearer <TOKEN>

Client
Application

1

2

https://tools.ietf.org/html/rfc7662

42 CHAPTER 2 First steps in securing microservices

Figure 2.5 The Order Processing microservice (resource server) introspects the access
token by talking to the authorization server.

2.2.2 Running the OAuth 2.0 authorization server

Many production-grade OAuth 2.0 authorization servers are out there, both proprie-
tary and open source. However, in this chapter, we use a simple authorization server
that’s capable of issuing access tokens. It is built using Spring Boot. Within the Git
repository you cloned earlier, you should find a directory named sample02 under the
directory chapter02. There you’ll find the source code of the simple OAuth 2.0
authorization server. First, compile and run it; then look into the code to understand
what it does.

 To compile, use your command-line client to navigate into the chapter02/
sample02 directory. From within that directory, execute the following Maven com-
mand to compile and build the runnable artifact:

\> mvn clean install

If your build is successful, you’ll see the message BUILD SUCCESS. You should find a
file named com.manning.mss.ch02.sample02-1.0.jar within a directory named target.
Execute the following command from within the chapter02/sample02 directory,
using your command-line client, to run the OAuth 2.0 authorization server:

\> mvn spring-boot:run

If you managed to run the server successfully, you should see this message:

Started OAuthServerApplication in <X> seconds

This message indicates that you successfully started the authorization server. By
default, the OAuth 2.0 authorization server runs on HTTP port 8085. If you have any
other services running on your local machine, on port 8085, make sure to stop them;
alternatively, you can change the default port of the authorization server by changing

The Order Processing service
talks to the authorization server
to validate the access token.

The reponse carries token metadata and
indicates whether the token is valid or not.

Authorization
Server

Order
Processing

Service
1

2

43Setting up an OAuth 2.0 server
the value of the server.port property as appropriate in the chapter02/sample02/
src/main/resources/application.properties file. But, then again, it would be much
easier to follow the rest of the samples in the chapter, with minimal changes, if you
keep the authorization server running on the default port.

NOTE The OAuth 2.0 authorization server used in this chapter is running on
HTTP, while in a production deployment it must be over HTTPS. In chapter
6, we discuss how to set up an authorization server over HTTPS.

2.2.3 Getting an access token from the OAuth 2.0 authorization server

To get an access token from the authorization server, use an HTTP client to make an
HTTP request to the server. In the real world, the client application that is accessing
the microservice would make this request. You’ll be using curl for this purpose as the
HTTP client. To request an access token from the authorization server (which runs on
port 8085), run the following command, using your command-line client:

\> curl -u orderprocessingapp:orderprocessingappsecret \
-H "Content-Type: application/json" \
-d '{"grant_type": "client_credentials", "scope": "read write}' \
http://localhost:8085/oauth/token

Take a quick look at this request and try to understand it. You can think of order-
processingapp:orderprocessingappsecret as the client application’s user-
name (orderprocessingapp) and password (orderprocessingappsecret). The
only difference is that these credentials belong to an application, not a user. The
application being used to request a token needs to bear a unique identifier and a
secret that’s known by the authorization server. The -u flag provided to curl instructs
it to create a basic authentication header and send it to the authorization server as
part of the HTTP request. Then curl base64-encodes the orderprocessingapp
:orderprocessingappsecret string and creates the Basic authentication HTTP
header as follows:

Authorization: Basic
b3JkZXJwcm9jZXNzaW5nYXBwOm9yZGVycHJvY2Vzc2luZ2FwcHNlY3JldA==

The string that follows the Basic keyword is the base64-encoded value of order-
processingapp:orderprocessingappsecret. As you may have noticed, you’re
sending a Basic authentication header to the token endpoint of the OAuth2.0 autho-
rization server because the token endpoint is protected with basic authentication
(https://tools.ietf.org/html/rfc2617). Because the client application is requesting a
token here, the Basic authentication header should consist of the credentials of the
client application, not of a user. Note that basic authentication here isn’t used for
securing the resource server (or the microservice); you use OAuth 2.0 for that pur-
pose. Basic authentication at this point is used only for obtaining the OAuth token
required to access the microservice, from the authorization server.

https://tools.ietf.org/html/rfc2617

44 CHAPTER 2 First steps in securing microservices
 In chapter 3, we discuss in detail why we chose OAuth 2.0 over protocols such as
basic authentication and mTLS to secure your resource server. Even for securing the
token endpoint of the OAuth 2.0 authorization server, instead of basic authentication,
you can pick whichever authentication mechanism you prefer. For strong authentica-
tion, many prefer using certificates.

 The parameter -H "Content-Type: application/json" in the preceding
token request informs the authorization server that the client will be sending a
request in JSON format. What follows the -d flag is the actual JSON content of the
message, which goes in the HTTP body. In the JSON message, the grant_type speci-
fies the protocol to be followed in issuing the token. We talk more about OAuth 2.0
grant types in chapter 3. For now, think of a grant type as the sequence of steps that the
client application and the authorization server follow to issue an access token. In the
case of the client_credentials grant type, the authorization server validates the
Basic authentication header and issues an access token if it’s valid.

 The scope declares what actions the application intends to perform with a token.
When issuing a token, the authorization server validates whether the requesting appli-
cation is permitted to obtain the requested scopes and binds them to the token as
appropriate. If the application identified by orderprocessingapp can perform only
read operations, for example, the authorization server issues the corresponding token
under the scope read. The URL http://localhost:8085/oauth/token is the endpoint
of the authorization server that issues access tokens. Your curl client sends the HTTP
request to this endpoint to obtain an access token. If your request is successful, you
should see a response similar to this:

{
 "access_token":"8c017bb5-f6fd-4654-88c7-c26ccca54bdd",
 "token_type":"bearer",
 "expires_in":300,
 "scope":"read write"
}

2.2.4 Understanding the access token response

The following list provides details on the preceding JSON response from the authori-
zation server. If you are new to OAuth 2.0, please check appendix A for further details.

 access_token—The value of the token issued by the authorization server to
the client application (curl, in this case).

 token_type—The token type (more about this topic when we talk about
OAuth 2.0 in appendix A). Most of the OAuth deployments we see today use
bearer tokens.

 expires_in—The period of validity of the token, in seconds. The token will
be considered invalid (expired) after this period.

 scope—The actions that the token is permitted to perform on the resource
server (microservice).

45Securing a microservice with OAuth 2.0
2.3 Securing a microservice with OAuth 2.0
So far, you’ve learned how to develop your first microservice and how to set up an
OAuth 2.0 authorization server to get an access token. In this section, you’ll see how
to secure the microservice you developed. Up to now, you’ve accessed it without any
security in place.

2.3.1 Security based on OAuth 2.0

Once secured with OAuth 2.0, the Order Processing microservice now expects a valid
security token (access token) from the calling client application. Then it will validate
this access token with the assistance of the authorization server before it grants access
to its resources. Figure 2.6 illustrates this scenario.

Figure 2.6 A client application accessing a secured microservice with an access token obtained
from the authorization server. The Order Processing microservice talks to the authorization server
to validate the token before granting access to its resources.

Here’s what happens in each of the steps illustrated in figure 2.6:

1 The client application requests an OAuth2.0 access token from the authoriza-
tion server.

2 In response to the request in step 1, the authorization server issues an access
token to the client application.

Authorization
Server

Order
Processing

Service

The client application requests
an OAuth2.0 access token from
the authorization server.

The authorization server
issues an access token to
the client application.

The client application makes
an HTTP request to the Order
Processing microservice along
with an access token.

The reponse carries token
metadata and indicates
whether the token is
valid or not.

The Order Processing microservice
checks with the authorization
server to see whether the received
access token is valid.

The Order Processing microservice responds
to the client application, either granting
access to the resource being requested or
sending an error message.

1

2

6

3

5
4

46 CHAPTER 2 First steps in securing microservices
3 The client application makes an HTTP request to the Order Processing micro-
service. This request carries the access token obtained in step 2 as an HTTP
header.

4 The Order Processing microservice checks with the authorization server to see
whether the received access token is valid.

5 In response to the request in step 4, the authorization server checks to see
whether the provided access token is an active token in the system (its state is
active) and whether the token is valid for that particular moment (it isn’t
expired). Then it responds to the Order Processing microservice, indicating
whether the access token is valid.

6 In response to the request in step 3, and based on the result in step 5, the Order
Processing microservice responds to the client application, either granting
access to the resource being requested or sending an error message.

In the examples in this chapter so far, you’ve used the client_credentials grant
type to obtain an access token from the authorization server. In this particular case,
the token endpoint of the authorization server is protected via basic authentication
with the client ID and the client secret of the application. The client_credentials
grant type is good when the client application doesn’t need to worry about end users.
If it has to, it should pick an appropriate grant type. The client_credentials
grant type is used mainly for system-to-system authentication.

2.3.2 Running the sample

If you’re still running the Order Processing microservice from section 2.1, stop it,
because you’re about to start a secured version of the same microservice on the same
port. You can stop the microservice by going to the terminal window that is running it
and pressing Ctrl-C. To run this sample, navigate to the directory where you cloned
the samples from the Git repository from your command-line application, and go to
the chapter02/sample03 directory. From within that directory, execute the following
Maven command to build the sample:

\> mvn clean install

If the build is successful, you should see a directory named target within your current
directory. The target directory should contain a file named com.manning.mss.ch02
.sample03-1.0.jar. (Other files will be within the target directory, but you’re not inter-
ested in them at the moment.) Then run the following command from the chapter02/
sample03/ directory to spin up the secured Order Processing microservice. Here, we
use a Maven plugin called spring-boot:

\> mvn spring-boot:run

If you managed to run the server successfully, you should see a message like this:

Started OrderApplication in <X> seconds

47Securing a microservice with OAuth 2.0
Now run the same curl command you used earlier in this chapter to access the Order
Processing microservice:

\> curl -v http://localhost:8080/orders \
-H 'Content-Type: application/json' \
--data-binary @- << EOF
{
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}
EOF

You should see an error message saying that the request was unsuccessful. The
expected response message is as follows:

{
 "error":"unauthorized",

 "error_description":"Full authentication is
 required to access this resource"
}

Your Order Processing microservice is now secured and can no longer be accessed
without a valid access token obtained from the authorization server. To understand
how this happened, look at the modified source code of your Order Processing
microservice. Using your favorite text editor or IDE, open the file OrderProcessing-
Service.java located inside the src/main/java/com/manning/mss/ch02/sample03/
service directory. This is more or less the same class file you inspected earlier with a
function named placeOrder. One addition to this class is the annotation @Enable-
WebSecurity. This annotation informs your Spring Boot runtime to apply security to
the resources of this microservice. Following is the class definition:

@EnableResourceServer
@EnableWebSecurity
@RestController
@RequestMapping("/orders")
public class OrderProcessingService extends WebSecurityConfigurerAdapter {
}

If you further inspect this class, you should notice a method named tokenServices
that returns an object of type ResourceServerTokenServices (see listing 2.2).
Properties set in the RemoteTokenServices object (which is of the Resource-
ServerTokenServices type) are the ones that the Spring Boot runtime uses to

48 CHAPTER 2 First steps in securing microservices
communicate with the authorization server to validate credentials received by the
Order Processing microservice (the resource server, in this case).

 If you go through the code of the tokenServices function, you’ll see that it uses
a method named setCheckTokenEndpointUrl to set the value http://local-
host:8085/oauth/check_token as the TokenEndpointURL property in the
RemoteTokenServices class. The TokenEndpointURL property is used by the
Spring Boot runtime to figure out the URL on the OAuth 2.0 authorization server
that it has to talk to, to validate any tokens it receives via HTTP requests. This is the
URL the Order Processing microservice uses in step 4 of figure 2.6 to talk to the
authorization server.

@Bean
public ResourceServerTokenServices tokenServices() {
 RemoteTokenServices tokenServices = new RemoteTokenServices();
 tokenServices.setClientId("orderprocessingservice");
 tokenServices.setClientSecret("orderprocessingservicesecret");
 tokenServices
 .setCheckTokenEndpointUrl("http://localhost:8085/oauth/check_token");
 return tokenServices;
}

The endpoint that does the validation of the token itself is secure; it requires a valid
Basic authentication header. This header should consist of a valid client ID and a cli-
ent secret. In this case, one valid client ID and client secret pair is orderprocessing-
service and orderprocessingservicesecret, which is why those values are set in
the RemoteTokenServices object. In fact, these credentials are hardcoded in the sim-
ple OAuth server we developed.

 In section 2.4, you’ll see how to use the token you obtained from the authoriza-
tion server in section 2.2 to make a request to the now-secure Order Processing
microservice.

2.4 Invoking a secured microservice
from a client application
Before a client application can access your secured Order Processing microservice, it
should obtain an OAuth2.0 access token from the authorization server. As explained
in section 2.2.4, the client application at minimum requires a valid client ID and a
client secret to obtain this token. The client ID and client secret registered on your
OAuth 2.0 authorization server at the moment are orderprocessingapp and
orderprocessingappsecret, respectively. As before, you can use the following curl
command to obtain an access token:

\> curl -u orderprocessingapp:orderprocessingappsecret \
-H "Content-Type: application/json" \
-d '{ "grant_type": "client_credentials", "scope": "read write" }' \
http://localhost:8085/oauth/token

Listing 2.2 The tokenServices method from OrderProcessingService.java

49Invoking a secured microservice from a client application
If the request is successful, you should get an access token in response, as follows:

{
 "access_token":"8c017bb5-f6fd-4654-88c7-c26ccca54bdd",
 "token_type":"bearer",
 "expires_in":300,
 "scope":"read write"
}

As discussed earlier, 8c017bb5-f6fd-4654-88c7-c26ccca54bdd is the value of the
access token you got, and it’s valid for 5 minutes (300 seconds). This access token
needs to be provided to the HTTP request you’ll make to the Order Processing
microservice. You need to send the token as an HTTP header named Authoriza-
tion, and the header value needs to be prefixed by the string Bearer, as follows:

Authorization: Bearer 8c017bb5-f6fd-4654-88c7-c26ccca54bdd

The new curl command to access the Order Processing microservice is as follows:

\> curl -v http://localhost:8080/orders \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer 8c017bb5-f6fd-4654-88c7-c26ccca54bdd" \
--data-binary @- << EOF
{
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}
EOF

Note that the -H parameter is used to pass the access token as an HTTP header
named Authorization. This time, you should see the Order Processing microser-
vice responding with a proper message saying that the order was successful:

{
 "orderId":"d59dbd56-6e8b-4e06-906f-59990ce2e330",
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}

50 CHAPTER 2 First steps in securing microservices
If you see this message, you’ve successfully created, deployed, and tested a secured
microservice. Congratulations! The access token that the client application (curl) sent
in the HTTP header to the Order Processing microservice was validated against the
authorization server. This process is called token introspection. Because the result of the
introspection operation ended up being a success, the Order Processing microservice
granted access to its resources.

2.5 Performing service-level authorization
with OAuth 2.0 scopes
You need a valid access token to access a microservice. Authentication is the first level
of defense applied to a microservice to protect it from spoofing. The authentication
step that occurs before granting access to the microservice ensures that the calling
entity is a valid client (user, application, or both) in the system. Authentication,
however, doesn’t mention anything about the level of privileges the client has in the
system.

 A given microservice may have more than one operation. The Order Processing
microservice, for example, has one operation for creating orders (POST /orders)
and another operation for retrieving order details (GET /orders/{id}). Each oper-
ation in a microservice may require a different level of privilege for access.

 A privilege describes the actions you’re permitted to perform on a resource. More
often than not, your role or roles in an organization describe which actions you’re
permitted to perform within that organization and which actions you’re not permit-
ted to perform. A privilege may also indicate status or credibility. If you’ve traveled on
a commercial airline, you’re likely familiar with the membership status of travelers
who belong to airline frequent-flyer programs. Likewise, a privilege is an indication of
the level of access that a user or an application possesses in a system.

 In the world of OAuth 2.0, privilege is mapped to a scope. A scope is way of
abstracting a privilege. A privilege can be a user’s role, membership status, credibility,
or something else. It can also be a combination of a few such attributes. You use
scopes to abstract the implication of a privilege. A scope declares the privilege
required by a calling client application to grant access to a resource. The place-
Order operation, for example, requires a scope called write, and the getOrder
operation requires a scope called read. The implications of write and read—
whether they’re related to user roles, credibility, or anything else—is orthogonal
from a resource-server point of view.

2.5.1 Obtaining a scoped access token from the authorization server

The authorization server you built in this chapter contains two applications: one with
client ID orderprocessingapp, which you used for accessing the microservice, and
one with client ID orderprocessingservice. You configured these applications in
such a way that the first application, with client ID orderprocessingapp, has privi-
leges to obtain both scopes read and write, whereas the second application, with

51Performing service-level authorization with OAuth 2.0 scopes
client ID orderprocessingservice, has privileges to obtain only scope read, as
explained in the following listing:

clients.inMemory()
 .withClient("orderprocessingapp").secret("orderprocessingsecret")
 .authorizedGrantTypes("client_credentials", "password")
 .scopes("read", "write")
 .accessTokenValiditySeconds(3600)
 .resourceIds("sample-oauth")
 .and()
 .withClient("orderprocessingservice")
 .secret("orderprocessingservicesecret")
 .authorizedGrantTypes("client_credentials", "password")
 .scopes("read")
 .accessTokenValiditySeconds(3600)
 .resourceIds("sample-oauth");

This code indicates that anyone who uses orderprocessingapp is allowed to obtain
an access token under both scopes read and write, whereas any user of order-
processingservice is allowed to obtain an access token only under scope read. In
all the requests so far to obtain an access token, you used orderprocessingapp as
the client ID and requested both scopes read and write.

 Now execute the same request to obtain an access token with orderprocessing-
service as the client ID to see what the token response looks like. Execute this curl
command to make the token request:

\> curl -u orderprocessingservice:orderprocessingservicesecret \
-H "Content-Type: application/json" \
-d '{ "grant_type": "client_credentials", "scopes": "read write" }' \
http://localhost:8085/oauth/token

If the token request was successful, you should see this response:

{
 "access_token":"47190af1-624c-48a6-988d-f4319d36b7f4",
 "token_type":"bearer",
 "expires_in":3599,
 "scope":"read"
}

Notice that although in the token request you requested both scopes read and
write, the OAuth 2.0 authorization server issued a token with scope read only. One
good thing about the OAuth 2.0 authorization server is that although you may not
have the privileges to get all the scopes you request, instead of refusing to issue an
access token, the server issues an access token bound to the scopes that you’re entitled
to. Then again, this may vary based on the authorization server you pick—and the
OAuth 2.0 standard does not mandate a way that the authorization servers should
handle such cases.

Listing 2.3 The configure method in OAuthServerConfig.java from sample02

52 CHAPTER 2 First steps in securing microservices
2.5.2 Protecting access to a microservice with OAuth 2.0 scopes

Now you have an idea of how an authorization server grants privileges to a token
based on the scopes. In this section, you’ll see how the resource server or the micro-
service enforces these scopes on the resources it wants to protect. The following listing
(chapter02/sample03/src/main/java/com/manning/mss/ch02/sample03/service/
ResourceServerConfig.java class file) explains how the resource server enforces these
rules.

@Configuration
@EnableResourceServer
public class ResourceServerConfig extends ResourceServerConfigurerAdapter {

private static final String SECURED_READ_SCOPE =
 "#oauth2.hasScope('read')";

private static final String SECURED_WRITE_SCOPE =
 "#oauth2.hasScope('write')";

private static final String SECURED_PATTERN_WRITE = "/orders/**";

private static final String SECURED_PATTERN_READ = "/orders/{id}";

@Override
public void configure(HttpSecurity http) throws Exception {

http.requestMatchers()
.antMatchers(SECURED_PATTERN_WRITE).and().authorizeRequests()
.antMatchers(HttpMethod.POST,SECURED_PATTERN_WRITE)
.access(SECURED_WRITE_SCOPE)
.antMatchers(HttpMethod.GET,SECURED_PATTERN_READ)
.access(SECURED_READ_SCOPE);
}

@Override
public void configure(ResourceServerSecurityConfigurer resources) {
 resources.resourceId("sample-oauth");
}
}

As you can see, the code instructs the microservice runtime (Spring Boot) to check for
the relevant scope for the particular HTTP method and request path. This line of code

.antMatchers(HttpMethod.POST,
 SECURED_PATTERN_WRITE).access(SECURED_WRITE_SCOPE)

checks for the scope write for any POST request made against the request path that
matches the regular expression /orders/**. Similarly, this line of code checks for
the scope read for GET requests on path /orders/{id}:

.antMatchers(HttpMethod.GET,
 SECURED_PATTERN_READ).access(SECURED_READ_SCOPE)

Listing 2.4 ResourceServerConfig.java

53Performing service-level authorization with OAuth 2.0 scopes
Now try to access the POST /orders resource with the token that has only a read
scope. Execute the same curl command you used last time to access this resource, but
with a different token this time (one that has read access only):

\> curl -v http://localhost:8080/orders \
-H 'Content-Type: application/json' \
-H "Authorization: Bearer 47190af1-624c-48a6-988d-f4319d36b7f4" \
--data-binary @- << EOF
{
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}
EOF

When this command executes, you should see this error response from the resource
server:

{
 "error":"insufficient_scope",
 "error_description":"Insufficient scope for this resource",
 "scope":"write"
}

This response says that the token’s scope for this particular operation is insufficient
and that the required scope is write.

 Assuming that you still have a valid orderId (d59dbd56-6e8b-4e06-906f-
59990ce2e330) from a successful request to the POST /orders operation, try to
make a GET /orders/{id} request with the preceding token to see whether it’s suc-
cessful. You can use the following curl command to make this request. Note that the
orderId used in the example won’t be the same orderId you got when you tried to
create an order yourself. Use the one that you received instead of the one used in this
example. Also make sure to replace the value of the token in the Authorization
header with what you got in section 2.5.1:

\> curl -H "Authorization: Bearer 47190af1-624c-48a6-988d-f4319d36b7f4" \
http://localhost:8080/orders/d59dbd56-6e8b-4e06-906f-59990ce2e330

This request should give you a successful response, as follows. The token that you
obtained bears the read scope, which is what the GET /order/{id} resource requires,
as declared on the resource server:

{
 "orderId":"d59dbd56-6e8b-4e06-906f-59990ce2e330",

54 CHAPTER 2 First steps in securing microservices
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}

Throughout this chapter, we’ve covered the most primary mechanism of securing a
microservice and accessing a secured microservice. As you may imagine, this chapter
is only the beginning. Real-world scenarios demand a lot more than an application
with a valid client ID and client secret to gain access to resources on a microservice.
We discuss all these options throughout the rest of this book.

Summary
 OAuth 2.0 is an authorization framework, which is widely used in securing

microservices deployments at the edge.
 OAuth 2.0 supports multiple grant types. The client credentials grant type, which

we used in this chapter, is used mostly for system-to-system authentication.
 Each access token issued by an authorization server is coupled with one or

more scopes. Scopes are used in OAuth 2.0 to express the privileges attached to
an access token.

 OAuth 2.0 scopes are used to protect and enforce access-control checks in cer-
tain operations in microservices.

 All samples in this chapter used HTTP (not HTTPS) endpoints to spare you
from having to set up proper certificates and to make it possible for you to
inspect messages being passed on the wire (network), if required. In produc-
tion systems, we do not recommend using HTTP for any endpoint.

Part 2

Edge security

The first microservice that you built and secured in part 1 is a good way to
get started. But in practice, or in a production deployment, the approach you
follow in securing a microservice is bit different from what you did in part 1.
This part of the book takes you through securing a microservice at the edge (or
at the entry point) in a typical microservices deployment. In most cases, micro-
services are behind a set of APIs that is exposed to the outside world via an API
gateway. An API gateway is the entry point to the microservices deployment,
which screens all incoming messages for security.

 Chapter 3 takes you through the consumer landscape of your microservices
and teaches you how to deploy a Spring Boot microservice behind the Zuul API
gateway. You’ll also learn how to enforce OAuth 2.0–based security at this gate-
way. At the end of the chapter, you’ll have an API that is exposed to the client
applications via the Zuul API gateway, and the Zuul API gateway will route the
requests to the Spring Boot microservice.

 Chapter 4 extends the use case that you built in chapter 3 by developing a
single-page application (SPA) with Angular. You will also learn how to secure a
SPA with OpenID Connect. Then you’ll have an end-to-end use case working. A
user can log into the SPA with OpenID Connect, and then the SPA talks to the
Spring Boot microservice on behalf of the user via the Zuul API gateway.

 Chapter 5 teaches you how to extend the use case you built in chapter 4 by
engaging throttling, monitoring, and access control at the Zuul API gateway.

 When you’re finished with this part of the book, you’ll know how to protect
your microservices at the edge. You may not necessarily use the same set of tools
we used in part 2, but you should be able to apply the techniques you learned
with your preferred set of tools to protect your microservices at the edge in your
production deployment.

56 CHAPTER

Securing north/south
traffic with an API gateway
In chapter 2, we discussed how to secure microservices at the edge with OAuth 2.0.
The focus of chapter 2 was to get things started with a straightforward deployment.
The samples in that chapter were far from production-ready. Each microservice
had to connect to an OAuth 2.0 authorization server for token validation and
decide which OAuth 2.0 authorization server it wanted to trust. This is not a scal-
able model when you have hundreds of microservices and too much responsibility
on the microservices developer.

This chapter covers
 Understanding the role of an API gateway

 Improving architecture deficiencies from
chapter 2

 Deploying a microservice behind the Zuul API
gateway

 Using OAuth 2.0 for securing microservices at
the edge
57

58 CHAPTER 3 Securing north/south traffic with an API gateway
 In an ideal world, the microservices developer should worry only about the busi-
ness functionality of a microservice, and the rest should be handled by specialized
components with less hassle. The API Gateway and Service Mesh are two architectural
patterns that help us reach that ideal. In this chapter, we discuss the API Gateway pat-
tern, and in chapter 12, the Service Mesh pattern. The API Gateway pattern is mostly
about edge security, while the Service Mesh pattern deals with service-to-service secu-
rity. Or, in other words, the API Gateway deals with north/south traffic, while the Ser-
vice Mesh deals with east/west traffic. We call the software that implements the API
Gateway pattern an API gateway—and the software that implements the Service Mesh
pattern, a service mesh.

 Edge security is about protecting a set of resources (for example, a set of microser-
vices) at the entry point to the deployment, at the API gateway. The API gateway is the
only entry point to our microservices deployment for requests originating from out-
side. In the Service Mesh pattern, the architecture is much more decentralized. Each
microservice has its own policy enforcement point much closer to the service—mostly
it is a proxy, running next to each microservice. The API gateway is the centralized
policy enforcement point to the entire microservices deployment, while in a service
mesh, a proxy running along with each microservice provides another level of policy
enforcement at the service level. In chapter 12, we discuss how to leverage the API
Gateway pattern we discuss in this chapter, along with the Service Mesh pattern to
build an end-to-end security solution.

3.1 The need for an API gateway in a
microservices deployment
Having an API gateway in a microservices deployment is important. The API gateway
is a crucial piece of infrastructure in our architecture, since it plays a critical role that
helps us clearly separate the functional requirements from the nonfunctional ones.
We’ll extend chapter 2’s use case (a retail store), look at a few of its problems, and
explain how to solve them by using the API Gateway pattern.

 In a typical microservices deployment, microservices are not exposed directly to
client applications. In most cases, microservices are behind a set of APIs that is
exposed to the outside world via an API gateway. The API gateway is the entry point to
the microservices deployment, which screens all incoming messages for security and
other QoS features.

 Figure 3.1 depicts a microservices deployment that resembles Netflix’s, in which all
the microservices are fronted by the Zuul API gateway. Zuul provides dynamic rout-
ing, monitoring, resiliency, security, and more. It acts as the front door to Netflix’s
server infrastructure, handling traffic from Netflix users around the world. In figure
3.1, Zuul is used to expose the Order Processing microservice via an API. We do not
expose Inventory and Delivery microservices from the API gateway, because external
applications don’t need access to those.

59The need for an API gateway in a microservices deployment
Figure 3.1 A typical microservices deployment with an API gateway. The API gateway screens all
incoming messages for security and other quality-of-service features.

3.1.1 Decoupling security from the microservice

One key aspect of microservices best practices is the single responsibility principle. This
principle, commonly used in programming, states that every module, class, or func-
tion should be responsible for a single part of the software’s functionality. Under this
principle, each microservice should be performing only one particular function.

 In the examples in chapter 2, the secured Order Processing microservice was
implemented in such a way that it had to talk to the authorization server and validate
the access tokens it got from client applications, in addition to the core business func-
tionality of processing orders. As figure 3.2 shows, the Order Processing microservice
had to worry about the multiple tasks listed here:

 Extracting the security header (token) from the incoming requests
 Knowing beforehand the location of the authorization server that it has to talk

to in order to validate the security token

Zuul

Order
Processing

Service

Delivery
Service

Inventory
Service

Notification
Service

This channel can be protected either
with certificates or OAuth 2.0.

Passes the end-user
context to upstream
microservices in an
HTTP header or in
a JWT.

Propagates the user
context from one
microservice to the other

Service-to-service
communications can be
protected with mutual TLS.

Systems or applications accessing APIs
on behalf of themselves or on behalf
of a human user or another system

An API gateway, which
performs security
screening and throttling,
and publishes analytics
to an analytics server

Asynchronous communication
between two microservices
using a notification service as
the message broker

60 CHAPTER 3 Securing north/south traffic with an API gateway
 Being aware of the protocol and message formats for communicating with the
authorization server in order to validate the security token

 Gracefully handling errors in the token validation flow, because the microser-
vice is directly exposed to the client application

 Performing the business logic related to processing orders

Figure 3.2 The interactions among the client application, microservice, and authorization
server. The Order Processing microservice handles more functionality than it ideally should.

Executing all these steps becomes a problem because the microservice loses its atomic
characteristics by performing more operations than it’s supposed to. It would be ideal
for the microservice to perform only the fifth task from the preceding list, which is the
one that deals with the business logic for which we designed the microservice. The
coupling of security and business logic introduces unwanted complexity and mainte-
nance overhead to the microservice. For example, making changes in the security
protocol would require changes in the microservice code, and scaling up the micro-
service would result in more connections to the authorization server.

CHANGES IN THE SECURITY PROTOCOL REQUIRE CHANGES IN THE MICROSERVICE

Someday, if you decide to move from OAuth 2.0 to something else as the security pro-
tocol enforced on the microservice, you have to make changes in the microservice,

Client sends a request
along with the token

Client application
(can be a web app
or a mobile app)

Microservice sends the response
based on request validation. If
the token is valid, it processes
the order and sends a response;
if the token is not valid, the
microservice sends an error
message.

Token validation
response—includes the
metadata associated
with the token

Microservice extracts the token
from the security header and talks
to the token validation endpoint of
the authorization server

Authorization
Server

Order
Processiing
Microservice

1

2

3

4

61The need for an API gateway in a microservices deployment
even though it may not have any changes related to its business logic. Also, if you find
a bug in the current security implementation, you need to patch the microservice
code to fix it. This unwanted overhead compromises your agility in designing, devel-
oping, and deploying your microservice.

SCALING UP THE MICROSERVICE RESULTS IN MORE CONNECTIONS TO THE AUTHORIZATION SERVER

In certain cases, you need to run more instances of the microservice to cater to rising
demand. Think of Thanksgiving weekend, when people place more orders in your
retail store than usual, which would require you to scale up your microservice to meet
the demand. Because each microservice talks to the authorization server for token val-
idation, scaling your microservice will also increase the number of connections to the
authorization server.

 There is a difference between 50 users using a single instance of a microservice,
and 50 users using 10 instances of a microservice. To cater to these 50 users, a single
microservice may maintain a connection pool of about 5 to communicate with the
authorization server. When each instance of the microservice maintains a connection
pool of 5 to connect to the authorization server, 10 instances of the microservice end
up creating 50 connections on the authorization server as opposed to 5. Figure 3.3
illustrates scaling up a microservice to meet increased demand.

An API gateway helps in decoupling security from a microservice. It intercepts all the
requests coming to a microservice, talks to the respective authorization, and dis-
patches only the legitimate requests to the upstream microservice. Otherwise, it
returns an error message to the client application.

Authorization
Server

Order
Processing

Microservice
1

Order
Processing

Microservice
2

Order
Processing

Microservice
n

Figure 3.3 The effect on the
authorization server when the
microservice scales up, which
results in more load on the
authorization server

62 CHAPTER 3 Securing north/south traffic with an API gateway
3.1.2 The inherent complexities of microservice deployments
make them harder to consume

A microservices deployment typically consists of many microservices and many inter-
actions among these microservices (figure 3.4).

Figure 3.4 Architecture diagram of a microservices deployment, illustrating
the services and connections among them

As you can see, an application that consumes microservices to build its own function-
ality must be capable of communicating with several microservices. Think of an orga-
nization with several teams, in which each team has the responsibility to develop one of
the microservices shown in figure 3.4. Developers on each team could use their own
technology stacks for the microservices as well as their own standards and practices. The
nonuniformity of these microservices makes it hard for developers of the consuming
application, who need to learn how to work with many inconsistent interfaces.

 An API gateway solution, which usually comes as part of API management soft-
ware, can bring consistency to the interfaces that are being exposed to the consuming

Customers
Microservice

Products
Microservice

Inventory
Microservice

Products
Database

Inventory
Database

Order
Processing

Microservice

Shipping
Microservice

Orders
Database

Shipping
Database

Customer
Database

Client
Application

63The need for an API gateway in a microservices deployment
applications. The microservices themselves could be inconsistent, because they’re
now hidden from the outside world, and the API gateway can deal with the complica-
tions of interacting with the microservices.

3.1.3 The rawness of microservices does not make them ideal for
external exposure

Microservices can be as granular as they need to be. Suppose that you have two opera-
tions in your Products microservice: one for retrieving your product catalog and
another for adding items to the catalog. From a REST point of view, the operation that
retrieves the products would be modeled as GET on the /products resource, and the
operation that adds products would be modeled as POST on the /products resource.
GET /products gets the list of products (read operation). POST /products adds a
new product to the list of products (write operation).

 In practice, you could expect more requests for the read operation than the write
operation, because on a retail website, people browse for products much more fre-
quently than items are added to the catalog. Therefore, you could decide to imple-
ment the GET and POST operations on two different microservices—maybe even on
different technology stacks—so that they can scale out the microservices indepen-
dently. This solution increases robustness because the failure of one microservice
doesn’t affect the operations performed by the other microservice. From a consuming
point of view, however, it would be odd for the consuming applications to have to talk
to two endpoints (two APIs) for the add and retrieve operations. A strong REST advo-
cate could argue that it makes more sense to have these two operations on the same
API (same endpoint).

 The API Gateway architectural pattern is an ideal solution to this problem. It pro-
vides the consuming application a single API with two resources (GET and POST).
Each resource can be backed by a microservice of its own, providing the scalability
and robustness required by the microservices layer (see figure 3.5).

Figure 3.5 Multiple microservices are being exposed as a single API on the
gateway. The client application needs to worry about only a single endpoint.

GET/products/GET/retail/products/
POST/retail/products/ GET Products

Microservice

POST Products
Microservice

Client Application A
P

I G
at

ew
ay

POST/products/

64 CHAPTER 3 Securing north/south traffic with an API gateway
3.2 Security at the edge
In this section, we look at why OAuth 2.0 is the most appropriate protocol for securing
your microservices at the edge. In a typical microservices deployment, we do not
directly expose microservices to client applications. The API gateway, which is the
entry point to the microservices deployment, selectively exposes microservices as APIs
to the client applications.

 In most cases, these API gateways use OAuth 2.0 as the security protocol to secure
the APIs they expose at the edge. If you are interested in understanding OAuth 2.0
and API security in detail, we recommend Advanced API Security: OAuth 2.0 and Beyond
by Prabath Siriwardena, a coauthor of this book (Apress, 2019). OAuth 2 in Action by
Justin Richer and Antonio Sanso (Manning, 2017) is also a very good reference on
OAuth 2.0.

3.2.1 Understanding the consumer landscape of your microservices

As discussed earlier in this chapter, the primary reason that organizations and enter-
prises adopt microservices is the agility that they provide for developing services. An
organization wants to be agile to develop and deploy services as fast as possible. The
pace is driven by the rise of demand in consumer applications. Today, people use
mobile applications for most of their day-to-day activities, such as ordering pizza, gro-
cery shopping, networking, interacting socially, and banking. These mobile applica-
tions consume services from various providers.

 In an organization, both its internal and external (such as third-party) applications
could consume microservices. External applications could be mobile applications,
web applications on the public internet, applications running on devices or cars, and
so on. For these types of applications to work, you need to expose your microservices
over the public internet over HTTPS. As a result, you cannot just rely on network-level
security policies to prevent access to these microservices. Therefore, you may always
have to rely on an upper layer of security to control access. An upper layer of security
here refers to the layers in the TCP/IP protocol stack (www.w3.org/People/Frystyk/
thesis/TcpIp.html). You need to rely on security that’s applied above the Network
layer, such as Transport- or Application-layer protocols including TLS and HTTPS.

 Applications running within the organization’s computing infrastructure may con-
sume both internal-facing and external-facing microservices. Internal-facing microser-
vices may also be consumed by other microservices that are external-facing or internal-
facing. As shown in figure 3.6, in the retail-store example, the microservice that’s used
for browsing the product catalog (the Products microservice) and the microservice
that’s used for taking orders (the Order Processing microservice) are external-facing
microservices that are required by applications running outside the security perime-
ters of the organization. But the microservice that’s used for updating the inventory—
the Inventory microservice—doesn’t need to be exposed outside the organization’s
security perimeters, because the inventory is updated only when an order is placed (via
the Order Processing microservice) or when stocks are added to inventory through an
internal application.

www.w3.org/People/Frystyk/thesis/TcpIp.html
www.w3.org/People/Frystyk/thesis/TcpIp.html

65Security at the edge
3.2.2 Delegating access

A microservice is exposed to the outside world as an API. Similar to microservices,
even for APIs the audience is a system that acts on behalf of itself, or on behalf of a
human user or another system. It’s unlikely (but not impossible) for human users to
interact directly with APIs. This is where access delegation is important and plays a key
role in securing APIs.

 As we discussed briefly in chapter 2, multiple parties are involved in a typical flow
to access a secured microservice. Even though we didn’t worry about APIs in our pre-
vious discussions for simplicity, the flow doesn’t deviate much even if we introduce an
API between the client application and the Order Processing microservice, as shown
in figure 3.7.

Figure 3.7 Multiple parties are involved in a typical flow to access a
microservice, protected with OAuth.

Customers
Service

Order
Processing

Service

Inventory
Service

Products
Service

Shipping
Service

Client
Application

Figure 3.6
Internal microservices,
external microservices, and
hybrid microservices, each
communicating with others
to fulfill their functionality

Order
Processing

Microservice

Authorization
Server

Client
Application

Resource Owner
(User)

User delegates their microservice
access rights to the client application

Client accesses microservice
on behalf of the user

Gets an access
token to access
the microservice

1 3

2

66 CHAPTER 3 Securing north/south traffic with an API gateway
A user (resource owner) should be allowed to perform only the actions on microser-
vices that they are privileged to perform. The data that the user retrieves from the
microservice, or updates via the microservice, should be only the data that they are
entitled to receive or update. Although this level of privilege is checked against the
user, the entity that accesses the microservice on behalf of the user is the client appli-
cation the user uses. In other words, the actions that the user is entitled to perform
on the microservices are executed by a client application. In effect, the user delegates
their access rights to an application that accesses the resources on the microservices.
As a result, the application has a responsibility to deal with the delegated rights
appropriately.

 Therefore, the trustworthiness of the application is important. Especially when
third-party applications are being used to access resources on your microservices, hav-
ing a mechanism that allows you to control which actions the application can perform
on your resources becomes important. Controlling the delegation of access to client
applications is an essential factor in deciding on a mechanism to secure your
microservices.

3.2.3 Why not basic authentication to secure APIs?

Basic authentication allows a user (or a system) with a valid username and password to
access a microservice via an API. In fact, basic authentication (or basic auth) is a stan-
dard security protocol introduced with HTTP/1.0 in RFC 1945 a long time back. It
allows you to pass the base64-encoded username and password, in the HTTP Autho-
rization header, along with a request to an API. This model fails to meet access del-
egation requirements we discussed in section 3.2.2 in a microservices deployment,
though, for a variety of reasons:

 The username and password are static, long-living credentials. If a user provides a
username and password to an application, the application needs to retain this
information for that particular user session to access the microservices. The
time during which this information needs to be retained could be as long as the
application decides. None of us likes having to authenticate into an application
again and again to perform operations. Therefore, if basic authentication is
used, the application has to retain this information for long durations of time.
The longer this information is retained, the higher the chance of compromise.
And because these credentials almost never change, a compromise of this infor-
mation could have severe consequences.

 No restrictions on what the application can do. After an application gets access to the
username and password of a user, it can do everything that user can do with the
microservice. In addition to accessing the microservice, the application can do
anything with those credentials, even on other systems.

3.2.4 Why not mutual TLS to secure APIs?

Mutual Transport Layer Security is a mechanism by which a client application verifies
a server and the server verifies the client application by exchanging respective certifi-
cates and proving that each one owns the corresponding private keys. In chapter 6, we

67Security at the edge
discuss mTLS in detail. For the moment, think of mTLS as a technique for building
two-way trust between a client application and a server using certificates.

 mTLS solves one of the problems with basic authentication by having a lifetime for
its certificates. The certificates used in mTLS are time-bound, and whenever a certifi-
cate expires, it’s no longer considered valid. Therefore, even if a certificate and the
corresponding private key are compromised, its vulnerability is limited by its lifetime.
In some situations, however, certificates have lifetimes as long as years, so the value of
mTLS over protocols such as basic authentication is limited. Then again, unlike basic
authentication (where you send your password over the wire), when you use mTLS,
the corresponding private key never leaves its owner—or is never passed over the wire.
That’s the main advantage mTLS has over basic authentication.

 However, just as in basic authentication, mTLS fails to meet access delegation
requirements we discussed in section 3.2.2 in a microservices deployment. mTLS
doesn’t provide a mechanism to represent the end user who uses the corresponding
application. You can use mTLS to authenticate the client application that talks to the
microservice, but it does not represent the end user. If you want to pass the end user
information with mTLS, you need to follow your own custom techniques, such as
sending the username as a custom HTTP header, which is not recommended. There-
fore, mTLS is mostly used to secure communication between a client application and
a microservice, or communications among microservices. In other words, mTLS is
mostly used to secure communications among systems.

3.2.5 Why OAuth 2.0?

To understand why OAuth 2.0 is the best security protocol for securing your microser-
vices at the edge, first you need to understand your audience. You need to figure out
who wants access to your resources, for what purpose, and for how long. You must
properly understand the audience of your microservices through their characteristics
and desires:

 Who—Ensure that only permitted entities are granted access to your resources
 What purpose—Ensure that the permitted entities can perform only what they’re

allowed to perform on your resources
 How long—Ensure that access is granted for only the desired period

As we’ve discussed a few times in the book already, the audience of a microservice is a
system that acts on behalf of itself, or on behalf of a human user or another system.
The owner of a microservice should be able to delegate access to the microservice it
owns (or it has privileges to access), to a system. You may have a Netflix account, and
to view the trending movies on Netflix on your smart TV, you need to delegate access
from your Netflix account to your smart TV. Delegation is a key requirement in secur-
ing microservices—and out of all security protocols, OAuth 2.0, which is designed for
access delegation, fits best in securing microservices at the edge.

NOTE Before running the samples in this chapter, please make sure that you
have downloaded and installed all the required software as mentioned in
section 2.1.1.

68 CHAPTER 3 Securing north/south traffic with an API gateway
3.3 Setting up an API gateway with Zuul
In the first part of this chapter, we stated why an API gateway is an important compo-
nent of a microservices deployment. In this section, you’ll set up an API gateway for
your Order Processing microservice, with Zuul (https://github.com/Netflix/zuul/
wiki). Zuul is an open source proxy server built by Netflix, acting as the entry point for
all of the company’s backend streaming applications.

3.3.1 Compiling and running the Order Processing microservice

To begin, download the chapter 3 samples from GitHub (https://github.com/
microservices-security-in-action/samples) to your computer. The examples in this
chapter use Java version 11, but still should work with Java 8+. Before running the
examples in this chapter, make sure that you’ve stopped running the examples from
other chapters or elsewhere. You could experience port conflicts if you attempt to
start multiple microservices on the same port.

 Once you’ve downloaded all the samples from the GitHub repository, you should
see a directory named sample01 inside the chapter03 directory. This is the same sam-
ple used in chapter 2; we repeat it here for the benefit of those who skipped that chap-
ter. Navigate to the chapter03/sample01 directory from your command-line client
application, and execute the following command to build the source code of the
Order Processing microservice:

\> mvn clean install

If the build is successful, you should see a message on the terminal saying BUILD
SUCCESS. If you see this message, you can start the microservice by executing the fol-
lowing command from the same location:

\> mvn spring-boot:run

If the service started successfully, you should see a log statement on the terminal that
says Started OrderApplication in <X> seconds. If you see this message, your
Order Processing microservice is up and running. Now send a request to it, using curl,
to make sure that it responds properly:

\> curl -v http://localhost:8080/orders \
-H 'Content-Type: application/json' \
--data-binary @- << EOF
{
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}
EOF

https://github.com/Netflix/zuul/wiki
https://github.com/Netflix/zuul/wiki
https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

69Setting up an API gateway with Zuul
Upon successful execution of this request, you should see a response message:

{
 "orderId":"7c3fb57b-3198-4cf3-9911-6dd157b93333",
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}

This request gets curl (a client application) to
access your Order Processing microservice
directly, as shown in figure 3.8. Your client
application sent a request to the Order Pro-
cessing microservice to place an order. As you
saw in the response message, the ID of the
particular order is 7c3fb57b-3198-4cf3-
9911-6dd157b93333. Later, when you try to
retrieve the same order by using the GET /
orders/{id} resource, you should be able
to get the details on the order you placed.

3.3.2 Compiling and running the Zuul proxy

The next step is compiling and running Zuul
as a proxy to the Order Processing microser-
vice. To build the Zuul proxy, navigate to the chapter03/sample02 directory in your
command-line client, and execute this command:

\> mvn clean install

You should see the BUILD SUCCESS message. Next, run the Zuul proxy by executing
the following command from within the same directory:

\> mvn spring-boot:run

You should see the server-start-successful message. Now try to access your
Order Processing microservice through the Zuul proxy. To do so, you’ll be attempting
to retrieve the details on the order you placed. Execute the following command from
your terminal application (make sure to have the correct order ID from section 3.3.1):

\> curl \
http://localhost:9090/retail/orders/7c3fb57b-3198-4cf3-9911-6dd157b93333

Client sends POST/orders request

Order
Processing

Microservice
Client

Application

Microservice responds
with a 201 created

Figure 3.8 The client application sends a
request directly to the Order Processing
microservice and gets a response back
with an order ID.

70 CHAPTER 3 Securing north/south traffic with an API gateway
If the request is successful, you should see a response like this:

{
 "orderId":"7c3fb57b-3198-4cf3-9911-6dd157b93333",
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}

This response should contain the details of the order you created earlier. Note several
important points in this request:

 As you may have noticed, the port to which you sent the request this time
(9090) isn’t the same as the port of the Order Processing microservice (8080),
because you’re sending the request to the Zuul proxy instead of the Order Pro-
cessing microservice directly.

 The request URL now starts with /retail, which is the base path in Zuul that
you’ve configured to route requests to the Order Processing microservice. To
see how routing is configured, open the application.properties file that resides
in the sample02/src/main/resources directory by using a text editor. The fol-
lowing line you find there instructs the Zuul proxy to route requests received
on /retail to the server running on http://localhost:8080:

zuul.routes.retail.url=http://localhost:8080

Figure 3.9 illustrates how Zuul does routing by dispatching a request it gets from the
client application to the Order Processing microservice.

Figure 3.9 The Order Processing microservice is proxied via the Zuul
gateway. All requests to the microservice need to go through the gateway.

localhost:8080

GET/retail/orders/ ...

localhost:9090

Order
Processing

Microservice
Client

Application

GET/orders/ ...

A
P

I G
at

ew
ay

71Setting up an API gateway with Zuul
3.3.3 Enforcing OAuth 2.0–based security at the Zuul gateway

Now that you’ve successfully proxied your Order Processing microservice via the Zuul
gateway, the next step is enforcing security on the Zuul gateway so that only authenti-
cated clients are granted access to the Order Processing microservice. First, you need
an OAuth 2.0 authorization server (see appendix A), which is capable of issuing access
tokens to client applications. In a typical production deployment architecture, the
authorization server is deployed inside the organization’s network, and only the
required endpoints are exposed externally. Usually, the API gateway is the only com-
ponent that’s allowed access from outside; everything else is restricted within the local
area network of the organization. In the examples in this section, the /oauth2/
token endpoint of the authorization server is exposed through the Zuul gateway so
that clients can obtain access tokens from the authorization server. Figure 3.10 illus-
trates this deployment architecture.

Figure 3.10 The firewall guarantees that access to the authorization server
and microservice can happen only via the API gateway.

To build the authorization server, navigate to the chapter03/sample03 directory from
your command-line client, and execute the following command:

\> mvn clean install

When the authorization server is built, you can start it by using the following command:

\> mvn spring-boot:run

Order
Processing

Microservice

Client
Application

Client
Application

A
P

I G
at

ew
ay

Firewall

Authorization
Server

Client
Application

72 CHAPTER 3 Securing north/south traffic with an API gateway
When the authorization server starts successfully, you can request tokens from it via
the Zuul gateway. However, we did not enforce OAuth 2.0 security screening at the
Zuul gateway, which you started from sample02 in section 3.3.2. So, you’d need to stop
it and build and run a new Zuul gateway from sample04, in which we have enforced
OAuth 2.0 security screening.

 Before you build sample04, first have a look at the following property in the
sample04/src/main/resources/application.properties file. This property points to
the token validation endpoint of the authorization server. The Zuul gateway talks to
this endpoint to validate tokens. Make sure the value of the authserver.intro-
spection.endpoint property correctly points to your authorization server:

authserver.introspection.endpoint=http://localhost:8085/oauth/check_token

To build the new Zuul gateway, open a new terminal window and navigate to the
chapter03/sample04 directory and then execute the following command:

\> mvn clean install

When the gateway is built, you can start it by using the following command:

\> mvn spring-boot:run

Once the gateway has started successfully on port 9090, execute the following com-
mand on a new terminal window to get an access token from the authorization server,
through the Zuul gateway. Here we use the OAuth 2.0 client_credentials grant
type, with application1 as the client ID and application1secret as the client
secret:

\> curl -u application1:application1secret \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "grant_type=client_credentials" \
http://localhost:9090/token/oauth/token

You should receive the access token in a response that looks like this:

{
 "access_token":"47190af1-624c-48a6-988d-f4319d36b7f4",
 "token_type":"bearer",
 "expires_in":3599
}

Open the application.properties file at sample04/src/main/resources/ by using a
text editor. You will notice the following configuration that routes requests received
on the /token endpoint of Zuul to the authorization server:

zuul.routes.token.url=http://localhost:8085

Once the client application gets an access token from the token endpoint of the autho-
rization server, the client application accesses the Order Processing microservice via
the Zuul gateway with this token. The purpose of exposing the Order Processing

73Setting up an API gateway with Zuul
microservice via the Zuul gateway is to make the gateway enforce all security-related
policies while the Order Processing microservice focuses only on the business logic it
executes. This situation is in line with the principles of microservices, which state that
a microservice should focus on doing only one thing. The Zuul gateway allows requests
to the Order Processing microservice only if the requesting client bears a valid OAuth
2.0 access token.

 Now, let’s try to access the Order Processing microservice through the Zuul gate-
way as before with the following command (with no valid access token):

\> curl -v \
http://localhost:9090/retail/orders/7c3fb57b-3198-4cf3-9911-6dd157b93333

This command should now give you an authentication error message that looks like
the following. This error message confirms that the Zuul gateway, with OAuth 2.0
security screening enforced, does not allow any request to pass through it without a
valid token:

< HTTP/1.1 401
< Transfer-Encoding: chunked
<

{"error": true, "reason":"Authentication Failed"}

Zuul no longer grants open access to resources on the resource server. It mandates
authentication. We are therefore required to use a valid token to access the Order
Processing microservice via the Zuul gateway. Let’s retry accessing the same Order
Processing microservice by using the access token we just obtained through the
/token endpoint. You can use the following command for this purpose. Make sure to
have the correct order ID from section 3.3.1 and replace 7c3fb57b-3198-4cf3-
9911-6dd157b93333 in the following command with it:

\> curl \
http://localhost:9090/retail/orders/7c3fb57b-3198-4cf3-9911-6dd157b93333 \
-H "Authorization: Bearer 47190af1-624c-48a6-988d-f4319d36b7f4"

You should see a successful response as shown here:

{
 "orderId":"7c3fb57b-3198-4cf3-9911-6dd157b93333",
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],

 "shippingAddress":"No 4, Castro Street, Mountain View, CA, USA"
}

74 CHAPTER 3 Securing north/south traffic with an API gateway
ENFORCING TOKEN VALIDATION AT THE ZUUL GATEWAY

In the previous example, the Zuul gateway talked to the authorization server (token
issuer) to validate the token it got from the curl client application. As you learned in
chapter 2, this process is known as token introspection (https://tools.ietf.org/html/
rfc7662). The request flow from client to the Order Processing microservice is shown
in figure 3.11.

Figure 3.11 Message exchanges from the point where the client application gets a token to the
point where it accesses the microservice

As you can see, the client application sends an OAuth 2.0 access token as a header to
the Zuul gateway on the path on which the Order Processing microservice is exposed
(/retail/orders). The gateway extracts the token from the header and introspects
it through the authorization server. The authorization server responds with a valid or
invalid status message; if the status is valid, the gateway allows the request to be passed
to the Order Processing microservice.

Order
Processing

Microservice

Client
Application

A
P

I G
at

ew
ay

Requests an
access token

Returns an
access token

Validates (introspects) the token

Token validation response
Sends the API request
along with the token
in the HTTP Authorization
header

Forwards requests
to the microservice

Forwards the access
token request to the
authorization server

Forwards the
access token
to the client

Firewall

Authorization
Server

1 2

6

8

7

3

5

4

https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662

75Setting up an API gateway with Zuul
 To do this in Zuul, you use a request filter, which intercepts requests and performs
various operations on them. A filter can be one of four types:

 Prerequest filter—Executes before the request is routed to the target service
 Route filter—Can handle the routing of a message
 Post-request filter—Executes after the request has been routed to the target

service
 Error filter—Executes if an error occurs in the routing of a request

In this case, because you need to engage the validation before routing the request to
the target service, you use a prerequest filter. You can find the source code of this filter
in the following class:

sample04/src/main/java/com/manning/mss/ch03/sample04/filters/OAuthFilter.java

If you inspect the contents of this Java class, you notice a method named filter-
Type. This method returns a string as pre. This string tells the Zuul runtime that it’s a
prerequest filter that needs to be engaged before the request is routed to the target
service. The run method of this class contains the logic related to introspecting the
token through the authorization server. If you look at that method, you’ll notice that a
few validations are performed on the Zuul gateway itself to check whether the client is
sending the access token in an HTTP header named Authorization and whether
the header is received in the correct format.

 When all format checks are done, the gateway talks to the authorization server to
check whether the token is valid. If the authorization server responds with an HTTP
response status code of 200, it is a valid token:

int responseCode = connection.getResponseCode();

//If the authorization server doesn't respond with a 200.
if (responseCode != 200) {
log.error("Response code from authz server is " + responseCode);
handleError(requestContext);
}

If the server doesn’t respond with 200, the authentication has failed. The authentica-
tion could have failed for many reasons. The token may have been incorrect, the
token may have expired, the authorization server may have been unavailable, and so
on. At this point, you’re not concerned about the reason for the failure. Unless the
authorization server responds with 200, consider that the authentication has failed.

NOTE The preceding examples cover a fundamental mechanism for apply-
ing OAuth 2.0–based security on your microservices through an API gateway.
You may not completely understand the source code in the samples; what is
important is that you understand the pattern we are applying to secure your
microservices.

76 CHAPTER 3 Securing north/south traffic with an API gateway
OAUTH2.0 TOKEN INTROSPECTION PROFILE

We talked briefly about OAuth 2.0 token introspection (https://tools.ietf.org/html/
rfc7662) in the preceding section. There the API gateway makes a request to the
authorization server to validate a given token. Following is what the token introspec-
tion request looks like when the Zuul gateway talks to the authorization server to
check the validity of an access token:

POST /oauth/check_token
Content-Type: application/x-www-form-urlencoded
Authorization: Basic YXBwbGljYXRpb24xOmFwcGxpY2F0aW9uMXNlY3JldA==

token=626e34e6-002d-4d53-9656-9e06a5e7e0dc&
token_type_hint=access_token&

As you can see, the introspection endpoint of the authorization server is protected
with basic authentication. The introspection request is sent to the authorization server
as a typical form submission with the content type application/x-www-form-
urlencoded. The token field contains the value of the token that you want to check
for validity. It is the only mandatory field in the introspection request as per the speci-
fication. The token_type field indicates to the authorization server whether this
token is an access_token or refresh_token. When the authorization server com-
pletes the introspection, it responds with a payload similar to this:

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
 "active": true,
 "client_id": "application1",
 "scope": "read write",
 "sub": "application1",
 "aud": "http://orders.ecomm.com"
}

The active field indicates that the token is active (not expired). The client_id is
the identifier of the application for which the token was issued. The scope field
includes the scopes bound to the token. The sub field contains the identifier of the
entity that consented to the authorization server to share the token with the client
application. When we use the OAuth 2.0 client_credentials grant type, the value
of sub is the same as the value of client_id. The aud field indicates a list of identifi-
ers of the entities that are considered to be valid receivers of this access token.

 Using the information in the introspection response, the gateway can allow or
refuse access to the resources. It can also perform fine-grained access control (autho-
rization) based on the scopes as well as get to know which client application (from the
client_id)is requesting access to its resources.

SELF-VALIDATION OF TOKENS WITHOUT INTEGRATING WITH AN AUTHORIZATION SERVER

The key benefit of using microservices for your architectures is the agility it provides
developers in terms of developing and managing software systems. Microservices’
ability to operate by themselves without affecting other components in the system/

https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662

77Setting up an API gateway with Zuul
architecture is one important factor that gives developers this agility. But the gateway
component relies heavily on the authorization server to enable access to your
microservices, so the gateway component is coupled with another entity. Although
you may achieve agility on your microservices layer, the fronting layer (which is the
API gateway) can’t be managed with the same level of agility because of its reliance on
the authorization server for token validations.

 If you’re a microservice developer who wants to put an API gateway in front of your
microservice, this architecture doesn’t give you the necessary flexibility; you have to
come to an agreement with the administrator of the authorization server to get a set
of credentials to access its introspection endpoint. If you’re running this system in
production and want to scale up your microservice and the API gateway to deal with a
high number of requests, the performance of your authorization server will be
affected, because the gateway will call it each time it wants to validate a token. An
authorization server, unlike other services in an organization, usually is managed by a
separate group of people who have special privileges because of the server’s sensitivity.
Therefore, you can’t expect the same level of dynamic scaling capabilities on your
authorization server to meet the demands of the API gateway.

 The way to deal with this problem is to find a mechanism that enables the gateway
to validate tokens by itself without the assistance of an authorization server. To see
how, look at what an authorization server does when someone asks it to validate a
token through an introspection call:

1 It checks to see whether that particular token exists in its token store (data-
base). This step verifies that the token was issued by itself and that the server
knows details about that token.

2 It checks whether the token is still valid (token state, expiry, and so on).
3 Based on the outcome of these checks, it responds to the requester with the infor-

mation discussed under the “OAuth 2.0 token introspection profile” section.

If the access token received on the API gateway, instead of being an opaque meaning-
less string, contains all the information you need (including expiry details, scopes, cli-
ent ID, user, and so on), the gateway could validate the token by itself. But anybody
could create this string and send it along to the gateway. The gateway wouldn’t know
whether a trusted authorization server issued the token.

 JWTs are designed to solve this problem (see appendix B for the details). A JSON
Web Signature (JWS) is a JWT signed by the authorization server. By verifying the sig-
nature of the JWS, the gateway knows that this token was issued by a trusted party and
that it can trust the information contained in the body. The standard claims described
in the JWT specification (https://tools.ietf.org/html/rfc7519) don’t have placehold-
ers for all the information that’s included in the introspection profile, such as the
client_id and scope. The authorization server, however, can add any information
it wants to the JWT as custom claims.1 We discuss self-contained access tokens in detail
in appendix A.

1 At the time of this writing, a draft specification under the IETF OAuth working group defines the structure
of a self-contained access token; see http://mng.bz/jgde.

https://tools.ietf.org/html/rfc7519
http://mng.bz/jgde

78 CHAPTER 3 Securing north/south traffic with an API gateway
PITFALLS OF SELF-VALIDATING TOKENS AND HOW TO AVOID THEM

The self-validating token mechanism discussed in the preceding section comes at a
cost, with pitfalls that you have to be mindful of. If one of these tokens is prematurely
revoked, the API gateway won’t know that the token has been revoked, because the
revocation happens at the authorization server end, and the gateway no longer com-
municates with the authorization server for the validation of tokens.

 One way to solve this problem is to issue short-lived JWTs (tokens) to client appli-
cations to minimize the period during which a revoked token will be considered valid
on the API gateway. In practice, however, applications with longer user sessions have
to keep refreshing their access tokens when the tokens carry a shorter expiration.

 Another solution is for the authorization server to inform the API gateway when-
ever a token has been revoked. The gateway and authorization server can maintain
this communication channel via a pub/sub (https://cloud.google.com/pubsub/docs/
overview) mechanism. This way, whenever a token is revoked, the gateway receives a
message from the authorization server through a message broker. Then the gateway
can maintain a list of revoked tokens until their expiry and before validating a given
token check if it exists in the “revoked tokens” list. Revocations are rare, however. Fig-
ure 3.12 illustrates the revocation flow.

Another problem with the self-contained access token is that the certificate used to
verify a token signature might have expired. When this happens, the gateway can no
longer verify the signature of an incoming JWT (as an access token). To solve this
problem, you need to make sure that whenever a certificate is renewed, you deploy
the new certificate on the gateway.

 Sometimes, provisioning new certificates can be a little harder when you have a
large-scale deployment with certificates having a short lifetime. In that case, you do

Message
Broker

Authorization
Server

API Gateway

Token revocation
request

Broker informs the API
gateway of the revoked token

Authorization server notifies
the broker of the revoked token

Client
Application

1 2

3
Figure 3.12 Executing the token
revocation flow via a pub/sub
mechanism. Upon a token
revocation, the authorization
server notifies the message
broker, hence the API gateway.

https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview

79Securing communication between Zuul and the microservice
not need to provision the token issuer’s certificate to the gateway, but the certificate of
the certificate authority (CA) corresponding to the token issuer’s certificate. Then the
gateway can fetch the token issuer’s certificate dynamically from an endpoint exposed
by the authorization server to do the JWT signature validation, and check whether
that certificate is signed by a certificate authority it trusts. However, if the certificate
issued to the authorization server by the certificate authority is revoked, then that
decision too must be communicated to the API gateway—or the API gateway can rely
on a certification revocation list.

3.4 Securing communication between Zuul and the microservice
So far, you’ve used the API Gateway pattern to secure access to your microservice. This
pattern ensures that no one who lacks valid credentials (a token) gets access to your
microservice through the API gateway. But you also have to consider what happens if
someone accesses the microservice directly, bypassing the API gateway layer. In this
section, we discuss how to secure access to your microservice in such a case.

3.4.1 Preventing access through the firewall

First and foremost, you need to make sure that your microservice isn’t directly exposed
to external clients, so you need to make sure that it sits behind your organization’s
firewall. That way, no external clients get access to your microservices unless they come
in via the API gateway (see figure 3.13).

Order
Processing

Microservice

Client
Application

Client
Application

A
P

I G
at

ew
ay

Firewall

Authorization
Server

Client
Application

Figure 3.13 Direct access to the authorization server and microservice is
prevented by the firewall, allowing only the API gateway to access them.

80 CHAPTER 3 Securing north/south traffic with an API gateway
Although the API Gateway pattern ensures that no one outside the organization gets
access to the microservice, a risk still exists that unintended internal clients may gain
access to the microservice. The following section discusses how to prevent this
situation.

3.4.2 Securing the communication between the API gateway and
microservices by using mutual TLS

To make sure that your microservice is secure from internal clients and accessible only
via the API gateway, you need to build a mechanism in which the microservice rejects
any requests coming from clients other than the API gateway. The standard way is to
enable mTLS between the API gateway and the microservice. When you use mTLS,
you get the microservice to verify the client that talks to it. If the microservice trusts
the API gateway, the API gateway can route requests to the microservice.

 Under microservices principles, it’s not a good idea for a microservice to be per-
forming many operations. In fact, it’s said that the microservice should focus on doing
only one thing: executing the business logic that it’s supposed to execute. You may
think that you’re burdening the microservice with extra responsibilities by expecting
it to verify the client through mTLS. But mTLS verification happens at the Transport
layer of the microservice and doesn’t propagate up to the Application layer. Microser-
vices developers don’t have to write any application logic to handle the client verifica-
tion, which is done by the underlying Transport-layer implementation. Therefore,
mTLS verification doesn’t affect the agility of developing the microservice itself and
can be used safely without violating microservices principles.

 If you’re still worried about performing certificate validation as part of your
microservice, chapter 12 covers an approach to avoid that, using the Service Mesh pat-
tern. With the Service Mesh pattern, a proxy, which runs along with your microservice
(each microservice has its own proxy), intercepts all the requests and does the security
validation. The certificate validation can be part of that as well.

 In chapter 6, we cover using client certificates to secure service-to-service commu-
nications. This scenario is essentially the one in which the API gateway becomes the
source service and the microservice becomes the target service. We’ll go into the
details on setting up the certificates and building trust between clients and services in
chapter 6. Figure 3.14 illustrates how both internal and external client applications
are permitted to access a microservice only via the API gateway.

81Summary
Summary
 The API Gateway pattern is used to expose microservices to client applications

as APIs.
 The API gateway helps to expose microservices of different flavors by using a con-

sistent and easy-to-understand interface to the consumers of these microservices.
 We do not have to expose all microservices through the API gateway. Some

microservices are consumed internally only, in which case they will not be
exposed through the gateway to the outside world.

 Protocols such as basic authentication and mutual TLS are not sufficient to
secure APIs, and microservices are exposed to the outside world via APIs.

 OAuth 2.0 is the de facto standard for securing APIs and microservices at the
edge.

 OAuth 2.0 is an extensible authorization framework, which has a wide array of
grant types. Each grant type defines the protocol indicating how a client appli-
cation would obtain an access token to access an API/microservice.

 We need to choose the right OAuth 2.0 grant type for our client applications
based on their security characteristics and trustworthiness.

API gateway is allowed
at the firewall

Mutual TLS
verification succeeds

External client blocked
at the firewall

Mutual TLS
verification fails

External Client
Application

A
P

I G
at

ew
ay

Firewall

External Client
Application Internal Client

Application

Order
Processing

Microservice

Figure 3.14 Enabling mutual TLS at the microservice to prevent access by unintended
parties. All the requests outside the firewall must be routed via the API gateway.

82 CHAPTER 3 Securing north/south traffic with an API gateway
 An access token can be a reference token or a self-contained token (JWT). If it
is a reference token, the gateway has to talk to the issuer (or the authorization
server) always to validate it. For self-contained tokens, the gateway can perform
the validation by verifying the token signature.

 A self-contained access token has its own pitfalls, and one way to get around
token revocation is to have short-lived JWTs for self-contained access tokens.

 The communication between the gateway and the microservice can be pro-
tected with either firewall rules or mutual TLS—or a combination of both.

 All samples in this chapter use HTTP (not HTTPS) endpoints to spare you
from having to set up proper certificates and to make it possible for you to
inspect messages being passed on the wire (network), if required. In produc-
tion systems, we do not recommend using HTTP for any endpoint.

Accessing a secured
microservice via

a single-page application
In chapter 2, we discussed how to secure a microservice with OAuth 2.0 and
directly invoked it with a curl client. Chapter 3 made further improvements by
deploying the microservice behind an API gateway. The API gateway took over the
OAuth 2.0 token validation responsibility from the microservice, and the commu-
nication between the API gateway and the microservice was secured with mTLS.
The API gateway introduced a layer of abstraction between the client applications
and microservices. All the communications with microservices had to go through
the API gateway.

 In this chapter, we discuss in detail how to build a single-page application, or SPA
(pronounced spä), to invoke microservices via an API gateway. In case you’re won-
dering why we’re talking about building a SPA in a microservices security book, the
reason is that understanding the constructs of a SPA is important in building an

This chapter covers
 Building a SPA using Angular and Spring Boot to

talk to a secured microservice

 Overcoming CORS-related issues

 Logging into a SPA with OpenID Connect
83

84 CHAPTER 4 Accessing a secured microservice via a single-page application
end-to-end security design. We believe in completing an end-to-end architecture with
a microservices deployment, from data to screen. And SPAs are the most used client
application type. If you are new to SPA architecture, we recommend you go through
appendix C first. It will help you understand what a SPA is and the benefits it offers.

4.1 Running a single-page application with Angular
Suppose that you’ve chosen to adopt a SPA architecture to build your retail-store web
application. In this section, you’ll build a SPA by using Angular (https://angular.io/).
Angular is a framework that helps you build web pages with dynamic HTML content.
You’ll implement a simple SPA to get firsthand experience with its characteristics and
behaviors.

4.1.1 Building and running an Angular application from the source code

To start, you need the samples from the GitHub repo at https://github.com/
microservices-security-in-action/samples. The samples related to this chapter are in
the chapter04 directory. Make sure that none of the processes you may have started
when trying samples from other chapters are running. Shut them down before you try
any of the samples in this chapter. Also, make sure that you have downloaded and
installed all the required software, as mentioned in section 2.1.1.

 In addition, you need to have Node.js, npm, and the Angular command-line inter-
face (CLI) installed to try out this chapter’s samples. You can install Node.js and npm
by following the instructions at http://mng.bz/pBKR. To install the Angular CLI, fol-
low instructions at https://angular.io/guide/setup-local. The samples in this chapter
have been tested on Node.js version 12.16.1, npm version 6.13.4, and Angular version
9.0.4. You can use the following three commands to check the versions you have in
your local setup:

\> ng version
Angular CLI: 9.0.4
Node: 12.16.1

\> npm -v
6.14.3

\>node –v
v12.16.1

After you’ve set up the all dependencies and downloaded the relevant code onto your
working environment, open a command-line client and navigate to the chapter04/
sample01 directory. You will see two subdirectories within named resource and ui. The
ui directory contains the code of the SPA (Angular application), while the resource
directory contains the code of a Spring Boot application written in Java. Since we fol-
low OAuth 2.0 terminology here, we call this Spring Boot application the resource
server. Navigate to the resource directory and execute the following command to build
the resource server:

\> mvn clean install

https://angular.io/
http://mng.bz/pBKR
https://angular.io/guide/setup-local
https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

85Running a single-page application with Angular
If the build is successful, you should see a message on the terminal saying BUILD
SUCCESS. Execute the following command to run the resource server after the build
is complete:

\> mvn spring-boot:run

This resource server has a resource under the URL /books that returns a list of book
details in JSON format. You can try it out by sending a GET request to the /books end-
point by using curl:

\> curl http://localhost:8080/books

If this command returns a list of book details, our resource server is operating as
expected. The next step is to run our Angular application that lists these books on a
web page. Open a new terminal window and navigate to the samples/chapter04/
sample01/ui directory and execute the following command:

\> ng serve

If the application runs successfully, you should
see a message on the terminal saying Compiled
successfully. When you see this message,
open a web browser tab and navigate to http://
localhost:4200. You should see a simple web
page with a single button, as shown in figure 4.1.
If the ng serve command results in the error
[error] Error: Cannot find module

'@angular-devkit/build-angular/pack-

age.json', you can follow the instructions at
http://mng.bz/OMBj to overcome it. This
could occur if you’re upgrading Angular from
an older version to 9.0.4.

 Click the Load Books button. This should
display a list of book titles on your web page, as
shown in figure 4.2.

 We have successfully executed our SPA on
Angular. This application talked to a resource
server (which is a Spring Boot application) to
load a list of book titles onto a web page. In the
next section, we take a closer look at the inner
workings of this application.

4.1.2 Looking behind the scenes of a single-page
application

In this section, we look at our SPA to see how it
communicated with the resource server to dis-
play a list of book titles on a web page. Close the

Figure 4.1 On the Angular single-page
application home page, the Load Books
button loads the book list from the
resource server.

Figure 4.2 The Angular app displays a
list of books returned from the resource
server.

http://mng.bz/OMBj

86 CHAPTER 4 Accessing a secured microservice via a single-page application
browser window (or tab) from the previous section and open a new browser window,
preferably in private/incognito mode, and then open the browser’s developer tools so
you can inspect what happens behind the scenes.

 When the developer tools are open, go to the Network tab of the developer-tools
window and click the Persist Logs button so you can observe the requests and
responses exchanged by the web browser and the web server. Then type the URL
http://localhost:4200 in the address bar of your browser, and press Enter. You should
see the initial web page with the Load Books button as before.

 If you observe the Network tab on your browser developer tools, you’ll notice the
browser making a GET request to http://localhost:4200. The response of this
request is a bunch of HTML code that renders the title Book List App and the Load
Books button on your browser web page. You should also see other requests to load a
few JavaScript files onto the browser. These are not important for the concepts we
teach in this chapter, so we can safely ignore them for the moment.

 Next, click the Load Books button again and observe what happens on the Net-
work tab of your browser development tools. You should see that the browser sends a
GET request to http://localhost:8080/books. This request returns a list of book
titles in JSON format, the exact response we noticed when we tested the resource
server directly. Figure 4.3 illustrates the sequence of events that happens to load this
web page with a list of book titles.

Figure 4.3 This sequence of message exchanges among the web browser, web server, and resource
server displays a list of book titles on a web page in the Angular application.

WEB
BROWSER

WEB
SERVER

RESOURCE
SERVER

Request to localhost:4200

200 OK—Requested JS, CSS, etc.

Requests to load JS, CSS, etc.

Render HTML from JSON

200 OK—HTML content for home page

200 OK - Book list in JSON format

GET http://localhost:8080/books

87Running a single-page application with Angular
The browser makes an initial request to http://localhost:4200, which loads the
web application onto the web browser. The Angular-based web application is hosted
on a Node.js server running on port 4200 in this sample. Once the application is
loaded onto the browser, it renders the HTML content of the home page, which con-
tains the Load Books button. Once this button is clicked, the browser initiates a
request to load the list of books from the resource server running on local-
host:8080. The resource server returns the list of books in JSON format. The Java-
Script loaded on the web page then converts this JSON-formatted data into HTML,
which results in us seeing the book titles on the web page.

 Next, let’s take a look at the source code that generates this content. As we men-
tioned earlier, you’re using an Angular web application hosted on Node.js. In discuss-
ing the benefits of a SPA in appendix C, we mention that because SPAs have a simple
design and content, they can be deployed on any simple HTTP hosting service. This
web application, like any standard web application, has an index file named
index.html. The file is located at sample01/ui/src/app/index.html. You can open
this file with any text editor or an IDE. The interesting feature of this HTML file is the
content of the <body> element:

<body>
 <app-root></app-root>
</body>

As you may notice, the <app-root> element isn’t a standard DOCTYPE (www
.w3schools.com/tags/ref_html_dtd.asp) in HTML. This particular index.html is
loaded into the browser on the first request to the web server; then the browser
replaces the content of the <body> element that’s loaded into it, with new content
based on how the user interacts with the application. The JavaScript code running on
the browser performs this action, which is typical behavior of SPAs. Many applications
are designed in such a way that index.html is the only static HTML file loaded into the
browser. User actions (clicks) result in its contents being dynamically updated by the
JavaScript running on the browser itself. Note that although some applications follow
SPA architecture and principles, they could have more than one static HTML file
loaded for different actions.

 The request to the /books path of the resource server fetches the actual
(dynamic) content to be displayed on the web page. If you observe the content of that
response message in the browser’s developer tools, you should see a JSON payload
similar to the following:

[
 {
 "id":1,
 "name":"Microservices Security In Action",
 "author":null
 },
 {
 "id":2,
 "name":"Real World Cryptography",

www.w3schools.com/tags/ref_html_dtd.asp
www.w3schools.com/tags/ref_html_dtd.asp

88 CHAPTER 4 Accessing a secured microservice via a single-page application
 "author":null
 },

]

The message you saw in your browser was constructed from the data contained in the
preceding JSON string. When the browser made a request to the /books path to the
resource server running on localhost:8080, it executed a method on your Spring
Boot application. You can find that method in the file located at sample01/resource/
src/main/java/com/manning/mss/ch04/sample01/resource/BookController.java,
shown in the following listing.

@GetMapping("/books")
@CrossOrigin(origins = "http://localhost:4200")
public Collection<Book> getBooks() {
 System.out.println("Executing GET /books");
 return repository.findAll();
}

The method annotation @GetMapping("/books") instructs the Spring Boot run-
time to execute the method getBooks when a GET request is received on /books. If
you go through the rest of the method contents, you can figure out how it constructs
the content of the JSON you saw earlier.

 Another file that can help you understand the dynamic HTML content is the file
located at sample01/ui/src/app/app.component.ts. This file contains code that will
generate the HTML that will eventually replace the content of the <body> section of
index.html (see the following listing).

@Component({
 selector: 'app-root',
 template: `<h1>Book List App</h1>
 <p>
 <button (click)='loadBooks()'>Load Books</button>
 </p>

 <div *ngFor=\"let book of books\">{book.name}}</div>
 `,
 styles: []
})

export class AppComponent {
 books: Book[];

 constructor(private http: HttpClient) {
 }

Listing 4.1 The content of the BookController.java file

Listing 4.2 The content of the app.component.ts file

89Setting up cross-origin resource sharing
 loadBooks(){
 this.http
 .get<Book[]>('http://localhost:8080/books')
 .subscribe(data => {this.books = data});
 }
}

Notice the placeholder {book.name}, which will be replaced by the JSON content
sent by the /books endpoint. The code inside the file sample01/ui/src/app/
app.component.ts is a TypeScript file. The button click event triggers the loadBooks
function that initiates the request to the /books endpoint, as the following piece of
code shows:

loadBooks(){
 this.http
 .get<Book[]>('http://localhost:8080/books')
 .subscribe(data => {this.books = data});
}

Notice the HTTP GET request to the /books endpoint of the resource server. The
response of the request is assigned to a variable named books.

 In this particular example, your web server—the one that hosted the UI applica-
tion—and the data endpoint (/books) are running on different hosts, local-
host:4200 and localhost:8080, respectively. In most real-world scenarios, you
would find a similar deployment, which leads us to a problem enforced by the same-
origin policy on web browsers. In the next section, we talk about this policy in detail
and discuss how we can resolve it by using cross-origin resource sharing.

4.2 Setting up cross-origin resource sharing
Suppose different teams in your organization are developing microservices that power
a web application, such as an online retail store. These teams could be hosting their
microservices in different domains (such as orders.retailstore.com and
products.retailstore.com). In section 4.1, you built a SPA with the frontend and
backend on different hosts. By default, web browsers will not allow an application
hosted on one domain to access resources from another domain.

 This was made possible in sample01 that we tried out in section 4.1 because of the
cross-origin resource sharing (CORS) policy available in web browsers. Let’s take a
deeper look at the same-origin policy, its implications, and how CORS allows us to
make cross-origin requests. If you are interested in learning about CORS in detail, we
recommend CORS in Action (Manning, 2014) by Monsur Hossain.

4.2.1 Using the same-origin policy

The same-origin policy (https://en.wikipedia.org/wiki/Same-origin_policy) is a web
security concept introduced to ensure that scripts running on a particular web page
can make requests only to services running on the same origin. An origin of a given

https://en.wikipedia.org/wiki/Same-origin_policy

90 CHAPTER 4 Accessing a secured microservice via a single-page application
URL consists of the URI scheme, hostname, and port. Given the URL http://local-
host:8080/login, the following sections compose the origin:

 http—The URL scheme
 localhost—The hostname/IP-address
 8080—The port

The sections after the port aren’t considered to be part of the origin; therefore,
/login isn’t considered to be part of the origin. The same-origin policy exists to pre-
vent a malicious script on one website from accessing data on other websites uninten-
tionally. The same-origin policy applies only to data access, not to CSS, images, and
scripts, so you could write web pages that consist of links to CSS, images, and scripts of
other origins. Figure 4.4 illustrates this scenario.

Figure 4.4 In a web browser, the same-origin policy ensures that scripts running on
a particular web page can make requests only to services running on the same origin.

Here are the steps shown in figure 4.4:

1 The browser loads an HTML file (index.html) from the domain foo.com. This
request is successful.

2 The index.html file loaded into the browser makes a request to the same
domain (foo.com) to load CSS and JavaScript files; it also loads data (makes an
HTTP request) from the domain foo.com. All requests are successful because
everything is from the same domain as the web page itself.

3 The index.html file loaded into the browser makes a request to a domain
named bar.com to load CSS and JavaScript files. This request, although made to

User Agent
(Web Browser)

Web Server
(foo.com)

Web Server
(bar.com)

Upon a request from the user,
single-page app (SPA) gets
loaded into the browser

index.html loads CSS,
JS, data from foo.com

index.html loads JS, CSS
from bar.com

index.html loads data from bar.com
(allowed only through CORS negotiation)

1

2

3

4

91Setting up cross-origin resource sharing
a different domain (bar.com) from a web page loaded from another domain
(foo.com), is successful because it’s loading only CSS and JavaScript.

4 The index.html file loaded into the browser loads data (makes an HTTP
request) from an endpoint on domain bar.com. This request fails because, by
default, the browser doesn’t allow web pages in one domain (foo.com) to make
HTTP requests to endpoints in other domains (bar.com) unless the request is
for CSS, JavaScript, or images.

Now you have a good understanding of the same-origin-policy in web browsers, its
importance, and the risks of not having such a policy. But in practice, you still need
this to work in certain scenarios, especially with a SPA, to invoke a set of APIs/services,
which are outside the domain of the SPA. Let’s take a look at how web browsers facili-
tate resource sharing among domains to support such legitimate use cases.

4.2.2 Using cross-origin resource sharing

Web browsers have an exception to the same-origin policy: cross-origin resource sharing
(CORS), a specification that allows web browsers to access selected resources on
different origins; see https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.
CORS allows the SPA running on origin localhost:4200 to access resources run-
ning on origin localhost:8080. Web browsers use the OPTIONS HTTP method
along with special HTTP headers to determine whether to allow or deny a cross-origin
request. Let’s see how the protocol works.

 Whenever the browser detects that it’s about to execute a script that makes a
request to a different origin, it sends an HTTP OPTIONS request to the resource on
the particular origin. You can observe this request, known as a preflight request, by
inspecting it on the Network tab of your browser’s developer tools. The request
includes the following HTTP headers:

 Access-Control-Request-Headers—Indicates the HTTP headers that the
request is about to send to the server (such as origin, x-requested-with)

What is the danger of not having a same-origin policy?
Suppose you’re logged into Gmail in your web browser. As you may know, Gmail uses
cookies in your browser to maintain data related to your browser session. Someone
sends you a link (via email or chat) that appears to be a link to an interesting website.
You click this link, which results in loading that particular website in your browser.

If this website has a page with one or more scripts that access the Gmail APIs to
retrieve your data, the lack of something similar to a same-origin policy would allow
the script to be executed. Because you’re already authenticated to Gmail, and your
session data is stored locally on cookies, a request to Gmail APIs would submit these
cookies as well. So effectively, a malicious website has authenticated to Gmail pre-
tending to be you and is now capable of retrieving any data that the Gmail APIs/
services provide.

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

92 CHAPTER 4 Accessing a secured microservice via a single-page application
 Access-Control-Request-Method—Indicates the HTTP method about to
be executed by the request (such as GET)

 Origin—Indicates the origin of the web application (such as http://local-
host:8080)

The server responds to this preflight request with the following headers:

 Access-Control-Allow-Credentials—Indicates whether the server allows
the request originator to send credentials in the form of authorization headers,
cookies, or TLS client certificates. This header is a Boolean value that indicates
true or false.

 Access-Control-Allow-Headers—Indicates the list of headers allowed by
the particular resource on the server. If the server allows more than is requested
via the Access-Control-Request-Headers header, it returns only what is
requested.

 Access-Control-Allow-Methods—Indicates the list of HTTP methods
allowed by the particular resource on the server. If the server allows more than
is requested via the Access-Control-Request-Method, it returns only the
one requested (such as GET).

 Access-Control-Allow-Origin—Indicates the cross-origin allowed by the
server. The server may support more than one origin, but what is returned in
this particular header is the value of the Origin header requested if the server
supports cross-origin requests from the domain of the request originator (such
as http://localhost:8080).

 Access-Control-Max-Age—Indicates for how long, in seconds, browsers can
cache the response to the particular preflight request (such as 3600).

Upon receiving the response to the preflight request, the web browser validates the
response headers to determine whether the target server allows the cross-origin
request. If the response headers to the preflight request don’t correspond to the
request to be sent (perhaps the HTTP method isn’t allowed, or one of the required
headers is missing in the Access-Control-Allow-Headers list), the browser stops
the cross-origin request from being executed.

4.2.3 Inspecting the source that allows cross-origin requests

In the directory chapter04/sample01/resource, open the file located at src/main/
java/com/manning/mss/ch04/sample01/resource/BookController.java with a text
editor or IDE. You should find a method named getBooks in this file and an annota-
tion with the name @CrossOrigin:

@GetMapping("/books")
@CrossOrigin(origins = "http://localhost:4200")
public Collection<Book> getBooks() {
 System.out.println("Executing GET /books");
 return repository.findAll();
}

93Setting up cross-origin resource sharing
Behind the scenes, whenever the server receives an HTTP OPTIONS request to the
/books resource, this piece of code uses the data specified within the @CrossOrigin
annotation to build the corresponding HTTP response. By looking at the contents of
the annotation, you should be able to figure out how they correspond to the preflight
response headers discussed earlier. In the next section, you see how to offload CORS
responsibilities to an API gateway layer so that your microservice is relieved from
CORS-related duties.

4.2.4 Proxying the resource server with an API gateway

As you saw in section 4.2.3, you need code in your microservice to deal with CORS-
specific configurations. According to microservices best practices and recommenda-
tions, you should try to avoid burdening the microservice with anything other than
what it’s primarily designed to do. Another alternative for dealing with the same-
origin policy is using an API gateway to act as a reverse proxy to your microservices,
which we discuss in this section.

 Suppose that you have to expose the same microservice to other origins someday
in the future. In the design discussed earlier, you would need to modify your microser-
vice’s @CrossOrigin annotation to allow additional origins, which requires rebuild-
ing and redeploying the microservice to expose it to a consumer from a new origin. As
mentioned earlier, this modification goes against the microservices recommendations
and best practices. Therefore, it would be better to use an API gateway solution.

NOTE You can also use any standard reverse-proxy solution such as NGINX
(www.nginx.com) for the same requirement. We keep mentioning the API
gateway because, when it comes to separating the consumer (UI) application
from the backend, an API gateway becomes useful for much more than CORS
negotiations alone.

To examine a practical example of this pattern, look at sample02 inside the chapter04
directory. Make sure to shut down running samples from the previous sections before
you attempt to run samples in this section. You should see three subdirectories within
sample02—namely ui, resource, and gateway. Use separate windows (or tabs) of your
command-line tool to build and run the gateway and resource server processes. To
build and run the gateway, execute the following two commands from the sample02/
gateway directory:

\> mvn clean install
\> mvn spring-boot:run

To build and run the resource server, execute the following two commands from the
sample02/resource directory:

\> mvn clean install
\> mvn spring-boot:run

These commands should start the gateway and resource server processes. The
resource server would be running on port 8080 as before. The gateway process would

www.nginx.com

94 CHAPTER 4 Accessing a secured microservice via a single-page application
be running on port 9090. Next, use your command line to navigate to sample02/ui
and execute the following command to start the Angular web application:

\> ng serve

Once the application starts successfully, open a web browser with the browser
developer tools switched on and navigate to http://localhost:4200. If the ng serve
command results in the error [error] Error: Cannot find module '@angular-
devkit/build-angular/package.json', you can follow the instructions at http://
mng.bz/Mdr2 to overcome it. This could occur if you’re upgrading Angular from an
older version to 9.0.4.

 Observe the Network tab of your browser developer tool and click the Load Books
button. You should see that the browser now sends the GET /books request to local-
host:9090 (to the gateway) instead of localhost:8080 (the resource server). If the
request is successful, you should see the list of book titles on the web page.

 Use a text editor or IDE to open the Java class declared in the file sample02/resource
/src/main/java/com/manning/mss/ch04/sample02/resource/BookController.java.
You will notice now that its getBooks function is no longer annotated with @Cross-
Origin as in sample01. This is because we have removed CORS handling from the
microservice and delegated that to the API gateway. Open the sample02/gateway/
src/main/java/com/manning/mss/ch04/sample02/gateway/GatewayApplication.java
file by using a text editor or IDE. Notice the code block in the following listing that
configures CORS on the API gateway.

@Bean
public WebMvcConfigurer corsConfigurer() {
 return new WebMvcConfigurer() {
 public void addCorsMappings(CorsRegistry registry) {
 registry.addMapping("/books/**")
 .allowedOrigins("http://localhost:4200")
 .allowedMethods("GET", "POST");
 }
 };
}

Open the file sample02/gateway/src/main/resources/application.yml with your text
editor or IDE, and notice the following route instruction:

zuul:
 routes:
 path: /books/**
 url: http://localhost:8080/books

This route instruction tells the Zuul API gateway to route whatever requests it receives
on path /books/** to URL http://localhost:8080/books. When your browser
makes a GET request to http://localhost:9090/books, the Zuul gateway

Listing 4.3 The code that handles CORS on the API gateway

https://shortener.manning.com/Mdr2
https://shortener.manning.com/Mdr2

95Securing a SPA with OpenID Connect
intercepts this request and forwards it to the resource server URL http://local-
host:8080/books. However, Zuul does not forward the preflight OPTIONS requests
on /books. The Zuul gateway responds to the preflight requests by itself, as config-
ured in listing 4.3. Figure 4.5 illustrates this pattern of the API gateway handling pre-
flight requests while forwarding the other requests to the resource server.

4.3 Securing a SPA with OpenID Connect
In this section, you’ll see a practical example of using OpenID Connect to secure your
SPA. OpenID Connect (OIDC) is an identity layer built on top of OAuth 2.0. If you are
not familiar with OpenID Connect, we recommend you first go through appendix A.
In all the preceding examples, we did not use any authentication to secure our SPA. In
this section, we use OpenID Connect to authenticate users to the SPA. You can find
the source code of this example in the chapter04/sample03 directory. Three compo-
nents participate in this example:

 The web server—The UI server hosts the SPA and is also an OAuth client with a
valid client ID and client secret.

 The OAuth 2.0 authorization server—This component plays the role of the autho-
rization server, which also is the OpenID Connect provider.

 The resource server—This microservice provides the details of books.

User Agent
(Web Browser)

Web Server
(localhost:4200)

Books
Microservice

(localhost:8080)

Upon a request from
the user, the single-page
app (SPA) gets loaded
into the browser. Running on host

localhost:4200

Running on host
localhost:9090

Preflight request

Preflight response

Actual request

Actual response

A
P

I G
at

ew
ay

 (l
oc

al
ho

st
:9

09
0)

1
2

3

5

4

4

5

Figure 4.5 The API gateway handles preflight requests generated corresponding to a web
application running on a different origin.

96 CHAPTER 4 Accessing a secured microservice via a single-page application
To build the source code of these samples, navigate to the chapter04/sample03 direc-
tory by using your command-line client. You should see three subdirectories named
ui, resource, and authz. The ui directory contains the code of the Angular-based web
application, the resource directory contains code of our Books microservice, and the
authz directory contains the code of our OIDC provider, also known as the authoriza-
tion server. Open separate command-line windows (or tabs) and navigate to the
resource directory in one of them, and to the authz directory in the other. Execute
the following command in each window to build the code of the microservice and
authorization server, respectively. To build and run the authorization server, execute
the following commands from the sample03/authz directory:

\> mvn clean install
\> mvn spring-boot:run

To build and run the resource server, execute the following commands from the
sample03/ resource directory:

\> mvn clean install
\> mvn spring-boot:run

You should now have the authorization server and the resource server up and run-
ning. Let’s try to access the /books resource with an HTTP GET on the resource
server. Open a new terminal window and execute the following command:

\> curl -v http://localhost:8080/books

This should return a 401 Unauthorized response, which looks like the following:

< HTTP/1.1 401
< Cache-Control: no-store
< Pragma: no-cache
< WWW-Authenticate: Bearer realm="oauth2-resource", error="unauthorized",

error_description="Full authentication is required to access this
resource"

As you can observe from the error response, the resource server is now expecting an
OAuth 2.0 Bearer token to access this resource. In this next section, we take a look at
how our web application goes through an OIDC login flow to obtain an access token
and accesses this resource to get the list of books.

4.3.1 Understanding the OpenID Connect login flow

In this section, we look at the OIDC login flow in our Angular web application. We use
the angular-oauth2-oidc library available for Angular applications; see https://
github.com/manfredsteyer/angular-oauth2-oidc. This is an open source OpenID-
certified library. Open a new command-line terminal, navigate to the sample03/ui
directory, and execute the following command to run the web application:

\> ng serve

https://github.com/manfredsteyer/angular-oauth2-oidc
https://github.com/manfredsteyer/angular-oauth2-oidc

97Securing a SPA with OpenID Connect
Once everything is running, open a private
browsing session in your web browser, and go
to http://localhost:4200/.

 You should see the Book List application
web page as in sample02, but this time with a
Log In button instead of a Load Books but-
ton, as shown in figure 4.6.

 Click the Log In button and you’ll be redi-
rected to a web page on the authorization
server (localhost:8081) to enter your username and password. Provide the value
user as the username, and password for the password, and then click the Sign In
button, shown in figure 4.7.

Once you provide the correct credentials and click the Sign In button, you’ll be taken
to a page to approve the request from the SPA to access the protected resources, as
shown in figure 4.8.

Figure 4.8 On the authorization page presented by the authorization server,
chose the Approve option and proceed.

Figure 4.6 The Book List App web page
requires you to log in to view the list of
book titles.

Figure 4.7 The login page of the
authorization server

98 CHAPTER 4 Accessing a secured microservice via a single-page application
Select the Approve option and then click the
Authorize button. You will then be taken back to
the SPA’s home page. Now, instead of the Log In
button, you should see the Load Books button.
Clicking this button should load the book titles
to the web page, as shown in figure 4.9.

 What we just went through was a typical
OIDC login flow in an application to obtain an
access token to access the GET /books resource
on the resource server. Close the web browser
that you just executed these steps on and
reopen a new web browser in private browsing
mode with the browser developer tools turned
on. Repeat the steps that we just completed and
observe the Network tab to see what happens
behind the scenes when we try to log in to our
web application.

 When you click the Log In button, you’ll notice that the browser initiates an autho-
rization request to the /oauth/authorize endpoint of the authorization server. This
passes a response_type parameter set to code, indicating that it is initializing an
authorization code grant, in this case can also be called as an OIDC authorization
code flow. The client_id is sent as a request parameter as well:

http://localhost:8081/oauth/authorize?
 response_type=code&
 client_id=clientapp&
 state=Ulg4V1pN.....&
 redirect_uri=http.....&
 scope=openid&
 nonce=Ulg4V1.....&
 audience=https...

As a response to this authorization request, the authorization server responds with a
302 redirect to the login page. You should notice the Location header in the
response pointing to http://localhost:8081/login. The browser makes a GET
request to this URL, and that request results in what you see on the login page of your
browser. Figure 4.10 illustrates this scenario.

 Once you provide the username and password on the login page, you will notice
the browser submitting the data to the authorization server. The authorization server
then redirects the browser to the content page, where you need to approve the web
application’s access to the protected resources on the resource server. Once the
approval is provided, the authorization server redirects the browser back to the web
application providing an authorization code. You can notice this in the Location
header that comes as a response from the authorization request:

Location:
 http://localhost:4200/?code=rnRb4K&state=bEs1c.....

Figure 4.9 After you click the Load
Books button, the web page shows the
list of book titles.

99Securing a SPA with OpenID Connect
Once the browser receives this authorization code, it initiates a request to the
/oauth/token endpoint of the authorization server to exchange the authorization
code for an access token. You should see a request similar to the following being initi-
ated from your web browser:

POST http://localhost:8081/oauth/token
grant_type=authorization_code&
code=rnRb4K&
redirect_uri=http://localhost:4200/&
client_id=clientapp&
client_secret=123456&
audience=https://bookstore.app

The response to this request is an access token, which can now be used by the web
application to access resources on the resource server. The token response is JSON
that looks similar to the following:

{
"access_token":"92ee7d17-cfab-4bad-b110-f287b4c2b630",
"token_type":"bearer",
"refresh_token":"dcce6ad7-9520-43fd-8170-a1a2857818b3",
"expires_in":1478,
"scope":"openid"
}

WEB
BROWSER

AUTHORIZATION
SERVER

Login

200 OK with HTML content of login page

GET request to the login page

GET request to the authorize endpoint

302 redirect to the login page of the authorization server

Figure 4.10 Sequence of events that present the login page of the authorization server during an
OpenID Connect login flow

100 CHAPTER 4 Accessing a secured microservice via a single-page application
Figure 4.11 Sequence of events that exchanges the authorization code for an access token

Figure 4.11 illustrates this exchange of messages.
 Once the web application has received the access token, it no longer displays the

Log In button, but instead displays the Load Books button. Clicking this button to
load books makes a request to the resource server to fetch the list of books and dis-
plays them on the web page. The difference between this and the previous sample is
that in this case, the browser sends the access token it received in an Authoriza-
tion: Bearer header to the resource server. The resource server validates the access
token by talking to the authorization server. It returns the list of books only upon a
successful validation of the access token. Figure 4.12 illustrates this scenario.

 In the next section, we take a look at the code of our web application, resource
server, and authorization server that enabled this flow.

4.3.2 Inspecting the code of the applications

In this section, we look at the code that allowed our applications to participate in the
flow of events shown in figure 4.11 and figure 4.12 to secure our web application
through an OIDC flow.

WEB
BROWSER

WEB
SERVER

AUTHORIZATION
SERVER

HTML code of the home page

GET request to the home page with
authorization code

Access token

POST request to the token endpoint using authorization code grant

POST request to the authorize endpoint with consent and cookie

302 redirect to the home page of the web server with authorization code

101Securing a SPA with OpenID Connect

Figure 4.12 Sequence of events for the web application to display the list of book titles

CODE OF THE ANGULAR WEB APPLICATION

As mentioned previously in this chapter, we use the angular-oauth2-oidc library to
secure the Angular application using OIDC. The following listing contains code from
the sample03/ui/src/app/app.component.ts file.

import { Component } from '@angular/core';
import { OAuthService, OAuthErrorEvent } from 'angular-oauth2-oidc';
import { HttpClient } from '@angular/common/http';

@Component({
 selector: 'app-root',
 template: `<h1>Book List App</h1>
 <p>
 <button *ngIf="!isLoggedIn()" (click)='login()'>Log In</button>
 <button *ngIf="isLoggedIn()" (click)='loadBooks()'>Load Books</button>
 <button (click)='logout()'>Log out</button>
 <button (click)='refresh()'>Refresh</button>
 </p>

 <div *ngFor=\"let book of books\">{{book.name}}</div>
 `,
 styles: []
})

Listing 4.4 The app.component.ts file that renders buttons on the web page

WEB
BROWSER

RESOURCE
 SERVER

AUTHORIZATION
SERVER

Return book list

Token validation response

Check token
validation response

GET request to books resource with access token

Send token for validation

102 CHAPTER 4 Accessing a secured microservice via a single-page application
As you can see, the Log In button is rendered whenever the isLoggedIn function
returns false. The Load Books button and the book list items (within the
element) are rendered whenever the same function returns true. The isLoggedIn
function, which you can find within the same file, returns true whenever an access
token is available, as shown here:

isLoggedIn(){
 if (this.oauthService.getAccessToken() === null){
 return false;
 }
 return true;
}

Clicking the Log In button triggers the login function, and clicking the Load Books
button triggers the loadBooks function. The login function initiates the OIDC flow,
whereas the loadBooks function triggers a request to the resource server to fetch the
list of books, as you can see in the following code block (which can be found in the
same file). Notice the difference in the loadBooks function compared to sample02.
Here, we also set the Authorization: Bearer token as a request header:

login() {
 this.oauthService.initCodeFlow();
}

loadBooks(){

 this.http
 .get<Book[]>('http://localhost:8080/books',
 { headers: {'Authorization': 'Bearer '+
 this.oauthService.getAccessToken()}})
 .subscribe(data => {this.books = data});
}

The initialization of the angular-oauth2-oidc library with configuration parameters
such as the clientId and scope can be found in the sample03/ui/src/app/app
.module.ts file. The following listing presents the code block that sets these parameters.

const config: AuthConfig = {
 issuer: 'http://localhost:8080/',
 loginUrl: 'http://localhost:8081/oauth/authorize',
 tokenEndpoint: 'http://localhost:8081/oauth/token',
 dummyClientSecret: '123456',
 clientId: 'clientapp',
 disablePKCE: true,
 responseType: 'code',
 oidc: true,
 requireHttps: false,
 strictDiscoveryDocumentValidation: false,
 customQueryParams: { audience: 'https://bookstore.app' },

Listing 4.5 Initialization of the angular-oauth2-oidc library with config parameters

103Securing a SPA with OpenID Connect
 redirectUri: window.location.origin + '/',
 silentRefreshRedirectUri: window.location.origin + '/silent-refresh.html',
 scope: 'openid',
 requestAccessToken: true,
 skipIssuerCheck: true,
 showDebugInformation: true,
};

CODE OF THE RESOURCE SERVER

The code of the resource server remains more or less similar to that of sample02. The
inclusion of the following two dependencies in the pom.xml file found in the
sample03/resource/ directory enables OAuth2.0–based security for the resources we
expose through the resource server:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
 <version>2.2.0.RELEASE</version>
</dependency>
<dependency>
 <groupId>org.springframework.security.oauth.boot</groupId>
 <artifactId>spring-security-oauth2-autoconfigure</artifactId>
 <version>2.2.4.RELEASE</version>
</dependency>

Once these Spring OAuth 2.0 dependencies are included in our project, Spring Boot
automatically mandates OAuth 2.0-based authentication for the resources. This is why
we were unable to access the /books resource directly without a valid access token the
previous time we attempted to access it using curl.

 Next, take a look at the application.properties file located at sample03/resource/
src/main/resources. The first property in this file (security.oauth2.resource
.token-info-uri) points to the endpoint on the authorization server that validates
access tokens received on the resource server. The clientId and clientSecret
properties in this file are credentials of the resource server granted by the authorization
server itself. These are required to access the token validation endpoint (http://
localhost:8081/oauth/check_token). Note that these credentials are not the
same as what was used by the web application to authenticate itself against the authori-
zation server.

CODE OF THE AUTHORIZATION SERVER

The code of the authorization server is more or less the same as what we saw in chap-
ter 3. The configure method found in the OAuth2AuthorizationServer.java file
within the sample03/authz/src/main/java/com/manning/mss/ch04/sample03/
authz/config directory contains the code that configures our authorization server. In
listing 4.6, observe how we have registered the two client applications: the first with
client_id having the value clientapp, which is used by our web application; and
the next with client_id having the value resourceclient, which is used by our
resource server.

104 CHAPTER 4 Accessing a secured microservice via a single-page application

public void configure(ClientDetailsServiceConfigurer clients) throws Exception {
 clients.inMemory()
 .withClient("clientapp")
 .secret(passwordEncoder.encode("123456"))
 .authorizedGrantTypes("password", "authorization_code",
 "refresh_token")
 .authorities("READ_ONLY_CLIENT")
 .scopes("openid", "read_profile_info")
 .resourceIds("oauth2-resource")
 .redirectUris("http://localhost:4200/")
 .accessTokenValiditySeconds(5000)
 .refreshTokenValiditySeconds(50000)
 .and()
 .withClient("resourceclient")
 .secret(passwordEncoder.encode("resourcesecret"));
}

The configure method in the SecurityConfig.java file in the same location lists the
code where we register the valid users in the system:

protected void configure(AuthenticationManagerBuilder auth) throws Exception {
 auth.inMemoryAuthentication()
 .withUser("user")
 .password(passwordEncoder().encode("password"))
 .roles("USER");
}

4.4 Using federated authentication
In the preceding sections, we discussed building a SPA and securing it with OIDC. We
discussed securing your resources with OAuth 2.0 in chapters 2 and 3, and we used
the same mechanism to protect your resource server in this chapter. Figure 4.13 shows
at a high level how the resource server is protected.

 As we discussed in chapter 3, when the resource server (or the API gateway that sits
in front of it) receives a self-contained access token, it doesn’t have to talk to the
authorization server to validate it. The resource server first validates the authenticity
(proof of identity) of the access token by verifying its signature and then checks the
validity of its contents (intended audience, expiry, scopes, and so on). To validate the
authenticity of a self-contained access token (JWT), the resource server requires the
public key of the authorization server that signed the token.

 As you may have noticed, a trust relationship is required between the resource
server and the authorization server. Even if you used an opaque token (also known as
a reference token), so that the resource server would need to talk to the authorization
server that issued the token to validate it, you still need a trust relationship between
the resource server and the authorization server.

Listing 4.6 The authorization server registers the two client apps

105Using federated authentication
NOTE Although we keep using the term resource server in this chapter to refer
to a Spring Boot application that hosts a microservice, you could also call an
API gateway a resource server. We’re omitting a discussion of the API gateway
to reduce the number of components discussed in this chapter.

The client application (SPA), authorization server, and resource server need to be in
the same trust domain. Suppose that in your online retail store, you have to work with
a third-party shipping service to make shipping requests for the orders that are placed
and to get details on pending shipments. When a user logs in to your retail store, the
user authenticates against your trust domain. But when the user inquires about the
status of shipments, your web application needs to talk to a third-party shipping ser-
vice. The shipping service needs to make sure that it gives details only to the relevant
users (user A can’t get details on orders placed by user B) and therefore needs to
know the identity of the user who’s logged in to the system. Because the shipping ser-
vice is in a separate trust domain, by default it won’t know how to validate a token
issued by your own private trust domain. To access an API or a service from the ship-
ping trust domain, first you need to get a token from an authorization server, which is
trusted by the shipping trust domain.

4.4.1 Multiple trust domains

If a client application works across multiple trust domains, the preceding solution we
discussed in section 4.3 won’t work. When a resource server is presented a token
issued by an authorization server of another trust domain (which the resource server
does not trust), it won’t be able to validate the token or accept it as valid.

User Agent
(Web Browser)

Web
Server

Authorization
Server

Resource
Server

OAuth 2.0 handshake
to generate token

Access token

Request for data with
token in header

Requested data
in the response

Cookie that corresponds
to the token

Request for data with
cookie in header

Login request
(username, password)

1 2

6

8 7

3

5

4

Figure 4.13 In this end-to-end authentication flow between the SPA and resource server, users
authenticate to SPA with OpenID Connect, and the resource server protects all its APIs with OAuth 2.0.

106 CHAPTER 4 Accessing a secured microservice via a single-page application
 If the presented token is a self-contained token in the form of a signed JWT, the
resource server needs to know the public certificate used by the authorization server
in the foreign trust domain to validate the signature of the token. Because the autho-
rization server and resource server are separated by a trust domain, it’s unlikely that
the resource server will know this information.

 If the resource server was presented an opaque token, it would need to contact the
authorization server that issued the access token to validate it. Again, because these two
servers belong to different trust domains, it’s unlikely for this scenario to be possible.
The resource server may not know where the relevant authorization server resides, and
even if it does, it may not have the necessary credentials to talk to its token validation
endpoint. Figure 4.14 illustrates the trust boundaries between systems.

Figure 4.14 The authorization server and resource server are in two trust domains.
The resource server in trust domain 2 does not know how to validate a token issued
by the authorization server in trust domain 1.

As shown in figure 4.14, step 4 will fail because the token that’s passed to the resource
server at this point is obtained from trust domain 1. Because the resource server is in
trust domain 2, it won’t know how to validate the token that it receives; hence, the
request will fail with an authentication error.

4.4.2 Building trust between domains

To solve the problem discussed in section 4.4.1, you need to build a mechanism that
builds a trust relationship across domains. An authorization server itself usually defines
a trust domain. A given trust domain has many resource servers, web applications, user
stores, and so on, but it has only one authorization server that governs how each com-
ponent or application in the particular domain should accept requests for processing.
This authorization server is the single source of truth. Therefore, to build trust between

User Agent
(Web Browser)

Web
Server

Authorization
Server

Resource
Server

Token generation

Trust domain 1

Trust domain 2

Login flow

Access the resource with cookie Access the resource
with the token

1

2

3
4

107Using federated authentication
domains, you need to build a chain of trust between the authorization servers of each
domain. This chain of trust combined with the token exchange pattern (using the JWT
grant type) can provide a solution to your problem (see figure 4.15).

Figure 4.15 Token exchange pattern to obtain a token valid for domain 2. The authorization server
in domain 2 trusts the authorization server in domain 1, but the resource server in domain 2 trusts
only the authorization server in its own domain.

As shown in figure 4.15, before the service provider (web server) attempts to access
resources from the resource server in domain 2, it should perform a token exchange
from the authorization server in domain 2. Assuming that the token obtained from
the authorization server in domain 1 is a JWT (not an opaque token), it can use the
JWT bearer grant type (https://tools.ietf.org/html/rfc7523) to request an access
token from the authorization server in domain 2.

 The JWT bearer grant type (officially known as the JWT profile for OAuth2.0 client
authentication and authorization grants) has a simple protocol. It accepts a JWT and
performs the relevant validations on the token (verifying its signature, expiry, and so
on); if the token is valid, it issues a valid OAuth 2.0 token to the client, which can be
another JWT itself or even an opaque token string. The important thing in this sce-
nario is the ability of the authorization server in domain 2 to validate the token (JWT)
it receives and to exchange it for a new access token. For this purpose, you need to
build a trust relationship between the authorization servers in domain 1 and domain
2. Building this trust relationship could be a matter of exchanging public certificates.

User Agent
(Web Browser)

Web
Server

Authorization
Server

Authorization
Server

Resource
Server

Token generation

Trust domain 2Trust domain 1

Login flow

Access a resource with cookie

Exchange a token
from domain 1 for
a new token from
domain 2

Access a resource with
a token from domain 2

1

2

3
5

4

https://tools.ietf.org/html/rfc7523

108 CHAPTER 4 Accessing a secured microservice via a single-page application
Summary
 Single-page applications perform better by reducing network chattiness as they

perform all rendering on the web browser and by reducing the workload on the
web server.

 The SPA architecture brings simplicity to microservices architectures because
they do not require complex web application-hosting facilities such as JBoss or
Tomcat.

 The SPA architecture abstracts out the data layer from the user experience
layer.

 SPAs have security restrictions and complexities due to the same-origin policy
on web browsers.

 The same-origin policy ensures that scripts running on a particular web page
can make requests only to services running on the same origin.

 The same-origin policy applies only to data access, not to CSS, images, and
scripts, so you can write web pages that consist of links to CSS, images, and scripts
of other origins.

 OpenID Connect is an identity layer built on top of OAuth 2.0. Most SPAs
use OpenID Connect to authenticate users.

 Because SPAs may consume APIs (data sources) from multiple trust domains, a
token obtained from one trust domain may not be valid for another trust
domain. We need to build token-exchange functionality when a SPA hops
across multiple trust boundaries.

 All samples in this chapter used HTTP (not HTTPS) endpoints to spare you
from having to set up proper certificates and to make it possible for you to
inspect messages being passed on the wire (network), if required. In produc-
tion systems, we do not recommend using HTTP for any endpoint.

Engaging throttling,
monitoring,

and access control
In chapter 3, we introduced the API Gateway architectural pattern and discussed its
applicability in a microservices deployment. Zuul is an open source API gateway
developed by Netflix to proxy all its microservices. Zuul provides dynamic routing,
monitoring, resiliency, security, and more. It acts as the front door to Netflix’s
server infrastructure, handling traffic from Netflix users around the globe.

 We also discussed in chapter 3 how to enforce security based on OAuth 2.0 for
your microservices, using Zuul as the API gateway. In this chapter, we extend those
samples to use Zuul to handle throttling and apply access-control policies, and we
also discuss the monitoring aspects of a microservices deployment.

This chapter covers
 Setting up a Zuul proxy to enforce throttling

 Using Prometheus and Grafana to monitor
microservices

 Applying access-control policies at the edge with
Zuul and OPA
109

110 CHAPTER 5 Engaging throttling, monitoring, and access control
5.1 Throttling at the API gateway with Zuul
In this section, we discuss the types of threats a typical microservices deployment is
exposed to by allowing too many requests within a particular time frame, and why it is
important to throttle requests. Take a look at figure 5.1 to refresh your memory from
chapter 3 on the participants of an API Gateway architecture pattern.

Figure 5.1 API gateways are used in microservices architectures to expose microservices for
external consumption. Users use applications for various tasks, and these applications consume
services exposed by API gateways.

As you can see, the client application accesses the API gateway, which in turn sends
the requests to your target microservices (backend). The API gateway and the target
service are both request-serving nodes in the system. Every request sent by a client
application needs to be processed by the API gateway, and every valid request received
by the API gateway needs to be sent to the target microservice for processing.

 As requests from the client applications increase, the performance and scalability
factors of the API gateway are negatively affected. The increased number of valid
requests, which are authenticated and authorized, have a negative impact on the per-
formance and scalability factors of the target microservices, unless the system is
designed properly. The way we usually deal with a rising number of requests to process
is to scale up the application layers (API gateway and target services).

 Scaling up has two primary models: vertical scaling and horizontal scaling, as shown
in figure 5.2. Vertical scaling increases the computing power on which our software
runs, such as increasing the memory and CPU capacity of the corresponding servers.
With horizontal scaling, we scale our deployment by adding more virtual machines, or
VMs, (or computers) to our pool of resources where our software (microservices) runs
and execute all of them in parallel.

API gateway intercepts requests
to the microservice for security,
rate limiting, and so on.

Applications consume
microservices through APIs
exposed via the gateway.

Users use applications
(web, mobile, etc.).

Order
Processing

Service

Microservices execute
business functions.

A
P

I G
at

ew
ay

111Throttling at the API gateway with Zuul
Figure 5.2 Vertical scaling versus horizontal scaling. The resources
available on the host of the microservice limit vertical scaling.
Horizontal scaling in theory is unlimited.

Scaling doesn’t come for free. Whatever model of scaling we opt for, it comes at a cost.
There is also a physical limit on how much we can scale our systems. This limit is some-
times defined by the amount of available physical hardware. And at other times, this is
also limited by the ability of our software to scale horizontally. Especially when it
comes to stateful software systems, such as a system that depends on a relational data-
base, scaling the software beyond a certain level becomes harder and harder because
of the complexities involved in scaling the relational database.

 All of these complexities lead us to a point where it becomes necessary for us to
limit the number of requests being served by our system. And we need to set those lim-
its fairly so that all consumers of our services get a fair quota of the total amount of
traffic we can handle. Limiting the number of requests can also help protect our sys-
tems from attackers who attempt to perform DoS and DDoS attacks by sending in a
huge number of requests and thus preventing others from gaining access to the sys-
tem. Let’s now look at the various types of throttling we can apply on our systems.

5.1.1 Quota-based throttling for applications

In this section, we discuss how to apply throttling to our microservices based on
request quotas allocated to specific client applications. Allocating request quotas
becomes useful in cases such as monetizing microservices as well as when we want to
prevent microservices from being consumed more than their capacity allows.

 In our example in figure 5.3, some sort of application or device consumes the
Order Processing microservice. Alternatively, more than one application could access
the same microservice, such as the Order Processing microservice being accessed by a
mobile device, a web application, and a desktop application. When the number of

Vertical scaling—Allocating
more resources for the same
microservice

Memory = 4 GB
CPU = 4 cores

Products
Microservice

Products
Microservice

Products
Microservice

Products
Microservice

Horizontal scaling—Adding
more microservices into the
infrastructure

Memory = 2 GB
CPU = 2 cores

Memory = 1 GB
CPU = 1 core

1 2

3

112 CHAPTER 5 Engaging throttling, monitoring, and access control
consumer applications of the Order Processing microservice increases, its perfor-
mance could degrade unless you design the system properly. Let’s assume for argu-
ment’s sake that the Order Processing service can handle 1,000 requests per second. If
all the mobile applications collectively consume the full 1,000 requests, the web appli-
cation and the desktop application will be starved of requests (figure 5.3).

Figure 5.3 The more consumers a microservice has, the greater the capacity it must handle.

The way to solve this problem is to provide each application a quota, such as 200
requests per second, and to enforce this quota at the API gateway. This way, a given
application or device will not be able to starve the rest of the consumers in the system.
The maximum capacity each application can consume from the system would now be
limited to 200 requests per second. This leaves room for other consumers to consume
the remaining 800 requests within a given second. Hence this eliminates the risk of a
single application causing a DoS or a DDoS attack.

 For this mechanism to work, the API gateway must be able to identify the applica-
tion from which each request originates. If the API gateway is unable to identify the
application or device type, it should default to a common value, such as 100 requests
per second. Assuming the APIs on the API gateway are secured using OAuth 2.0, each
consumer application would need to have a unique client ID, as we discussed in chap-
ter 3. When an application sends a request along with an access token to the API gate-
way, the gateway can then introspect the access token (by talking to the OAuth 2.0
authorization server) and retrieve the corresponding client ID. This client ID can be
used to uniquely identify the application from which the request originated.

 The API gateway would then count the number of requests being served within a
time window of 1 second against each unique client ID, as shown in figure 5.4. When a

Mobile applications
consume all 1,000 req/sec.

Desktop applications starved
of requests

Order
Processing

Service

The impact on microservices increases as
the number of consumers increases.

Capacity = 1,000
requests per second

Web applications starved of
requests

Tablets starved of requests

113Throttling at the API gateway with Zuul
given client ID goes beyond 200 requests per second, the API gateway would prevent
further requests from that client ID from being sent to the target services until the
time window has passed.

Figure 5.4 The gateway keeps a count of the requests made by each
application within the respective time windows. The ID of the application
(client_id in the case of OAuth 2.0) is used as the unique identifier
of the application.

5.1.2 Fair usage policy for users

In this section, we discuss how to ensure that all users of applications are treated
equally. We don’t want certain users of an application to be denied access to a service
because other users are consuming larger chunks of the quota.

 As we discussed in section 5.1.1, we can apply a limit of requests for a given time
window for each application. This prevents one or a few applications from consuming
a majority of the capacity of our services, which could result in a denial of service for
other applications. The same problem could occur for users of applications. Say, for
example, an application has 20 users, and the application is given a quota of 200
requests per second. If a given user consumes all 200 requests within a time window of
1 second, the other users will not be left with anything to consume—thus resulting in
a denial of service for those users. It is therefore important to impose a fair usage pol-
icy on an application to ensure that all users get a fair share of the quota given to the
application, as shown in figure 5.5.

 Inspecting the user’s credential used to access the API gateway/microservice helps
identify the user to apply fair usage policies. For example, if we use basic authentica-
tion to protect our APIs, we can have the username as the user identifier. If we use

count_of('abc') = 24/min

count_of('xyz') = 51/min

Application with Client ID 'xyz'

Order
Processing

Service
A

P
I G

at
ew

ayApplication with Client ID 'abc'

114 CHAPTER 5 Engaging throttling, monitoring, and access control
self-contained access tokens or JWTs to protect the APIs, we can have the sub claim
that comes with the JWT as the user identifier. If the client application uses regular
OAuth 2.0 tokens (or the reference tokens), we can find the corresponding user iden-
tifier by talking to the authorization server to introspect the token.

Figure 5.5 The API gateway ensures that fair usage is maintained across all users of
the application so that one (or a few) users of the application cannot starve the other
users of the application.

5.1.3 Applying quota-based throttling to the Order Processing
microservice

Before we discuss further details on throttling, let’s run through an exercise that gives
you an idea of what it means to throttle requests by users. To begin, download the chap-
ter 5 samples from GitHub (https://github.com/microservices-security-in-action/
samples) to your computer.

NOTE The examples in this chapter use Java version 11 but still should work
with Java 8+. Before executing the examples in this chapter, make sure that
you’ve stopped running the examples from other chapters or elsewhere. You
could experience port conflicts if you attempt to start multiple microservices
on the same port.

Once you’ve downloaded all the samples from the GitHub repository, you should see
a directory called sample01 inside the chapter05 directory. You will see three sub-
directories within the sample01 directory:

 oauth2_server—Contains the code of the OAuth 2.0 authorization server. This is
the same authorization server we used in chapter 3.

count_of('john') = 5/min
count_of('smith') = 8/min
count_of('jane') = 12/min

Application 'xyz'

Order
Processing

Service

A
P

I G
at

ew
ayApplication 'abc'

User Smith

User Jane

User John

https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

115Throttling at the API gateway with Zuul
 gateway—Contains the source of the Zuul gateway, which applies throttling poli-
cies on our services. Just as it intercepted requests and applied security (in
chapter 3), this gateway now performs throttling as well.

 service—Contains the source code of the Order Processing microservice, which
actually hosts the business logic.

Navigate to the oauth2_server directory from your command-line client tool and exe-
cute the following command to build it:

\> mvn clean install

Once the code is successfully built, execute the following command to run the OAuth
2.0 authorization server:

\> mvn spring-boot:run

Execute the same two commands from the gateway and the service directories, but
from different terminal tabs each, to build and run the Zuul gateway and the Order
Processing microservice. Once all three processes are up and running, we can start
using them to see what it looks like to rate-limit our services.

 First let’s get an access token to access the Order Processing microservice. We
expose the Order Processing microservice via the Zuul API gateway, and it enforces
OAuth 2.0-based security. So, we need a valid OAuth 2.0 access token to make requests
to the API gateway. You can get an access token from the authorization server (via the
gateway) by executing the following command from your command-line client:

\> curl -u application1:application1secret \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "grant_type=client_credentials" \
'http://localhost:9090/token/oauth/token'

If the request is successful, you should get a response similar to this:

{
 "access_token":"c0f9c2c1-7f81-43e1-acac-05af147662bb",
 "token_type":"bearer",
 "expires_in":3599,
 "scope":"read write"
}

Once you have the token, we can access the Order Processing microservice via the
Zuul API gateway. Let’s run the following curl command to do an HTTP POST to the
Order Processing microservice. Make sure to use the value of the same access token
you received from the previous request. If not, you will receive an authentication fail-
ure error:

\> curl -v http://localhost:9090/retail/orders \
-H "Authorization: Bearer c0f9c2c1-7f81-43e1-acac-05af147662bb" \
-H "Content-Type: application/json" \
--data-binary @- << EOF
{ "customer_id":"101021",

116 CHAPTER 5 Engaging throttling, monitoring, and access control
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[{
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

If the request is successful, you get a response as follows with the status code 200. This
indicates that the Order Processing microservice has successfully created the order.
The orderId in the response is the unique identifier of the newly created order.
Take note of the orderId since we need it in the next step:

{
 "orderId":"cabfd67f-ac1a-4182-bd7f-83c06bd4b7bf",
 "items":[
 {
 "itemCode":"IT0001",
 "quantity":3
 },
 {
 "itemCode":"IT0004",
 "quantity":1
 }
],
 "shippingAddress":"No 4, Main Street, Colombo 1, Sri Lanka"
}

Next let’s use the orderId to query our order information. Make sure to use the
same access token and the same orderId as before. In our request, the orderid is
cabfd67f-ac1a-4182-bd7f-83c06bd4b7bf:

\> curl -v \
-H "Authorization: Bearer c0f9c2c1-7f81-43e1-acac-05af147662bb" \
http://localhost:9090/retail/orders/cabfd67f-ac1a-4182-bd7f-83c06bd4b7bf

You should see a response with the status code 200 including the details of the order
we placed before. Execute the same request three more times. You should observe
the same response, with status code 200 being returned. If you execute the same
request for the fourth time within a minute, you should see a response with the status
code 429 saying the request is throttled out. The duration of the time window

117Throttling at the API gateway with Zuul
(1 minute) is configured in a Java class that we will take a look at shortly. The
response looks like this:

< HTTP/1.1 429
< X-Application-Context: application:9090
< Transfer-Encoding: chunked
< Date: Mon, 18 Mar 2019 13:28:36 GMT
<
{"error": true, "reason":"Request Throttled."}

In chapter 3, we used the API gateway to enforce security on our microservices. We
extend the same gateway here to enforce throttling limits as well. In chapter 3, we
used a Zuul filter on our gateway to enforce security. Here, we introduce another filter
that executes after the security filter to enforce throttling limits.

 Let’s take a look at the code. The Java class file that implements throttling is
ThrottlingFilter.java (listing 5.1), which you can find inside the gateway/src/main/
java/com/manning/mss/ch05/sample01/gateway/filters/ directory. If you open this
file in a text editor or in your IDE, you will see three methods on this class, named
filterType, filterOrder, and shouldFilter.

public String filterType() {
 return "pre";
}

public int filterOrder() {
 return 2;
}

public boolean shouldFilter() {
 return true;
}

At the top of the ThrottlingFilter.java class file, we initialize a counter of the Counter-
Cache type, which is an in-memory map. Each entry in this map holds a counter against
its key. And each entry in the map resides for approximately 60 seconds, after which it
is removed:

//Create a counter cache where each entry expires in 1 minute
//and the cache is cleared every 10 seconds.
//Maximum number of entries in the cache would be 10000.
private CounterCache counter = new CounterCache(60, 10, 10000);

The key in this map is quite important and is what we count our requests against. In
this particular example, we use the access token as the key to count against. Since the
access token itself is kind of a secret (or like a password), you might be able to use its

Listing 5.1 A code snippet extracted from ThrottlingFilter.java

The filter-type pre indicates that
this filter should execute before
the request being processed.

The filter-order 2 indicates that
this filter executes after the
OAuthFilter, whose filter-order is 1.

The should-filter true indicates
that this filter is active.

118 CHAPTER 5 Engaging throttling, monitoring, and access control
hashed value rather than using it as it is. If you make two requests using the same
access token within a 60-second time window, the counter of that token would be 2:

//Get the value of the token by splitting the Authorization header
String key = authHeader.split("Bearer ")[1];
Object count = counter.get(key);

We can similarly use any other key or even multiple keys to count against, depending
on our use cases. For example, if we want to count the number of requests of an appli-
cation, we would use the client_id as the key to count against. We can also use any
attribute such as the user’s username, IP address, OpenID Connect claims, and so on
as a key.

5.1.4 Maximum handling capacity of a microservice

The gradual increase in applications and users accessing a given microservice
demands to increase the capacity or the maximum number of requests that microser-
vice can handle. Although we can apply quotas for applications and quotas for each
individual user, a sudden increase in the number of applications or users might also
cause our target services to be loaded beyond their capacity.

 For example, assume that the maximum capacity tolerated by our target services is
1,500 transactions per second. If we allow each application to consume 100 transactions
per second, we can tolerate a maximum of 15 applications at full capacity. Now imagine
that more than 15 applications are each consuming at least 100 transactions per sec-
ond. In this situation, each application would be well within its quota, but we’d still go
beyond our maximum tolerance limit of 1,500. The same situation can occur when an
application experiences a spike in usage from its users. See figure 5.6 for an illustration.

Figure 5.6 When more than 15 client applications are operating within
their quota of 100 requests per second, the combined load causes the
maximum tolerable limit to exceed at the microservice.

Order
Processing

Service

A
P

I G
at

ew
ay

Maximum tolerance limit
of the microservice is
1,500 requests per second

More than 15 client applications,
each operating within its quota
of 100 requests per second

119Throttling at the API gateway with Zuul
These types of spikes can usually occur during special events. For example, if you run
an e-commerce application, you probably will experience similar occurrences on spe-
cial events such as Thanksgiving and the Super Bowl. In most cases when the spike is
predictable beforehand, you can scale up the target service layer for the relevant time
period only.

 We have worked with a customer running a ride-sharing business who rose in pop-
ularity and success in a very short time period, but unfortunately was unable to practi-
cally scale the target services layer because of design limitations. This unexpected
growth caused an unusually high amount of traffic on Friday evenings and Saturdays.
This caused the company’s target services layer to fail, resulting in a total loss of busi-
ness when the demand was at its most.

 To handle these types of unprecedented surges, we need to have a maximum
threshold limit for our target services. Having such a policy prevents potential crashes
from sudden surges, resulting in a total loss of availability. But it also results in some
users and applications being denied service even though they operate within the
allowed quota. The trade-off here is that we operate at maximum possible capacity,
servicing everyone possible instead of facing a total system failure, resulting in service
unavailability for everybody.

 The particular customer we mentioned previously who had a ride-sharing business
used this solution until they could rectify the design limitations that caused services to
be unscalable beyond a certain point. Figure 5.7 illustrates this scenario.

Figure 5.7 The gateway ensures that it does not allow more than the
maximum tolerable limit of the microservice to pass through.

Order
Processing

Service

A
P

I G
at

ew
ay

Requests within the limit of
1,500 per second are allowed.

More than 15 client applications,
each operating within its quota
of 100 requests per second

Requests exceeding the limit of 1,500
requests per second are blocked.

120 CHAPTER 5 Engaging throttling, monitoring, and access control
5.1.5 Operation-level throttling

An API hosted on the API gateway can provide a level of abstraction over one or more
microservices. In other words, an API could have a one-to-many relationship with
microservices. As we discussed in chapter 3, it sometimes makes sense to expose
microservices as operations of a single API. When we do this, we sometimes require
applying throttling per each operation of the API instead of applying for the entire
API as a whole.

 For example, in our Order Processing microservice, we may have one microservice
that performs read operations on our orders, and another microservice that performs
write operations. If these two microservices are exposed via the same API as two oper-
ations, one as a GET /orders and the other as a POST /orders operation, you would
most likely want to allow different quotas for each.

 We once worked with a customer in the ticketing industry. They had APIs with
operations that allowed consumers to search for as well as to purchase tickets. They
had an application that allowed users to perform these search and purchase opera-
tions. You had to be logged into the application (authenticated) in order to make a
purchase, but you could perform search operations without logging in (anony-
mously). This customer served many more search operations than purchase opera-
tions. They therefore limited their quotas based on the operations they served to
make sure that this usage pattern remained consistent with their observations and
expectations. Although having more purchases can be a good thing in terms of reve-
nue, they wanted to stay safe. Any abnormality had to be first prevented and then
allowed based on validation of legitimacy. Figure 5.8 illustrates this scenario.

Figure 5.8 The gateway applies different levels of throttling to different
operations of the same API.

POST Orders
Microservice

A
P

I G
at

ew
ay

Gateway applies
1,000 requests per min for the GET

operation, but only 100 requests
per min for the POST operation.

Client Application
POST/orders/

GET Orders
Microservice

GET/orders/

GET/retail/orders/
POST/retail/orders/

121Throttling at the API gateway with Zuul
5.1.6 Throttling the OAuth 2.0 token and authorize endpoints

We have so far been discussing throttling business operations of APIs. But how about
the login operation or the API (or the endpoint) that we use to authenticate users?
Throttling this endpoint is also very important because a DoS or a DDoS attack on the
authentication endpoint alone could make it impossible for a legitimate user to
obtain tokens to access APIs.

 However, throttling these APIs is tricky. Unlike other APIs, these APIs are invoked
at a preauthentication phase. Whoever is accessing these APIs is requesting to be
logged in and therefore is not yet authenticated. Whatever credentials the users pre-
sent at this point may or may not be valid. We can assess their legitimacy only after per-
forming the necessary validations. If this is an attacker, the validations are the exact
points the attacker wants to exhaust, resulting in a denial of service for all others.
Therefore, things like application-based quotas or fair-usage quotas for users cannot
be applied in practice for this use case. This is because any attempt to identify the
application or user at this point is in vain, since we have no clue as to their legitimacy.

 To uniquely identify the originator of these requests, we therefore need to drop
down to IP addresses. We need to identify the source IP address from which each
request is originating and apply quotas for the unique IP addresses. To identify these
source IP addresses, we can use the X-Forwarded-For header.1 Doing this at large
scale and for internet-facing applications goes beyond the scope of an API gateway. In
such cases, we use a web application firewall (WAF), which runs before the API gate-
way and intercepts all the requests. Imperva, Akamai Technologies, Cloudflare, and
AWS WAF are some popular WAF solution providers that also provide DoS and DDoS
prevention.

5.1.7 Privilege-based throttling

Enforcing throttling based on different user privilege levels is another common use
case we see in the industry. A user with a higher privilege may be allowed a larger
quota of requests compared to a user with lesser privileges. Most of us have come
across scenarios in which a free account provides a limited quota of a particular ser-
vice, whereas a paid account offers a larger quota of the service.

 As we discussed in chapter 4 in detail, we can use OpenID Connect claims to deter-
mine the privilege level of the corresponding user and apply the relevant throttling
limit to a client application. The API gateway intercepts the request originating from
the client application and determines the privilege level of the end user. It can then
enforce throttling limits on the client based on the end user’s privilege level. The
gateway would either receive the claims from the client application itself in the form
of a JWT (a self-contained access token) or by querying information regarding the

1 The X-Forwarded-For (XFF) HTTP header field is a common method for identifying the originating IP
address of a client connecting to a web server through an HTTP proxy or load balancer.

122 CHAPTER 5 Engaging throttling, monitoring, and access control
access token using the /userinfo endpoint of the authorization server. If you are
new to OpenID Connect, please check appendix A and chapter 4. Figure 5.9 illus-
trates this workflow.

Figure 5.9 The workflow for applying privilege-based throttling for requests. The gateway determines
the quota by inspecting the claims of the requester.

5.2 Monitoring and analytics with
Prometheus and Grafana
The modern term for monitoring and analytics is known as observability. In appendix D,
we discuss the importance of monitoring a microservices deployment and why it is
critical to do so compared to monolithic applications. In this section, we discuss a few
technologies for monitoring microservices, focusing on Prometheus and Grafana.

 Prometheus is a popular open source monitoring tool for microservices. It helps us
keep track of system metrics over a given time period and can be used to determine the
health of a software system. Metrics include memory usage and CPU consumption.

 Grafana is an open source data visualization tool. It can help you build dashboards
to visualize the metrics being provided by Prometheus or any other data source. At
this time of writing, Grafana is the most popular data-visualizing tool in the market.
Although Prometheus has its own visualization capabilities, the features supported by
Grafana are far superior. Its visualization effects are much more appealing than those
of Prometheus.

Order
Processing

Service

A
P

I G
at

ew
ay

Gateway checks the claims of the requester
and determines the quota to be allowed for
the Order Processing microservice.

If the request is made using
a regular access token, the
gateway will call the
/userinfo endpoint of the
STS to retrieve the claims
of the user.

Client makes API request. It
may send a JWT-formatted
self-contained access token
or a regular access token.

Client Application

Token generation
request

Authorization
Server1

2

3

4

123Monitoring and analytics with Prometheus and Grafana
5.2.1 Monitoring the Order Processing microservice

In this section, we discuss what it means to monitor the Order Processing microservice
using Prometheus and Grafana. To run this exercise, you need to have Docker (www
.docker.com) installed on your computer. We discuss Docker in detail in appendix E
and therefore don’t go through Docker’s basics in this section. Here we are going to
run the Order Processing microservice, which is developed with Spring Boot and
exposes some system metrics over an endpoint (URL). We will then set up Prometheus
to read these metrics from this endpoint. Once that is done, we will set up Grafana to
visualize these metrics by getting the relevant information from Prometheus.

 First check out the samples of this section from the chapter05/sample02 directory
of the https://github.com/microservices-security-in-action/samples GitHub reposi-
tory. Navigate to the chapter05/sample02 directory by using your command-line cli-
ent tool and execute the following command to build the source code of the Order
Processing microservice:

\> mvn clean install

Once the microservice is successfully built, you can start the service by executing this
command:

\> mvn spring-boot:run

If you see a message like the following, the Order Processing microservice is up and
running successfully:

Started OrderProcessingApp in 3.206 seconds

For Prometheus to be able to monitor the Order Processing microservice, the
microservice needs to expose its metrics via a publicly accessible endpoint. Pro-
metheus reads various metrics from the Order Processing microservice through this
endpoint. This process is called scraping, and we will discuss it in detail later. To take a
look at how these metrics are exposed, you can open your web browser and access
http://localhost:8080/actuator/prometheus. You should see output that looks similar
to the following listing.

TYPE system_load_average_1m gauge
system_load_average_1m 2.654296875
HELP jvm_memory_max_bytes The maximum amount of memory in bytes that can be
used for memory management
TYPE jvm_memory_max_bytes gauge
jvm_memory_max_bytes{area="nonheap",id="Code Cache",} 2.5165824E8
jvm_memory_max_bytes{area="nonheap",id="Metaspace",} -1.0
jvm_memory_max_bytes{area="nonheap",id="Compressed Class Space",}
1.073741824E9
jvm_memory_max_bytes{area="heap",id="PS Eden Space",} 6.2652416E8
jvm_memory_max_bytes{area="heap",id="PS Survivor Space",} 4.456448E7

Listing 5.2 The output from the actuator/Prometheus endpoint

www.docker.com
www.docker.com
https://github.com/microservices-security-in-action/samples

124 CHAPTER 5 Engaging throttling, monitoring, and access control
jvm_memory_max_bytes{area="heap",id="PS Old Gen",} 1.431830528E9
HELP process_files_max_files The maximum file descriptor count
TYPE process_files_max_files gauge
process_files_max_files 10240.0
HELP process_start_time_seconds Start time of the process since unix epoch.
TYPE process_start_time_seconds gauge
process_start_time_seconds 1.552603801488E9
HELP system_cpu_usage The "recent cpu usage" for the whole system
TYPE system_cpu_usage gauge
system_cpu_usage 0.0

You can observe and figure out the type of metrics being exposed in listing 5.2. For
example, the metric jvm_memory_max_bytes indicates the amount of memory
being consumed by the JVM. The metric process_start_time_seconds provides
the time at which the process started, likewise. The following dependencies need to
be added to the Spring Boot project of the Order Processing microservice for it to be
able to expose this information. The dependencies are defined in the sample02/
pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
 <groupId>io.micrometer</groupId>
 <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

To enable exposure of the metrics at runtime, the following properties need to be
enabled in the sample02/src/resources/application.properties file:

management.endpoints.web.exposure.include=prometheus,info,health
management.endpoint.prometheus.enabled=true

Now that we have our Order Processing microservice exposing the required metrics,
the next step is to configure and start Prometheus so that it can read the exposed
metrics. In this particular example, we have created a docker-compose script that first
starts the Prometheus container and then the Grafana container. To run these con-
tainers, navigate to the sample02/monitoring directory by using your command-line
client and execute the following command:

\> docker-compose -f docker-compose.yml up

If this is the first time you are starting these containers, it might take a few minutes for
startup because it downloads the container images from Docker Hub (https://
hub.docker.com/) and copies to your local Docker registry. These containers would
start up in a matter of seconds in subsequent attempts. Once the containers have
started successfully, you should see two messages as follows:

Starting prometheus ... done
Starting grafana ... done

https://hub.docker.com/
https://hub.docker.com/

125Monitoring and analytics with Prometheus and Grafana
To see Prometheus in action, open a new tab in your web browser and navigate to
http://localhost:9090. From the top menu, click the Status drop-down list and choose
Targets. You should be able to see a target named order-processing with its state as UP.
You should see the last scrape timestamp information as well. This means that Pro-
metheus is able to read the metrics exposed by our Spring Boot service.

 Next, click the Graph link from the top menu. This UI in Prometheus allows you
to query various metrics if you know their names. To check how much memory the
JVM consumes, enter the string jvm_memory_used_bytes in the provided text box
and click the Execute button. The Graph tab gives you a view of the memory con-
sumed over a period of time, and the Console tab shows you the exact values at that
particular moment. The Graph view looks similar to figure 5.10.

Figure 5.10 Graph view of the jvm_memory_used_bytes metric as displayed in the Prometheus UI.

To understand how Prometheus scrapes the Order Processing microservice for infor-
mation, you can open the monitoring/prometheus/prometheus.yml file. This is the
Prometheus configuration file. The scrape configurations shown in the following list-
ing help Prometheus find the Order Processing microservice and its metrics.

scrape_configs:
- job_name: 'order-processing'
 scrape_interval: 10s
 metrics_path: '/actuator/prometheus'
static_configs:
 - targets: ['host.docker.internal:8080']
 labels:
 application: 'order-processing-app'

Listing 5.3 The Prometheus scrape configuration

Defines the frequency at which metrics
should be collected from each target
under the order-processing job

Defines the path under which the
metrics of the Order Processing
microservice are hosted

Specifies the hosts that require
monitoring under this job

126 CHAPTER 5 Engaging throttling, monitoring, and access control
As you have noticed from using the Prometheus UI, we need to know the parameters
to watch out for in order to use the default Prometheus UI for monitoring our
microservices. In terms of having an overall view of the state of a microservices deploy-
ment, this experience/process does not help us a lot. This is where Grafana comes
into the picture and helps us build dashboards for an overall view. Let’s take a look at
creating a dashboard in Grafana for a better view.

 By now, our Grafana container is up and running. We can therefore use it directly.
To do that, open a new tab in your browser console and navigate to http://local-
host:3000. Enter admin as the username, and password as the password to log in to
Grafana.

 Next, we need to install a dashboard on Grafana. To do that, hover over the Create
menu item on the left menu panel (it should be the first item in the menu) and click
the Import link. In the page that appears, click the Upload .JSON File button and
choose to upload the sample02/monitoring/grafana/dashboard.json file.

 In the form that appears next, go with the defaults for all the fields except the Pro-
metheus field, where you are expected to select a data source for this dashboard. Select
Prometheus as the data source for its value and proceed to import this dashboard.

 Next, under Dashboards in the left menu pane, click the Manage link. You should
see a dashboard named JVM (Micrometer). Once you click this dashboard, you should
see widgets being loaded onto the UI. They are categorized into sections such as Quick
Facts, I/O Overview, and JVM Memory. At first, it might take a short while for the wid-
gets to load. After they are loaded, you should see something similar to figure 5.11.

Figure 5.11 The Grafana dashboard for our microservice. The metrics exposed by our microservice are scraped by
Prometheus periodically. Grafana queries Prometheus by using PromQL and visualizes the metrics.

127Monitoring and analytics with Prometheus and Grafana
As you can see, Grafana gives you a much more user-friendly view of the metrics
exposed by the Order Processing microservice. To understand how Grafana queries
data from Prometheus, you need to take a look at the sample02/monitoring/grafana/
provisioning/datasources/datasource.yml file. This file contains the Prometheus URL
so that Grafana can connect to it and query its data. The dashboard.json file located in
the sample02/monitoring/grafana directory defines, in JSON format, the type of met-
rics to be visualized under each widget. For example, take a look at the following JSON,
which visualizes the Uptime panel on this dashboard:

"targets": [
{
"expr": "process_uptime_seconds{application=\"$application\",
instance=\"$instance\"}",
 "format": "time_series",
 "intervalFactor": 2,
 "legendFormat": "",
 "metric": "",
 "refId": "A",
 "step": 14400
}
],
"thresholds": "",
"title": "Uptime",

We now have a bit of experience in using Prometheus to scrape metrics from our
exposed microservice and in using Grafana to visualize these metrics.

5.2.2 Behind the scenes of using Prometheus for monitoring

Prometheus, an open source tool for system monitoring and alerting, is a standalone
project maintained by the community itself. It is part of the Cloud Native Computing
Foundation (CNCF) and the second hosted project in CNCF. As of this writing, only
ten projects have graduated in CNCF, and Prometheus is one of them.

 Prometheus is also the most popular open source monitoring tool available. When
using Prometheus to monitor a microservices deployment, it’s important to under-
stand a few things regarding how Prometheus works.

SCRAPING DATA FROM MICROSERVICES TO MONITOR

Prometheus pulls metrics data from microservices on a periodic time interval. As
you’ve learned, this is known as scraping. Each microservice needs to have an exposed
endpoint, which contains details about the various metrics we need to monitor. The
Prometheus server connects to these endpoints periodically and pulls down the infor-
mation it needs for its monitoring purposes.

 Prometheus also has a push-gateway for supporting short-lived processes. Processes
that may not live long enough for Prometheus to scrape can push their metrics to a
push gateway before dying off. The push gateway acts as a metrics cache for the pro-
cesses that no longer exist.

128 CHAPTER 5 Engaging throttling, monitoring, and access control
WHAT IS TIME-SERIES DATA?
Prometheus stores metrics in a time-series database at millisecond precision. A time-
series database contains a recording of various metrics against the time at which it was
recorded. This data is stored for a period of time and is usually presented in line
graphs against time.

DEFINING A METRIC IN PROMETHEUS

A metric in Prometheus is an immutable block of data identified using both the metric
name and labels. A metric is stored against its timestamp. Given a metric name and
labels, time series are identified using the following notion:

<metric_name>={<label_name>=<label_value>,}

For example, a metric used for getting the total number of HTTP requests would look
like the following:

http_requests_total={method="POST", path="/menu", type="JSON"}

Figure 5.12 illustrates the architecture of Prometheus.
 As you can see, each microservice needs to expose an endpoint from which Pro-

metheus scrapes metrics information. When exposing this endpoint, we need to
ensure that this endpoint is secured, using TLS so that the information passed on the

Short-Lived
Processes

Push Gateway
Alert Manager

Products
Microservice

Inventory
Microservice

Prometheus
Storage

Grafana

Prometheus
Server Prometheus

Web UI

Push metrics

Scraping metrics from
the microservices

Executes PromQL
to retrieve data

Executes PromQL
to retrieve data

Push alerts

Figure 5.12 A Prometheus server scrapes the microservices and push gateway for metrics. It then uses these
metrics to trigger alerts. The Prometheus web UI and Grafana use PromQL to retrieve data from Prometheus for
visualization.

129Enforcing access-control policies at the API gateway with Open Policy Agent
wire is kept safe from intruders, and using an authentication mechanism such as
OAuth 2.0 or basic authentication.

5.3 Enforcing access-control policies at the API
gateway with Open Policy Agent
In this section, we look at controlling access to the Order Processing microservice by
using Open Policy Agent (OPA) at the API gateway. The API gateway here is acting as a pol-
icy enforcement point. OPA is a lightweight general-purpose policy engine that has no
dependency on microservices. You can use OPA to define fine-grained access-control
policies and enforce those policies at different places in a microservices deployment.

 In chapter 2, we looked at using OAuth 2.0 scopes to control access to microser-
vices. There we enforced OAuth 2.0 scope-based access control at the service level by
modifying the service code, which is not a good practice. Access-control policies
evolve as business requirements change—so every time we have to change our access-
control policies, changing the microservice code is not a good practice.

 OPA helps you externalize access-control policies and enforce them at any point in
the request or response path. Figure 5.13 illustrates the sequence of events that hap-
pens when an API gateway intercepts client requests to apply authorization policies
using OPA. The OPA engine runs as a different process, outside the API gateway, and
the API gateway connects to the OPA engine over HTTP. Please check appendix F for
more details on OPA.

Figure 5.13 Sequence of events that happens when an API gateway intercepts client requests to apply
authorization policies using OPA

CLIENT
APPLICATION

API
GATEWAY

OPA
ENGINE MICROSERVICE

Response from microservice

Accesses microservice if allowed

Response from microservice

Makes a request
to the gateway

Terminates request and
sends error if denied

Sends an authorization
to OPA over HTTP

Allowed/denied response

0..*

0..*

Evaluates policies
using data from the
authorization request
and data registered
statically

130 CHAPTER 5 Engaging throttling, monitoring, and access control
5.3.1 Running OPA as a Docker container

Starting OPA as a Docker container is the most straightforward and easiest way to get
started. As in the Prometheus example, you need Docker installed and running on
your machine to try this out, along with the other prerequisites mentioned in chapter
2 for running samples in this book in general.

 First check out the samples for this section from chapter05/sample03 at https://
github.com/microservices-security-in-action/samples. As the first step of executing
this sample, we need to start the OPA Docker container (if you are new to Docker,
refer to appendix E). You can do this by using your command-line client to execute
the following command from within the chapter05/sample03 directory. This script
starts the OPA server on port 8181 and binds it to port 8181 of your local machine. So,
make sure that no other process is running on port 8181. If you want to change the
port, you can do so by editing the run_opa.sh file:

\> sh run_opa.sh

If your OPA container starts successfully, you should see a message in your terminal
window as follows. Note that if this is the first time you are running this command, it
might take a few minutes for the OPA Docker image to be downloaded from the
Docker registry. Subsequent attempts will be much faster than the initial attempt:

{
 "addrs":[
 ":8181"
],
 "insecure_addr":"",
 "level":"info",
 "msg":"Initializing server.",
 "time":"2019-11-04T01:03:09Z"
}

5.3.2 Feeding the OPA engine with data

Now that our OPA engine is up and running and can be accessed on port 8181, it is
time to register the data required for executing policies. As you can see, listing 5.4 is a
declaration of a collection of resource paths. These resources represent one or more
resources corresponding to the Order Processing microservice. Each resource has an
id, path, method, and a collection of scopes that are associated with the resource.
The OPA’s REST APIs allow registering these types of data sets on it. You can find the
content of listing 5.4 in the file chapter05/sample03/order_policy.json. This data set
is a collection of service paths (resources), where each resource declares the scope
required for accessing it.

[
{
 "id": "r1",
 "path": "orders",

Listing 5.4 A set of resources in Order Processing microservice, defined as OPA data

An identifier for
the resource path

The resource path

https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

131Enforcing access-control policies at the API gateway with Open Policy Agent
 "method": "POST",
 "scopes": ["create_order"]
},
{
 "id": "r2",
 "path": "orders",
 "method": "GET",
 "scopes": ["retrieve_orders"]
},
{
 "id": "r3",
 "path": "orders/{order_id}",
 "method": "PUT",
 "scopes": ["update_order"]
}
]

You can register this data on the OPA server by running the following curl command
from the chapter05/sample03 directory:

\> curl -v -H "Content-Type: application/json" \
-X PUT --data-binary @order_policy.json \
http://localhost:8181/v1/data/order_policy

You should see a response with status code 204 if the request was successful. Note that
the order_policy element in the OPA endpoint, after the data element, is impor-
tant. OPA uses order_policy to derive the package name for the data you pushed.
In this case, the data you pushed to the OPA server is registered under the
data.order_policy package name. You can find more details on this in appendix F.

 To verify that your data has been successfully registered on the OPA engine, you
can execute the following curl command. You should see the content of your resource
definitions if the request is successful:

\> curl http://localhost:8181/v1/data/order_policy

Once the OPA engine has been initialized with the dataset required for our policies,
the next step is to implement and deploy access-control policies on OPA.

5.3.3 Feeding the OPA engine with access-control policies

Let’s see how to deploy authorization policies into the OPA server; these policies
check whether a user/system that’s accessing a resource with an access token bears
the scopes required for accessing that resource. We’ll use OPA policies to make autho-
rization checks on the Order Processing microservice.

 OPA policies are written using a declarative language called Rego. It has rich sup-
port for traversing nested documents and transforming data using syntax similar to
Python and JSONPath. Each policy written in Rego is a collection of rules that need to
be applied on your microservice.

 Let’s take a look at the policy defined in the following listing, which checks
whether a token being used to access the Order Processing microservice bears the
scopes required by the microservice.

The HTTP method
To do an HTTP POST
to the orders resource,
you must have this scope.

Iter
val

poli
132 CHAPTER 5 Engaging throttling, monitoring, and access control

package authz.orders

import data.order_policy as policies

default allow = false

allow {
 policy = policies[_]
 policy.method = input.method
 policy.path = input.path
 policy.scopes[_] = input.scopes[_]
}

Here, the package declaration is an identifier for the policy. If you want to evaluate
this policy against certain input data, you need to make an HTTP POST request to the
http://localhost:8181/v1/data/authz/orders endpoint, having the input
data as a JSON payload. Here we refer to the policy in the URL by /authz/orders.
This is exactly the same as the package declaration of the policy, with the period char-
acter (.) being replaced by forward slash (/).

 You can find the policy we define in listing 5.5 in the sample03/orders.rego file.
We can register this policy in OPA by executing the following command from within
the chapter05/sample03 directory:

\> curl -v -X PUT --data-binary @orders.rego \
http://localhost:8181/v1/policies/orders

We can execute the following command to verify that our policy has been registered
successfully. If it’s successful, you should get the response with the content of your
policy:

\> curl http://localhost:8181/v1/policies/orders

5.3.4 Evaluating OPA policies

Once we have the OPA policy engine running with data and policies, we can use its
REST API to check whether a given entity is authorized to perform a certain action.
To send a request to the OPA policy engine, first we need to create an OPA input doc-
ument. An input document will let OPA know details of the resource being accessed
and details of the user who is accessing it.

 Such inputs are provided to the policy so that the policy can compare that with the
set of statically defined data to make its decision. These inputs are provided in JSON
format from the microservice (or the API gateway) to the OPA engine at the time of
serving a business API request. The following listing shows an example of an input
document that contains information of a particular request that is being served by the
Order Processing microservice.

Listing 5.5 OPA policy written in Rego

The package name
of the policy Declares the set of statically

registered data identified by
order_policy, as in listing 5.4

All the requests by default are
disallowed. If this is not set and no
allowed rules are matched, OPA
will return an undefined decision.

Declares the conditions to
allow access to the resource

ates over
ues in the
cies array

For an element in the policies array, checks whether
the value of the method parameter in the input
matches with the method element of the policy

133Enforcing access-control policies at the API gateway with Open Policy Agent

{
 "input":{
 "path":"orders",
 "method":"GET",
 "scopes":["retrieve_orders"]
 }
}

This input document tells OPA that the microservice is serving a request on the path
orders for an HTTP GET method. And there’s a scope named retrieve_orders
that’s associated with the user (or the token) accessing the Order Processing microser-
vice. OPA will use this input data and the statically declared data to evaluate the rules
declared in its policies.

 Let’s query the OPA engine by using its REST API to check whether a particular
input results in a true or false evaluation. We first evaluate a true case by using the
input defined in sample03/input_true.json. You can evaluate this by executing the fol-
lowing command from the chapter05/sample03 directory:

\> curl -X POST --data-binary @input_true.json \
http://localhost:8181/v1/data/authz/orders -v

This should give you an HTTP 200 OK response with the following response body.
This means that the details we used in the input_true.json file match one of the rules
in the policy registered on OPA. Note that, as we discussed before, the OPA endpoint
is derived from the package name of the policy we want to evaluate, which is
authz.orders (see listing 5.5):

{"result":{"allow":true}}

If you execute the same command using the input_false.json file, you would see a 200
OK response with the following content. This means that you do not have rights to
access the given resource with the given scope:

{"result":{"allow":false}}

5.3.5 Next steps in using OPA

Let’s discuss some of the limitations and next steps with respect to the OPA use case
we’ve discussed. You can learn how to address these limitations in appendix F:

 The connection to the OPA server for evaluating policies is not properly
secured. There are multiple options to secure OPA endpoints, which we discuss
in appendix F.

 The OPA server runs as a Docker container, and all the policies and data
pushed to the OPA server using APIs will be gone when you restart the server.
Once again, in appendix F we discuss how to overcome that.

 In our example, we use only the curl client to evaluate OPA policies against a
given request (or an input document). If you would like to engage OPA with

Listing 5.6 OPA input document

134 CHAPTER 5 Engaging throttling, monitoring, and access control
the Zuul API gateway, you need to write a Zuul filter, which is similar to the
ThrottlingFilter we used in listing 5.1. This filter has to intercept the requests,
create an input document, and then talk to the OPA endpoint to see whether
the request is authorized.

Summary
 Quota-based throttling policies for applications help to monetize APIs/microser-

vices and to limit a given application from overconsuming APIs/microservices.
 Fair-usage policies need to be enforced on applications to ensure that all users

get a fair quota of requests.
 User privilege-based throttling is useful for allowing different quotas for users

with different privilege levels.
 An API gateway can be used to apply throttling rules in a microservices

deployment.
 Prometheus is the most popular open source monitoring tool available as of

this writing.
 Grafana helps to visualize the data being recorded by Prometheus.
 Open Policy Agent (OPA) helps control access to a microservices deployment.
 OPA data, OPA input data, and OPA policies are used together to apply various

access-control rules.
 All samples in this chapter used HTTP (not HTTPS) endpoints to spare you

from having to set up proper certificates and to make it possible for you to
inspect messages being passed on the wire (network), if required. In produc-
tion systems, we do not recommend using HTTP for any endpoint.

Part 3

Service-to-service
communications

In part 2, you learned how to protect your microservices at the edge. After a
request from a client application passes through the security at the edge and
enters into your microservices deployment, you’ll need to secure the interac-
tions among microservices. The chapters in this part of the book teach you those
skills.

 Chapter 6 teaches you how to secure communications among microservices
that take place over HTTP, with mutual Transport Layer Security (mTLS).

 In chapter 7, you’ll learn how to share contextual data (for example, the end-
user context) among microservices by using JSON Web Token (JWT).

 Not all microservices use JSON over HTTP for service-to-service interactions,
and gRPC is already a popular pick as an alternative. Chapter 8 teaches you how
to secure communications among microservices that take place over gRPC, with
mTLS and JWT.

 Chapter 9 teaches you how to secure reactive microservices. It also teaches
you how to set up Kafka as a message broker, and how to enforce access-control
policies for Kafka topics.

 When you’re finished with this part of the book, you’ll know how to protect
service-to-service communications in your microservices deployment that take
place over HTTP or gRPC, as well as how to protect reactive microservices.

136 CHAPTER

Securing east/west
traffic with certificates
In chapters 3, 4, and 5, we discussed how to expose and secure a microservice as an
API via an API gateway and to apply other quality-of-service features such as throt-
tling and monitoring. That’s all part of the edge security in a typical microservices
deployment. Edge security deals with authenticating and authorizing the end user,
which is a system accessing a microservice on behalf of a human user or another
system. When the security screening at the edge is completed, the end-user context
is passed to the upstream microservices.

 In this chapter, we discuss securing communications among microservices with
mutual Transport Layer Security (mTLS). mTLS is the most popular option for
securing communications among microservices.

This chapter covers
 Generating keys/certificates and securing

microservices with mTLS

 Challenges in provisioning certificates,
bootstrapping trust, and revoking certificates
137

138 CHAPTER 6 Securing east/west traffic with certificates
6.1 Why use mTLS?
When you buy something from Amazon, for example, all your credit card information
flows from your browser to Amazon’s servers over TLS, and no one in the middle can
see what it is. When you log in to Facebook, your credentials flow from your browser
to Facebook’s servers over TLS, and no one in the middle can intercept the communi-
cations and find out what those are.

 TLS protects communications between two parties for confidentiality and integrity.
Using TLS to secure data in transit has been a practice for several years. Recently,
because of increased cybersecurity threats, it has become a mandatory practice in any
business that has serious concerns about data security. From July 2018 onward, the
Google Chrome browser (version 68.0.0+) has indicated that any website that doesn’t
support TLS is insecure (http://mng.bz/GVNR).

 Apart from protecting data in transit for confidentiality and integrity, TLS helps a
client application identify the server that it communicates with. In the Amazon exam-
ple, the browser is the client application, and when it talks to Amazon over TLS, it
knows what it talks to as a result of the security model and the infrastructure built
around TLS. If Amazon wants to expose its services over TLS, it must have a valid cer-
tificate that’s trusted by all the client applications that want to communicate with it.

 A certificate represents the corresponding server’s public key and binds it to a com-
mon name. Amazon’s public certificate (see figure 6.1 in the next section), for exam-
ple, binds its public key to the www.amazon.com common name. The most important
and challenging part of TLS is how we build trust between a client and a server.

6.1.1 Building trust between a client and a server with a certificate authority

How do you build trust between Amazon and all the browsers (client applications)
that want to access it? A third party that’s known to (and trusted by) all the client
applications signs the certificates given to services such as Amazon. This third party is
known as a certificate authority (CA). Anyone who wants to expose services that are pro-
tected with TLS over the web must get their certificates signed by a trusted CA.

 Few trusted CAs are available globally, and their public keys are embedded in all
browsers. When a browser talks to Amazon over TLS, it can verify that Amazon’s certif-
icate is valid (not forged) by verifying its signature against the corresponding CA’s
public key that’s embedded in the browser. The certificate also includes the hostname
of Amazon (which is the common name) so that the browser knows it’s communicat-
ing with the right server. Figure 6.1 shows the certificate issued to www.amazon.com by
the DigiCert Global CA.

6.1.2 Mutual TLS helps the client and the server to identify each other

TLS itself is also known as one-way TLS, mostly because it helps the client identify the
server it’s talking to, but not the other way around. Two-way TLS, or mutual TLS
(mTLS), fills this gap by helping the client and the server identify themselves to each
other. Just as the client knows which server it’s talking to in one-way TLS, with mTLS,
the server knows the client it’s talking to as well (figure 6.2).

http://mng.bz/GVNR
www.amazon.com
www.amazon.com

139Why use mTLS?

Figure 6.2 mTLS among microservices lets those services identify themselves. All the
microservices in the deployment trust one CA.

Figure 6.1 The certificate of
www.amazon.com, issued by the
DigiCert Global CA. This
certificate helps clients talking
to www.amazon.com properly
identify the server.

With mTLS, the Inventory
service can authenticate the
Order Processing service,
and vice versa. Has its own public/private key

pair signed by the trusted CA

All the certificates issued
to each microservice are
signed by this trusted CA.

Has its own public/private
key pair signed by the
trusted CA

Inventory
Service

<TRUST> <TRUST>

Order
Processing

Service

Certificate
Authority (CA)

mTLS

www.amazon.com
www.amazon.com

140 CHAPTER 6 Securing east/west traffic with certificates
To take part in a communication channel secured with mTLS, both the server and the
client must have valid certificates, and each party must trust the issuer of the corre-
sponding certificates. When mTLS is used to secure communications between two
microservices, each microservice can legitimately identify who it talks to, in addition
to achieving confidentiality and integrity of the data in transit between the two
microservices.

6.1.3 HTTPS is HTTP over TLS

When you communicate with Amazon over TLS, the browser’s address bar shows
HTTPS instead of HTTP. HTTPS runs on TLS; HTTPS relies on TLS to provide secu-
rity in the communication channel.

 TLS can be used by any application-layer protocol to make communications
secure, not just HTTPS. A Java program can talk to a database by using Java Database
Connectivity (JDBC), for example. To secure the JDBC connection between the Java
program and the database, you can use TLS. Also, when an email client wants to talk
to a server over a secured communication channel, it can use Simple Mail Transfer
Protocol (SMTP) over TLS. There are many such examples, and these are but a few.

6.2 Creating certificates to secure access to
microservices
In this section, we explain how to create a public/private key pair for your microser-
vice and how to get a trusted CA to sign it. In a typical microservices deployment,
microservices aren’t directly exposed to the public; the external clients interact mostly
with microservices via APIs. If your microservice endpoints aren’t public, you don’t
need to have a public CA sign the corresponding certificates. You can use your own
CA, trusted by all the microservices in your deployment.

6.2.1 Creating a certificate authority

In a typical microservices deployment, you have your own CA, trusted by all your
microservices. In appendix G, we show you how to create a CA by using OpenSSL
(www.openssl.org). OpenSSL is a commercial-grade toolkit and cryptographic library for
TLS, available for multiple platforms. Before we create the CA by using OpenSSL, let’s
prepare a working environment. You need a key pair for your CA, the Order Processing
microservice, and the Inventory microservice. Create a directory structure as follows:

\> mkdir –p keys/ca
\> mkdir –p keys/orderprocessing
\> mkdir –p keys/inventory

To create a CA’s public and private key pair, follow the steps in appendix G (section
G.1) and copy those keys (ca_key.pem and ca_cert.pem) to the keys/ca directory you
just created. In the next section, we discuss how to generate a public/private key pair
for the Order Processing and Inventory microservices and get the keys signed by the
CA you created in this section.

www.openssl.org

141Creating certificates to secure access to microservices
NOTE If you want to skip the detailed instructions in appendix G and gener-
ate all the keys for the CA, Order Processing, and Inventory microservices in
one go, see section 6.2.4.

6.2.2 Generating keys for the Order Processing microservice

To generate a public and private key pair for the Order Processing microservice, you
can follow the steps in appendix G (section G.2), and at the end of the process, copy
the generated keystore file (app.jks) to the keys/orderprocessing directory. Then
rename the file to orderprocessing.jks. This keystore file has the private and public
key pair of the Order Processing microservice; the public key is signed by the CA cre-
ated in section 6.2.1.

6.2.3 Generating keys for the Inventory microservice

You repeat the same process (described in section 6.2.2) for the Inventory microservice.
You can follow the steps in appendix G (section G.2), and at the end of the process,
copy the generated keystore file (app.jks) to the keys/inventory directory. Then
rename the file to inventory.jks. This keystore file has the private and public key pair of
the Inventory microservice; the public key is signed by the CA created in section 6.2.1.

 Figure 6.3 shows the setup of keystores for both the Order Processing and Inven-
tory microservices. Each keystore has its own private key, the public key signed by the
CA, and the CA’s public certificate. In section 6.3, we discuss how to use these two key-
stores to secure the communication between the two microservices over TLS.

Figure 6.3 Keystore setup: each microservice has its own public/private key
pair stored in a Java keystore file (.jks), along with the CA’s public key.

6.2.4 Using a single script to generate all the keys

In this section, we introduce a single script to perform all the actions to create keys for
the CA and the Order Processing and Inventory microservices. If you’ve already fol-
lowed the instructions in sections 6.2.1, 6.2.2, and 6.2.3, you can safely skip this section.

Inventory
Service

Order
Processing

Service

Certificate
Authority

inventory.jks
Own key pair + ca_cert.pem

Public key: ca_cert.pem
Private key: ca_key.pem

Keystore

orderprocessing.jks
Own key pair + ca_cert

Keystore

142 CHAPTER 6 Securing east/west traffic with certificates
NOTE The source code related to all the samples used in this chapter is
available at the https://github.com/microservices-security-in-action/samples
GitHub repository, under the chapter06 directory.

First, copy the gen-key.sh script from the chapter06 directory to the keys directory
that you created in section 6.2.1. Here we run OpenSSL in a Docker container. If
you’re new to Docker, see appendix E, but you don’t need to be thoroughly familiar
with Docker to follow the rest of this section. To spin up the OpenSSL Docker con-
tainer, run the following docker run command from the keys directory.

\> docker run -it -v $(pwd):/export prabath/openssl

The docker run command starts OpenSSL in a Docker container with a bind mount,
which maps the keys directory (or the current directory, which is indicated by
${pwd}) from the host filesystem to the /export directory of the container filesystem.
This bind mount lets you share part of the host filesystem with the container file-
system. When the OpenSSL container generates certificates, those are written to the
/export directory of the container filesystem. Because we have a bind mount, every-
thing inside the /export directory of the container filesystem is also accessible from
the keys directory of the host filesystem.

 When you run the command in listing 6.1 for the first time, it may take a couple
of minutes to execute. It ends with a command prompt, where you can execute our
script as in the following command to create all the keys. Once the command com-
pletes successfully, you can type exit at the command prompt to exit from the
Docker container:

sh /export/gen-key.sh
exit

Now, if you look at the keys directory in the host filesystem, you’ll find the following
set of files:

 ca_key.pem and ca_cert.pem files in the keys/ca directory
 orderprocessing.jks file in the keys/orderprocessing directory
 inventory.jks file in the keys/inventory directory

If you want to understand what happens underneath the gen-key.sh script, check
appendix G.

6.3 Securing microservices with TLS
In this section, you’ll develop two microservices, Order Processing and Inventory, with
Java, using Spring Boot.1 Then you’ll enable TLS to secure communication between
those two microservices.

Listing 6.1 Spinning up OpenSSL in a Docker container

1 Spring Boot (https://spring.io/projects/spring-boot) is one of the most popular frameworks for developing
microservices.

https://spring.io/projects/spring-boot
https://github.com/microservices-security-in-action/samples

143Securing microservices with TLS
6.3.1 Running the Order Processing microservice over TLS

The Spring Boot sample of the Order Processing microservice is available in the
chapter06/sample01 directory in the Git repository. Before you delve deep into the
code, let’s try to build, deploy, and run the Order Processing microservice.

 To build the sample, run the following Maven command from the chapter06/
sample01 directory. When you run this command for the first time, its completion can
take a considerable amount of time. During the build process, Maven fetches all the
binary dependencies that the Order Processing microservice needs. If those depen-
dencies aren’t available in the local Maven repo, it talks to remote Maven repositories
and downloads them. That’s how Maven works. If everything goes well, a BUILD SUC-
CESS message is printed at the end:

\> mvn clean install

[INFO] BUILD SUCCESS

To run the microservice, use the following Maven command. Here you use the Spring
Boot Maven plugin (https://docs.spring.io/spring-boot/docs/current/maven-plugin/
reference/html/). If the service starts successfully, you’ll find these two logs toward the
end, saying that the Order Processing microservice is available on HTTP port 6443:

\> mvn spring-boot:run

INFO 21811 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 6443 (http)
INFO 21811 --- [main] c.m.m.ch06.sample01.OrderProcessingApp :
Started OrderProcessingApp in 2.738 seconds (JVM running for 5.552)

Use the following curl command to test the Order Processing microservice. If every-
thing goes well, the command returns a JSON response, which represents an order:

\> curl -v http://localhost:6443/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",

 "qty":5
 }
],
 "shipping_address":"201,1st Street, San Jose, CA"
}

https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/html/
https://docs.spring.io/spring-boot/docs/current/maven-plugin/reference/html/

144 CHAPTER 6 Securing east/west traffic with certificates
Now we’ll show you how to enable TLS. First, press Ctrl-C to shut down the service.
Then copy the orderprocessing.jks file that you created earlier from the keys/order-
processing directory to the chapter06/sample01 directory, where we have the source
code of the Order Processing microservice. This keystore file contains the public/
private key pair of the Order Processing microservice. Next, you’ll need to edit the
application.properties file in the chapter06/sample01/src/main/resources/ direc-
tory and uncomment the following properties. If you used different values for those
parameters while generating the keystore, replace them appropriately:

server.ssl.key-store: orderprocessing.jks
server.ssl.key-store-password: manning123
server.ssl.keyAlias: orderprocessing

In addition to these properties, you’ll find a server.port property in the same file.
By default, this property is set to 6443. If you want to start the service on a different
port, feel free to change the value. Then you’ll be all set. Rebuild the service and start
it with the following commands:

\> mvn clean install
\> mvn spring-boot:run

INFO 21811 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 6443 (https)
INFO 21811 --- [main] c.m.m.ch06.sample01.OrderProcessingApp :
Started OrderProcessingApp in 2.738 seconds (JVM running for 5.624)

If the service starts successfully, you’ll find a log that says that the Order Processing
microservice is available on HTTPS port 6443 (if you used that port). Use the follow-
ing curl command to test it over TLS:

\> curl -v -k https://localhost:6443/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}

145Securing microservices with TLS
Now you have your Order Processing microservice running on TLS (or over HTTPS).

6.3.2 Running the Inventory microservice over TLS

To enable TLS for the Inventory microservice, follow the same process you did before
in section 6.3.1. The Spring Boot sample of the Inventory microservice is available in
the chapter06/sample02 directory. Before you build and run the service, copy the
inventory.jks file that you created before from the keys/inventory directory to the
samples/chapter06/sample02 directory. This keystore file contains the public/private
key pair of the Inventory microservice. Then, to enable TLS, uncomment the follow-
ing properties in the chapter06/sample02/src/main/resources/application.properties
file. If you used different values for those parameters while generating the keystore,
replace them appropriately:

server.ssl.key-store: inventory.jks
server.ssl.key-store-password: manning123
server.ssl.keyAlias: inventory

In addition to these properties, you’ll find the server.port property in the same
file. By default, it’s set to 8443. If you want to start the service on a different port, feel
free to change the value. Now you’re all set to build the project and start the microser-
vice with the following Maven commands:

\> mvn clean install
\> mvn spring-boot:run

Behind the scenes of a TLS handshake
When you use curl to invoke a microservice secured with TLS, curl acts as the TLS
client, in the same way that a browser acted as a client to the Amazon web server.
The microservice first shares its public certificate (along with the certificate chain up
to the root CA) with the curl client before establishing a connection. This process hap-
pens during the TLS handshake.

The TLS handshake happens between a TLS client and a TLS service before they start
communicating with each other, and during the handshake the client and the service
share certain properties required to establish the secure communication. When the
client gets the public certificate of the TLS service, it checks whether a CA that it
trusts has issued it. The public key of the CA that issued the certificate to the TLS
service must be with the TLS client.

In the example in this section, the Order Processing microservice is protected with a
certificate issued by your own CA, and by default, curl doesn’t know about its public
key. You have two options: ask curl to accept any certificate it receives without vali-
dating whether the certificate is issued by a CA it trusts, or provide curl with the public
key of your CA. In this example, you chose the first option, using –k in the curl com-
mand to instruct curl to avoid trust validation. Ideally, you shouldn’t do this in a pro-
duction deployment.

146 CHAPTER 6 Securing east/west traffic with certificates
INFO 22276 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 8443 (https)
INFO 22276 --- [main] c.m.m.ch06.sample02.InventoryApp :
Started InventoryApp in 3.068 seconds (JVM running for 6.491)

If the service starts successfully, you see a log that says the Inventory microservice is
available on HTTPS port 8443 (shown in the previous output). Use the following
curl command to test it over TLS:

\> curl -k -v -X PUT -H "Content-Type: application/json" \
 -d '[{"code":"101","qty":1},{"code":"103","qty":5}]' \
 https://localhost:8443/inventory

If everything works, the item numbers from the request are printed on the terminal
where the Inventory microservice is running. Now you have both your Order Process-
ing and Inventory microservices running on TLS (or over HTTPS). In the next sec-
tion, you’ll see how these two microservices talk to each other over TLS.

6.3.3 Securing communications between two microservices with TLS

You’re a few steps from enabling TLS communication between the Order Processing
and Inventory microservices. You need to make a few changes in both microservices,
though, so shut them down for the moment (if they’re running).

 When the Order Processing microservice talks to the Inventory microservice over
TLS, the Order Processing microservice is the TLS client (figure 6.4). To establish a

Own public/private
key pair signed by the
trusted CA + CA’s public
key (orderprocessing.jks)

Own public/private key pair
signed by the trusted CA +
CA’s public key (inventory.jks)

Inventory
Service

Order
Processing

Service

Certificate
Authority

mTLS

Keystore Keystore

Figure 6.4 The Order Processing microservice talks to the Inventory microservice over TLS.

147Securing microservices with TLS
TLS connection, it has to trust the issuer of the server certificate that the Inventory
microservice provides during the TLS handshake. In other words, the Order Process-
ing microservice has to trust the CA that you created earlier in this chapter.

 To trust a given CA in Java (and in Spring Boot), you need to explicitly specify a
keystore in a system property called javax.net.ssl.trustStore. That property
carries the location of the keystore file with the corresponding public key of the CA.
You may recall that you imported the public key (ca_cert.pem) of your CA to both
orderprocessing.jks and inventory.jks files. Now you need to set the location of the
orderprocessing.jks keystore as a system property at the Order Processing microservice
end. You don’t need to set the same system property on the Inventory microservice
side for the moment, because it doesn’t do any calls to external microservices. Setting
up the system property javax.net.ssl.trustStore is required only if a micro-
service acts as a TLS client. Uncomment the following code block (inside the set-
Environment method) in the OrderAppConfiguration.java file in the chapter06/
sample01/src/main/java/com/manning/mss/ch06/sample01/ directory:

// points to the path where orderprocessing.jks keystore is.
System.setProperty("javax.net.ssl.trustStore", "orderprocessing.jks");
// password of the orderprocessing.jks keystore.
System.setProperty("javax.net.ssl.trustStorePassword", "manning123");

The following code snippet from the OrderProcessingService.java file (in the
chapter06/sample01/src/main/java/com/manning/mss/ch06/sample01/service
directory) shows how the Order Processing microservice talks to the Inventory
microservice over TLS. When you POST an order to the Order Processing microser-
vice, the Order Processing microservice talks to the Inventory microservice to update
the item inventory. Here, you use the URL https://localhost:8443/inventory, which
points to the Inventory microservice. The value of this URL is picked from the
inventory.service property defined in the chapter06/sample01/src/main/
resources/application.properties file:

if (order != null) {
 RestTemplate restTemplate = new RestTemplate();
 URI uri = URI.create(System.getProperty("inventory.service"));
 restTemplate.put(uri, order.getItems());

 order.setOrderId(UUID.randomUUID().toString());
 URI location = ServletUriComponentsBuilder
 .fromCurrentRequest().path("/{id}")
 .buildAndExpand(order.getOrderId()).toUri();
 return ResponseEntity.created(location).build();
}

What’s the issue in this code snippet? You may recall that when you created the public
certificate for the Inventory microservice following the steps in appendix G, you used
iv.ecomm.com as the value of the Common Name (CN) attribute. Any TLS client that
talks to the Inventory microservice must use iv.ecomm.com as the hostname in the
URL, not localhost. Otherwise, a hostname verification failure results.

148 CHAPTER 6 Securing east/west traffic with certificates
 How do you fix this problem? The correct approach is to use the right hostname in
the preceding code (or set it as the value of the inventory.service key in the
application.properties file—currently, it is set to localhost). But then you need to have
a DNS setting pointing to the IP address of the server that runs the Inventory
microservice, which is what you should do in production. For the time being, you can
use a little trick. When you uncomment the following code snippet (inside the static
block) in the OrderProcessingApp.java file, the system automatically ignores the host-
name verification:

HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String hostname, SSLSession session) {
 return true;
 }
});

Now try service-to-service communication between the Order Processing and Inven-
tory microservices over TLS. First, build and start the Order Processing microservice
with the following Maven commands from the chapter06/sample01 directory, which
you’re already familiar with:

\> mvn clean install
\> mvn spring-boot:run

Next, start the Inventory microservice. Run the following Maven commands from the
chapter06/sample02 directory:

\> mvn clean install
\> mvn spring-boot:run

Now you have both services running again. Use the following curl command to POST
an order to the Order Processing microservice, which internally talks to the Inventory
microservice over TLS to update the inventory. The following curl command is for-
matted with line breaks for clarity:

\> curl -k -v https://localhost:6443/orders \
-H 'Content-Type: application/json' \
-d @- << EOF
{ "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[{
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5

149Engaging mTLS
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

If everything works, the item numbers from the request are printed on the terminal
where the Inventory microservice is running.

6.4 Engaging mTLS
Now you have two microservices communicating with each other over TLS, but it’s
one-way TLS. Only the calling microservice knows what it communicates with, and the
recipient has no way of identifying the client. This is where you need mTLS.

 In this section, you’ll see how to protect the Inventory microservice with mTLS.
When you have TLS set up among microservices, enabling mTLS is straightforward.
First, shut down both microservices if they’re running. To enforce mTLS at the Inven-
tory microservice end, uncomment the following property in the application.properties
file in chapter06/sample02/src/main/resources/:

server.ssl.client-auth = need

Setting this property to need isn’t sufficient, however. You also need to identify which
clients to trust. In this example, you’re going to trust any client with a certificate
signed by your CA. To do that, set the value of the system property javax.net
.ssl.trustStore to a keystore that carries the public certificate of your trusted
CA. You already have the public certificate of the trusted CA in the inventory.jks key-
store, so all you have to do is set the system property that points to that keystore.
Uncomment the following code block (inside the setEnvironment method) in
chapter06/sample02/src/main/java/com/manning/mss/ch06/sample02/Inventory
AppConfiguration.java:

// points to the path where inventory.jks keystore is.
System.setProperty("javax.net.ssl.trustStore", "inventory.jks");
// password of inventory.jks keystore.
System.setProperty("javax.net.ssl.trustStorePassword", "manning123");

Next, build and spin up both microservices to see how the interservice communica-
tion works. Run the following commands from the chapter06/sample01 directory to
start the Order Processing microservice:

\> mvn clean install
\> mvn spring-boot:run

Next, to start the Inventory microservice, run the following Maven commands from
the chapter06/sample02 directory:

\> mvn clean install
\> mvn spring-boot:run

150 CHAPTER 6 Securing east/west traffic with certificates
Now both services are running again. Use the following curl command to POST an
order to the Order Processing microservice, which internally talks to the Inventory
microservice over TLS to update the inventory. You might expect this request to fail
because you enabled mTLS at the Inventory microservice end but didn’t change the
Order Processing microservice to authenticate to the Inventory microservice with its
private key:

\> curl -k -v https://localhost:6443/orders \
-H 'Content-Type: application/json' \
-d @- << EOF
{ "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[{
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

This request results in an error, and if you look at the terminal that runs the Order
Processing microservice, you see the following error log:

javax.net.ssl.SSLHandshakeException: Received fatal alert: bad_certificate

The communication between the two microservices fails during the TLS handshake.
To fix it, first take down the Order Processing service. Then uncomment the following
code (inside the setEnvironment method) in the OrderAppConfiguration.java
file (in chapter06/sample01/src/main/java/com/manning/mss/ch06/sample01/).
This code asks the system to use its private key from orderprocessing.jks to authenti-
cate to the Inventory microservice:

// points to the path where orderprocessing.jks keystore is located.
System.setProperty("javax.net.ssl.keyStore", "orderprocessing.jks");
// password of orderprocessing.jks keystore.
System.setProperty("javax.net.ssl.keyStorePassword", "manning123");

Next, run the following Maven commands from the chapter06/sample01 directory to
build and start the Order Processing microservice:

\> mvn clean install
\> mvn spring-boot:run

151Challenges in key management
Now use the following curl command again to POST an order to the Order Process-
ing microservice. It should work this time!

\> curl -k -v https://localhost:6443/orders \
-H 'Content-Type: application/json' \
-d @- << EOF
{ "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[{
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

You have two microservices secured with TLS, and the communication between them
is protected with mTLS.

6.5 Challenges in key management
Ask any DevOps person to name the hardest part of the job, and eight out of ten
would say key management. As the name implies, key management is about how you
manage keys in your microservices deployment. It involves four main areas: bootstrap-
ping trust and provisioning keys/certificates to workloads or microservices, key revo-
cation, key rotation, and monitoring the key usage.

6.5.1 Key provisioning and bootstrapping trust

In a typical microservices deployment, each microservice is provisioned with a key pair,
as you did manually by copying the Java keystore files to the Order Processing and
Inventory microservices earlier in this chapter. Doing things manually won’t work in a
large-scale microservices deployment, however; everything must be automated. Ideally,
during the continuous integration/continuous delivery (CI/CD) pipeline, the keys
should be generated and provisioned to the microservices. When the keys are provi-
sioned to all the microservices, the next challenge is building trust among microser-
vices. Why would one microservice trust a request initiated from another microservice?

 One approach is to have a single CA for a given deployment and have each micro-
service in the deployment trust this CA; during the boot-up process of each micro-
service, you need to provision the public certificate of the CA to each microservice. This

152 CHAPTER 6 Securing east/west traffic with certificates
CA issues all the microservice-specific keys. When one microservice talks to another one
secured with mTLS, the recipient microservice validates the caller’s certificate and ver-
ifies whether it’s issued by the trusted CA (of the deployment); if so, it accepts the
request. You followed this model in the Spring Boot examples earlier in this chapter.

TYPICAL KEY-PROVISIONING PROCESS AT AN ENTERPRISE

The typical key-provisioning mechanics that most enterprises use today don’t deviate
much from the approach you followed in this chapter when creating keys for the Order
Processing and Inventory microservices. The developer who wants to secure a service
with TLS first has to generate a public/private key pair, and then create a certificate-
signing request (CSR) and submit the CSR for approval to the team that maintains the
corporate CA. If everything looks good, the signed certificate is handed over to the
developer who initiated the signing request. Then the developer deploys the certificate
and the keys to the microservice. But this process is painful in a microservices deploy-
ment with hundreds of services spinning up and down all the time.

KEY PROVISIONING AT NETFLIX

Netflix has thousands of microservices, and communication among those micro-
services is secured with mTLS. Netflix uses Lemur, an open source certificate manage-
ment framework that acts as a broker (see figure 6.5) between the internal service
deployment and the CA, and provides management tools to automate the key-
provisioning process. During the process of continuous delivery, each microservice is
injected with a set of credentials that are good enough to access the Lemur APIs. A tool
called Metatron, which is internal to Netflix (not open source), does this credential

Continuous delivery platform at
Netflix. Provisions credentials to
each microservice it spins up.

Signed certificate

Signed certificate

Calls the Lemur API on the
startup to obtain a signed
certificate

Certificate-signing request (CSR)

Certificate
Authority

Lemur

Microservice

Spinnaker

1
2

3

5

4

Figure 6.5 Key provisioning at Netflix. Each microservice at startup talks to Lemur to get a signed
certificate from the CA in the domain.

153Challenges in key management
bootstrapping. As each microservice boots up, it talks to the Lemur API and gets a
signed certificate for its (microservice’s) public/private key pair.

 Lemur isn’t a CA, but it knows how to integrate with a CA and generate a signed cer-
tificate. Microservices developers shouldn’t worry about the certificate-signing process,
but about talking to the Lemur API. Figure 6.5 illustrates the key-provisioning process.

GENERATING LONG-LIVED CREDENTIALS

In the key-provisioning model at Netflix, discussed in the preceding section, each
microservice is provisioned with long-lived credentials that are used to connect to
Lemur to get a signed certificate. This signed certificate, particularly in the Netflix envi-
ronment, is a short-lived credential. We talk about short-lived credentials later in this
chapter. Each microservice uses the same long-lived credentials to connect to Lemur to
refresh the current signed certificate. This method is a common solution to the trust
bootstrapping problem.

 As discussed before, Netflix uses a tool called Metatron to do the credential boot-
strapping. The internal details of Metatron aren’t available yet for public access
because the tool isn’t open source. In this section, however, we propose a scalable
approach to generate long-lived credentials:

1 Protect the API of the certificate issuer (such as Lemur) so that anyone who
wants to access it must present a valid key.

2 Build a handler to intercept the continuous delivery (CD) pipeline that injects
long-lived credentials into the microservices.

3 Write the intercept handler in such a way that it generates long-lived credentials
as JWTs. The JWT will carry information about the microservice and will be
signed by a key that’s known to the certificate issuer. We discuss JWTs in detail
in chapter 7.

4 At boot-up time, the microservice uses the injected long-lived credentials (JWT)
to talk to the certificate issuer’s API and to get a signed certificate. It can keep
using the same long-lived credentials to rotate certificates.

SECURE PRODUCTION IDENTITY FRAMEWORK FOR EVERYONE

Secure Production Identity Framework for Everyone (SPIFFE) is an open standard
that defines a way a microservice (or a workload, in SPIFFE terminology) can establish
an identity. SPIFFE Runtime Environment (SPIRE) is the open source reference
implementation of SPIFFE. While helping establish an identity for each microservice
in a given deployment, SPIFFE solves the trust bootstrapping problem. We discuss
SPIFFE in detail in appendix H.

6.5.2 Certificate revocation

Certificate revocation can happen for two main reasons: the corresponding private key
is compromised or the private key of the CA that signed the certificate is compromised.
The latter situation can be rare, but in an internal CA deployment, anything is possible.
A certificate can also be revoked for a third reason, which isn’t as common in a private

154 CHAPTER 6 Securing east/west traffic with certificates
certificate deployment: if a CA finds that the entity behind the signed certificate no lon-
ger represents the original entity at the time the certificate was issued, or if it finds the
details provided along with the CSR are invalid, the CA can revoke the certificate.

 The challenge in certificate revocation is how to communicate the revocation deci-
sion to the interested parties. If the Amazon certificate is revoked, for example, that
decision must be propagated to all browsers. Over time, multiple approaches have
been suggested to overcome the challenges in certificate revocation. We go through
some of these approaches in the following sections.

CERTIFICATE REVOCATION LISTS
A certificate revocation list (CRL) was among one of the first approaches suggested to
overcome issues related to certificate revocation as defined in RFC 2459 (www
.ietf.org/rfc/rfc2459.txt). Each CA publishes an endpoint where the TLS client appli-
cations can query and retrieve the latest revoked certificate list from that CA. As
shown in figure 6.6, this endpoint is known as the CRL distribution point and is embed-
ded in the certificate by the CA. According to RFC 5280 (https://tools.ietf.org/html/
rfc5280), a CRL distribution point is a noncritical extension in a certificate. If a CA
decides not to include it, it’s up to the TLS client application to find the endpoint
related to the corresponding CRL by another means.

 A CRL means overhead to a TLS client application. Each time the client applica-
tion validates a certificate, it has to talk to the CRL endpoint of the corresponding CA,

Figure 6.6 The Amazon
certificate embeds the
corresponding CRL
distribution points.

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
www.ietf.org/rfc/rfc2459.txt
www.ietf.org/rfc/rfc2459.txt

155Challenges in key management
retrieve the list of revoked certificates, and check whether the certificate in question is
part of that list. The CRL can sometimes grow by megabytes. To avoid making fre-
quent calls to the CA’s CRL endpoint, client applications can follow a workaround in
which they cache the CRLs by CA. Every time they see the same certificate, they don’t
need to retrieve the corresponding CRL from the CA.

 This solution isn’t good enough for highly security-concerned environments, how-
ever, because there’s a possibility of making security decisions based on stale data.
Also, CRLs create a coupling between the TLS client application and the CA. What
would happen if the CRL endpoint of a given CA goes down? Should the TLS client
application accept the certificates issued by that CA? This decision is tricky to make.
With all these drawbacks and challenges, people started to move away from CRL-
based certificate revocation.

ONLINE CERTIFICATE STATUS PROTOCOL

Unlike CRL, the Online Certificate Status Protocol (OCSP) doesn’t build one bulky
list of all the revoked certificates. Each time the TLS client application sees a certifi-
cate, it has to talk to the corresponding OCSP endpoint and check whether the certif-
icate was revoked. As in CRL, the OCSP endpoint that corresponds to a given CA is
also embedded in the certificate (see figure 6.7). Because the client application has to
talk to the OCSP endpoint each time during the certificate validation process, the
process creates a lot of traffic on the CA (or, to be precise, on the OCSP responder).

Figure 6.7 The Amazon
certificate embeds the
OCSP endpoint.

156 CHAPTER 6 Securing east/west traffic with certificates
Once again, as with CRL, to avoid frequent calls to the OCSP endpoint, some clients
cache the revocation decisions. This solution, however, has the same issue as CRLs:
security decisions could be made based on stale data. Also, you still don’t have a
proper answer about what to do if the OCSP endpoint is down. Should the TLS client
application accept the certificates issued by that CA?

 OCSP makes certificate revocation a little better, but it doesn’t fix all the chal-
lenges involved with CRLs. Google, in fact, decided not to support OCSP-based certif-
icate validation in its Chrome browser; rather, it relies on frequent browser updates to
share a list of revoked certificates.

OCSP STAPLING

OCSP stapling makes OCSP a little better. It takes the overhead of talking to the OCSP
endpoint from the TLS client and hands it over to the server. This move is interesting,
as it considerably reduces the traffic on the OCSP endpoint. Now the TLS server talks
to the corresponding OCSP endpoint first, gets the signed response from the CA (or
the OCSP responder), and attaches, or staples, the response to the certificate. The TLS
client application looks at the OCSP response attached to the corresponding certifi-
cate to check whether the certificate is revoked.

Drawbacks in OCSP
“Towards Short-Lived Certificates” by Emin Topalovic et al. (http://bit.ly/2ZC9lS0)
identifies four drawbacks in OCSP:

 OCSP validation increases client-side latency because verifying a certificate is
a blocking operation requiring a round trip to the OCSP responder to retrieve
the revocation status (if no valid response is found in the cache). A previous
study indicates that 91.7% of OCSP lookups are costly, taking more than 100
ms to complete, thereby delaying HTTPS session setup.

 OCSP can provide real-time responses to revocation queries, but it’s unclear
whether the responses contain updated revocation information. Some OCSP
responders may rely on cached CRLs on their backend. It was observed that
DigiNotar’s OCSP responder was returning good responses well after it was
attacked.

 Like CRLs, OCSP validations can be defeated in multiple ways, including traf-
fic filtering and bogus responses forged by network attackers. Most impor-
tantly, revocation checks in browsers fail open. When a browser can’t verify a
certificate through OCSP, most don’t alert the user or change their UI; some
even don’t check the revocation status at all. We must note that failing open
is necessary, however, because there are legitimate situations in which the
browser can’t reach the OCSP responder.

 OCSP also introduces a privacy risk: OCSP responders know which certifi-
cates are being verified by end users, so responders can, in principle, track
which sites the user is visiting. OCSP stapling, which we discuss in the next
section, is intended to mitigate this privacy risk, but it isn’t often used.

http://bit.ly/2ZC9lS0

157Challenges in key management
 This process may look a little tricky because the owner of the certificate attaches
the OCSP response to the certificate. If the owner decides to attach the same OCSP
response throughout, even after the certificate is revoked, it can possibly fool the TLS
client applications. In practice, however, this scenario is impossible. Each signed
OCSP response from the CA (or the OCSP responder) has a timestamp, and if that
timestamp isn’t relatively recent, the client must refuse to accept it.

OCSP STAPLING REQUIRED

Even with OCSP stapling, what would happen if no OCSP response is attached to the
certificate? Should you reject the communication with the corresponding server or go
ahead and accept it? This decision is hard to make. When OCSP stapling is required,
the server guarantees that the server certificate exchanged during the TLS handshake
includes the OCSP response. If the client doesn’t find the OCSP response attached to
the certificate, it can refuse to communicate with the server.

SHORT-LIVED CERTIFICATES

The common consensus on certificate revocation is that it’s a hard one to address.
The approach suggested by short-lived certificates ignores certificate revocation, rely-
ing instead on expiration. But what’s a good value for certificate expiration? Is it years
or a couple of days? If the expiration time is too long, in case of a key compromise, all
the systems that depend on the compromised key are at risk for a long time as well,
and the short-lived certificates suggest a short expiration, possibly a couple of days.

 The concept of short-lived certificates is nothing new. It was initially discussed in
1998, but with microservices-based deployments, it’s come back into the mainstream
discussion. Research done at Carnegie Mellon University proposes using short-lived
certificates to improve TLS performance (www.linshunghuang.com/papers/short-
lived.pdf). According to this proposal, CAs could configure the validity period of
short-lived certificates to match the average validity lifetime of an OCSP response mea-
sured in the real world, which is four days. Such certificates expire quickly, and most
importantly, the TLS client application rejects any communication afterward, treating
those as insecure without the need for a revocation mechanism. Further, according to
this proposal, when a website purchases a year-long certificate, the CA’s response is a
URL that can be used to download on-demand, short-lived certificates. The URL
remains active for the year, but the certificates that you download from that URL are
valid for only a few days.

NETFLIX AND SHORT-LIVED CERTIFICATES

In the Netflix microservices deployment, service-to-service communication is secured
with mTLS using short-lived certificates. Netflix uses a layered approach to build a
short-lived certificate deployment: a system identity or long-lived credentials residing
in a Trusted Platform Module (TPM) or an Intel Software Guard Extensions (SGX)
chip tightens security. During the boot-up process, access to the long-lived credentials
is provisioned to each microservice. Then each microservice uses those credentials to
get short-lived credentials.

www.linshunghuang.com/papers/short-lived.pdf
www.linshunghuang.com/papers/short-lived.pdf

158 CHAPTER 6 Securing east/west traffic with certificates
NOTE TPM is a hardware chip that can securely store cryptographic keys,
according to the TPM specification published by Trusted Computing Group
(http://mng.bz/04Ml). SGX by Intel allows applications to execute code and
protect secrets in their own trusted execution environments. SGX is designed
to protect secrets from malicious software.

Metatron, a tool developed by Netflix for credential management (which we discussed
briefly in section 6.5.1), does the credential bootstrap. At this writing, Metatron is in
its beta version, and there are plans to open source it in the future. When the initial
long-lived credentials are provisioned to microservices, they use those credentials to
talk to Netflix Lemur to get the short-lived credentials.

 Lemur (https://github.com/Netflix/lemur) is an open source certificate manager
developed by Netflix (see figure 6.8). Each microservice can refresh the short-lived cre-
dentials periodically, using its long-lived credentials. Each time a microservice gets new
short-lived credentials, the server environment must be updated with it. If you run your
microservice on Spring Boot, for example, it should know how to update all its trans-
port senders and listeners with the updated credentials without restarting the server.

Figure 6.8 Netflix uses short-lived certificates with mTLS to secure service-to-service communications.

Why use long-lived credentials?
We assume that long-lived credentials are secure and hard to compromise. If that’s
the case, why are short-lived credentials necessary? Why not use the more secure
long-lived credentials themselves?

The answer lies in performance. Long-lived credentials are secured with a TPM or an
SGX chip. Loading such long-lived credentials frequently is a costly operation. Short-
lived credentials, on the other hand, are kept in memory.

Continuous delivery platform at
Netflix. Provisions credentials to
each microservice it spins up.

Certificate-signing request (CSR)

Certificate
Authority

Lemur

Microservice

Spinnaker

Short-lived signed
certificate

Short-lived signed
certificate

Calls the Lemur API
frequently to refresh the
short-lived certificate

Calls the Lemur API on
the startup to obtain a
signed certificate

1
2

3

5
4

http://mng.bz/04Ml
https://github.com/Netflix/lemur

159Monitoring key usage
6.6 Key rotation
All the keys provisioned into microservices must be rotated before they expire. Not
every enterprise is concerned about key rotation, however. Expiration times used to
be higher, such as 5 to 10 years. You realize that you have to rotate certificates only
when communication links start to fail because of an expired certificate. Some compa-
nies have key rotation policies stating that all the keys used in a deployment must be
rotated every month or two. The short-lived certificate approach we discussed earlier
in this chapter enforces certificate rotation in short intervals. Netflix, for example,
rotates keys every 4 minutes in its microservices deployment. That interval may look
crazy, but that’s the level of security Netflix worries about. Then again, the key rota-
tion policy differs from short-lived credentials to long-lived credentials.

 The keys embedded in microservices can be short-lived and rotated frequently, but
your corporate CA’s private key doesn’t need to be rotated. The overhead of rotating
the CA’s private key is much higher. You need to make sure that every service that
trusts the CA has the updated key. If it’s hard to rotate some keys frequently, you
should find better ways of securing those keys. These ways usually are expensive, both
financially and in terms of performance. Netflix, for example, uses TPM or an SGX
chip with tightened security to secure its long-lived credentials.

 Key rotation is more challenging in a microservices deployment with an increased
number of services spinning on and off. Automation is the key to addressing this prob-
lem. Every microservices deployment requires an approach like the one Netflix uses
with Lemur. SPIFFE is another approach, which we discuss in detail in appendix H.

6.7 Monitoring key usage
Observability, an essential ingredient of a typical microservices deployment, indicates
how well you can infer the internal state of a system by looking at the external outputs.
Monitoring is about tracking the state of a system. Unless you have a way to monitor the
external outputs of a system, you’ll never be able to infer its internal state. Only if a
microservice is observable will you be able to infer its internal state. We discuss the
observability of a system under three categories, which we call the three pillars of observ-
ability: logging, metrics, and tracing.

 With logging, you can record any event happening in your system: a successful login
event; a failed login event; success or failure in an access-control check; an event
related to key provisioning, key rotation, or key revocation; and so on.

 Metrics indicate the direction of a system. Logging events help you derive metrics. By
tracking the time it takes to refresh keys in short intervals, for example, you can derive
how much that process contributes to the average latency of the system. The latency of
a system is reflected by the time interval between a request entering and exiting a sys-
tem. You can derive another metric by tracking the number of failed login attempts
against a service. If the number of failed login attempts is high or goes beyond a certain
threshold, that service may be under attack, or a certificate may be expired or revoked.

 Tracing is also derived from logs. Tracing is concerned with the order of events and
the impact of one event on another. In a microservices deployment, if a request fails at

160 CHAPTER 6 Securing east/west traffic with certificates
the Inventory microservice, tracing helps you find the root cause and what happened
to the same request in the Order Processing and Delivery microservices. You can also
trace which keys are being used between which services and identify the patterns in
key use, which helps you identify anomalous behaviors and raise alerts.

 Monitoring a microservices deployment is challenging, as many service-to-service
interactions occur. We use tools like Zipkin, Prometheus, and Grafana in a microser-
vices deployment to monitor key use.

Summary
 There are multiple options in securing communications among microservices,

including mutual TLS (mTLS) and JSON Web Tokens (JWTs).
 Transport Layer Security protects communications between two parties for con-

fidentiality and integrity. Using TLS to secure data in transit has been a practice
for several years.

 mTLS is the most popular way of securing interservice communications among
microservices.

 TLS is also known as one-way TLS, mostly because it helps the client identify the
server it’s talking to, but not the other way around. Two-way TLS, or mTLS, fills
this gap by helping the client and server identify themselves to each other.

 Key management in a microservices deployment is quite challenging, and we
need to be concerned about bootstrapping trust and provisioning keys and cer-
tificates to workloads or microservices, key revocation, key rotation, and key use
monitoring.

 Certificate revocation can happen for two main reasons: the corresponding pri-
vate key is compromised, or the private key of the CA that signed the certificate
is compromised.

 Using a certificate revocation list (CRL), defined in RFC 2459, was among one
of the very first approaches suggested to overcome issues related to certificate
revocation.

 Unlike CRL, the Online Certificate Status Protocol (OCSP) doesn’t build one
bulky list of all revoked certificates. Each time the TLS client application sees
a certificate, it has to talk to the corresponding OCSP endpoint and check
whether the certificate is revoked.

 OCSP stapling makes OCSP a little better. It takes the overhead of talking to the
OCSP endpoint from the TLS client and hands it over to the server.

 The approach suggested by short-lived certificates ignores certificate revoca-
tion, relying instead on expiration.

 All the keys provisioned into microservices must be rotated before they expire.
 Observability is an essential ingredient of a typical microservices deployment.

It’s about how well you can infer the internal state of a system by looking at the
external outputs. Monitoring is about tracking the state of a system.

Securing east/west
traffic with JWT
In chapter 6, we discussed securing service-to-service communications in a micro-
services deployment with mTLS. mTLS is, in fact, the most popular option for
authenticating one microservice to another. JSON Web Token (JWT), which provides
a way to carry a set of claims or attributes from one party to another in a crypto-
graphically secure way, also plays a key role in securing service-to-service communi-
cations in a microservices deployment.

 You can use JWT to carry the identity of the calling microservice, or the identity
of the end user or system that initiated the request. JWT can also be used to pro-
pagate identity attributes between multiple trust domains. In this chapter, we
explore the role that JWT plays in securing service-to-service communications in a

This chapter covers
 Using JWTs in securing service-to-service

communications

 Using JWT to carry user context among
microservices

 Using JWT for cross-domain authentication
161

162 CHAPTER 7 Securing east/west traffic with JWT
microservices deployment. If you’re not familiar with JWT, we recommend you first
read appendix B, which provides a comprehensive overview of JWT.

7.1 Use cases for securing microservices with JWT
JWT addresses two main concerns in a microservices security design: securing service-
to-service communications and passing end-user context across microservices (figure
7.1). As we discussed in chapter 6, JWT isn’t the most popular option for securing
service-to-service communications; mTLS is. In this section, we discuss why you might
pick JWT over mTLS to secure service-to-service communications, as well as other use
cases of JWT in a microservices deployment. In practice, you use JWT along with
mTLS, together, in most cases.

Figure 7.1 Propagating the end user’s identity in a JWT among microservices. All the microservices in the
deployment trust the STS. The API gateway exchanges the JWTs it gets from client applications for new JWTs from
this STS.

7.1.1 Sharing user context between microservices with a shared JWT

When the identity of the microservice isn’t relevant, but the identity of the end user (a
system or a human) is, you should consider using JWT instead of mTLS. In this case,
services themselves don’t authenticate to one another. In every request, you need to
carry the identity of the end user who initiates the message flow; if not, the recipient
microservice rejects the request. But in practice, even though you do not worry about
the service’s identity, in terms of better security you should still use mTLS among

Security Token
Service (STS)

JWT

JWT
JWT

API Gateway

Inventory
Service

Order
Processing

Service

A JWT or an OAuth 2.0
access token used by
the end user for
authentication

New JWT issued
by the STS

Passes the same JWT
among microservices

This JWT is issued by the
STS trusted by all the
microservices in the
deployment.

JWT

1

2

3

5

4

1

163Use cases for securing microservices with JWT
microservices, along with the JWT protection. This will add a second layer of defense.
The following walks you through the numbered request flow shown in figure 7.1:

1 An end user initiates the request flow. This end user can be a human or a system.
2 As discussed in chapters 1 and 3, the edge gateway authenticates the end user.

The edge gateway intercepts the request from the end user, extracts the token
(which can be an OAuth 2.0 reference or self-contained token), and then talks
to the STS connected to it to validate the token. Then again, the token that the
end user presents might not be issued by this STS; it can come from any other
identity provider that this STS trusts. The details related to the end user authen-
tication are discussed in chapter 3. The STS should know how to validate the
token presented to it in this step.

3 After validating the token, the STS issues a new JWT signed by itself. This JWT
includes the user details copied from the old JWT (from step 2). When the edge
gateway passes the new JWT to the upstream microservices, those upstream
microservices need only trust this STS to accept the token as valid. Typically, all
the microservices within a single trust domain trust a single STS.

4 The API gateway passes the new JWT issued by the STS in an HTTP header
(Authorization Bearer) over TLS to the Order Processing microservice. The
Order Processing microservice validates the signature of the JWT to make sure
that it’s issued by the STS it trusts. Apart from the signature validation, the Order
Processing microservice also does audience validation, checking whether the
value of the provided JWT’s aud is known to itself (more details in appendix B).
For the pattern discussed in this section to work, all the microservices in the same
trust domain (that trust a single STS) must accept a JWT with a wildcard audi-
ence value such as *.ecomm.com.

5 When the Order Processing microservice talks to the Inventory microservice, it
passes the same JWT that it got from the API gateway. The Inventory microser-
vice validates the signature of the JWT to make sure that it’s issued by the STS it
trusts. Also, it checks whether the value of the aud attribute in the JWT is
*.ecomm.com.

In this approach, JWT helps you achieve two things. First, it helps you pass the end-user
context across microservices in a manner that can’t be forged. Because the claims set of
the JWT is signed by the STS, no microservice can change its content without invalidat-
ing its signature. Also, JWT helps you secure service-to-service communications. One
microservice can access another microservice only if it carries a valid JWT issued by the
trusted STS. Any recipient microservice rejects any request without a valid JWT.

7.1.2 Sharing user context with a new JWT for each service-to-service interaction

The use case we discuss in this section is a slight variation of the one we discussed in
section 7.1.1, but still only the end user’s identity is relevant—not the identity of the
microservice. Instead of passing the same JWT across all the microservices and
accepting the same audience value at each microservice, you generate a new JWT for

164 CHAPTER 7 Securing east/west traffic with JWT
each service interaction. This approach is much more secure than using a shared JWT.
But there’s no such thing as absolute security. Everything depends on your use cases
and the level of trust you have in your microservices deployment.

 Figure 7.2 illustrates how this pattern works. It’s the same flow discussed in section
7.1.1 except for steps 4a and 4b. In step 4a, before the Order Processing microservice
talks to the Inventory microservice, it talks to the STS and does a token exchange. It
passes the JWT it got from the API gateway (issued under op.ecomm.com audience)
and requests a new JWT to access the Inventory microservice. In step 4b, STS issues a
new JWT under the audience iv.ecomm.com. Thereafter, the flow continues as in the
preceding section.

Figure 7.2 Propagating the end user’s identity in a JWT among microservices with token exchange

Why do you need a new JWT with a new audience value when the Order Processing
microservice talks to the Inventory microservice? Why is it more secure than sharing
the same JWT coming from the API gateway across all the microservices in the deploy-
ment and accepting a single audience value? There are two valid reasons at minimum:

 When you have a one-to-one mapping between a microservice in your deploy-
ment and the audience value of the corresponding JWT issued by the STS, for a
given JWT, you know exactly who the intended audience is. In step 4 of figure 7.2,
for example, when the request is dispatched to the Order Processing microser-
vice from the API gateway, it can make sure that the token goes to no other
microservice but Order Processing. If the token goes to the wrong microservice,
it will still be rejected by that microservice because of the audience mismatch.

 If the Order Processing microservice tries to reuse the token given to it as-is to
access another service, such as the Finance microservice (which ideally, it
shouldn’t need access to), the request fails because the audience value in the
original JWT doesn’t work with the Finance microservice, which has its own

Security Token
Service (STS)

JWT

JWT

JWT

JWT

JWT

API Gateway

Finance
Service

Order
Processing

Service
JWT

4a

4b

1

2

3

5

4

1

165Use cases for securing microservices with JWT
audience value. The only way that the Order Processing microservice can talk to
the Finance microservice is to pass its current JWT to the STS and exchange it
for a new JWT with an audience value accepted by the Finance microservice.
Now you have more control at the STS, and the STS can decide whether to let
the Order Processing microservice access the Finance microservice.

One would argue, what’s the point of doing access-control checks at the STS at the
point of token exchange, while we can do it anyway at the edge of the microservice?
Enforcing access control at the edge of a microservice is a common pattern, mostly
with the Service Mesh architecture, which we discuss in chapter 12.

 In this case, because we don’t need to worry about the identity of the microser-
vices, the recipient microservice has no way to figure out who the calling microservice
is unless the STS embeds identity information about the calling microservice into the
new JWT it created at the point of token exchange. However, STS always knows about
the identity of the microservice that initiates the token exchange flow (step 4a in fig-
ure 7.2), as well as the identity of the first microservice it intends to call with the new
token. So, the STS is in a better position to enforce access-control checks. It’s better to
do coarse-grained access-control checks at the STS, and push fine-grained access-
control checks to the edge of the microservice.

7.1.3 Sharing user context between microservices in different trust domains

The use case in this section is an extension of the token exchange use case discussed
in section 7.1.2. As figure 7.3 shows, most of the steps are straightforward. There’s no
change from the preceding section up to step 6. (Steps 5 and 6 in figure 7.3 are equiv-
alent to steps 4a and 4b in figure 7.2.)

Figure 7.3 Cross-domain authentication and user context sharing among multiple trust domains. The
STS in the delivery domain trusts the STS in the ecomm domain.

Security Token
Service (STS)

Ecomm
Domain

Delivery
Domain

API Gateway

A
P

I G
at

ew
ay

S
ec

ur
ity

 T
ok

en
S

er
vi

ce
 (S

TS
)

Delivery
Service

Order
Processing

Service

JWT

JWT

JWT

JWT

JWT

JWT

JWT

JWTJWT

1

2

6

8

9

10

7

3

5

4

1

166 CHAPTER 7 Securing east/west traffic with JWT
In step 7, the Order Processing microservice from the ecomm domain tries to access
the Delivery microservice in the delivery domain via the delivery API gateway. The
JWT carried in this request (step 7) is issued by the STS in the ecomm domain and has
an audience value to match the Delivery microservice. In step 8, the API gateway of
the Delivery domain talks to its own STS to validate the JWT. The validation passes
only if the delivery STS trusts the ecomm STS. In other words, the corresponding pub-
lic key of the signature in the JWT issued by the ecomm STS must be known to the
delivery STS. If that’s the case, in step 9, the delivery STS creates its own JWT and
passes it over to the Delivery microservice via the API gateway. All the microservices in
the delivery domain trust only their domain’s own STS.

7.1.4 Self-issued JWTs

In the use cases discussed so far, we didn’t need to worry about the identity of the
microservice itself. Rather, we relied on a JWT issued by a trusted STS that carried the
end user’s identity. With self-issued JWTs (see figure 7.4), however, we do need to be
concerned about the identity of microservices when they talk to one another, as in
mTLS (discussed in chapter 6).

 As in mTLS, and in this model, each microservice must have its own public/private
key pair. Each microservice generates a JWT, signs it with its own private key, and
passes it as an HTTP header (Authorization Bearer) along with the request to the
recipient microservice over TLS. Because the JWT in this case is a bearer token, the
use of TLS is highly recommended (or in other words, a must). The recipient
microservice can identify the calling microservice after verifying the JWT signature by
using the corresponding public key.

 How does this process differ from mTLS? If what you’re trying to achieve is only
authentication between two microservices, neither method is superior. From the devel-
oper overhead point of view, setting up mTLS is more straightforward than using self-
issued JWTs. Both techniques need to handle all the key management challenges dis-
cussed in chapter 6, along with service-to-service authentication. If you intend to share
contextual data (not just the business data) between two microservices, the self-issued

Authorization: Bearer <JWT>

Creates a JWT using
its own private key

Inventory
Service

Order
Processing

Service
JWT

Figure 7.4 Self-issued
JWT. The JWT is signed
using the private key of the
Order Processing
microservice.

167Use cases for securing microservices with JWT
JWT is much better than mTLS. If the Order Processing microservice wants to share the
order ID with the Inventory microservice as a correlation handle, for example, it can
embed it in the JWT. In case of mTLS, you need to pass it as an HTTP header.

 What’s the difference? mTLS provides confidentiality and integrity of the data in
transit, but not nonrepudiation. Nonrepudiation cryptographically binds an action to
the person who initiated it so that they can’t deny it later. With mTLS alone, you can’t
achieve nonrepudiation. But when you use a self-issued JWT, all the data added to it is
bound to the owner of the corresponding private key that’s used to sign the message,
and helps you achieve nonrepudiation. Even if you use a self-issued JWT, in most cases
the communication between the two microservices must happen over TLS (not
mTLS), which protects the confidentiality and integrity of the communication. If you
want to get rid of TLS, you can use a signed, encrypted JWT and still achieve those
attributes. But you’ll rarely want to get rid of TLS.

NOTE A JWT is a bearer token. A bearer token is like cash. If someone steals
$10 from you, they can use it at any Starbucks to buy a cup of coffee, and no
one will ask for proof that they own the $10. Anyone who steals a bearer token
can use it with no issue until the token expires. If you use JWT for authentica-
tion between microservices (or in other words, authenticate one microservice
to another), you must secure the communication channel with TLS to mini-
mize the risk of an intruder stealing the token. Also, make sure the JWT is
short-lived. In that case, even if someone steals the token, the impact of the
stolen token is minimal.

7.1.5 Nested JWTs

The use case in this section is an extension of the use case discussed in section 7.1.4. A
nested JWT is a JWT that embeds another JWT (see figure 7.5). When you use a self-
issued JWT to secure service-to-service communications between two microservices, for
example, you can embed the JWT issued by the trusted STS that carries the end-user

The nested JWT carries the identity of
both the end user and the service.

Creates a nested JWT
using its own private key

Inventory
Service

Order
Processing

Service
JWT

The outer JWT is signed
by the calling service’s
private key.

The inner JWT is signed
by STS’s private key.

Figure 7.5 A nested JWT: the Order Processing microservice creates its own JWT and embeds
in it the JWT it receives from the downstream microservice (or the API gateway).

168 CHAPTER 7 Securing east/west traffic with JWT
context in the self-issued JWT itself and build a nested JWT. On the recipient side, the
service has to validate the signature of the nested JWT with the public key correspond-
ing to the calling microservice and validate the signature of the embedded JWT with
the corresponding public key from the trusted STS. The nested JWT carries the iden-
tities of the end user and the calling microservice in a manner that can’t be forged!

7.2 Setting up an STS to issue a JWT
In this section, we’ll set up an STS to issue a JWT. We’re going to use this JWT to access
a secured microservice. The source code related to all the examples in this chapter
is available in the https://github.com/microservices-security-in-action/samples Git-
Hub repository, inside the chapter07 directory. The source code of the STS, which is a
Spring Boot application developed with Java, is available in the chapter07/sample01
directory.

 This STS is a simple STS and not production-ready. Many open source and propri-
etary identity management products can serve as an STS in a production microser-
vices deployment.1 Run the following Maven command from the chapter07/sample01
directory to build the STS. If everything goes well, you’ll see the BUILD SUCCESS mes-
sage at the end:

\> mvn clean install

[INFO] BUILD SUCCESS

To start the STS, run the following command from the same directory. The STS, by
default, starts on HTTPS port 8443; make sure that no other services are running on the
same port. When the server boots up, it prints the time it took to boot up on the terminal:

\> mvn spring-boot:run

INFO 30901 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 8443 (https)
INFO 30901 --- [main] c.m.m.ch07.sample01.TokenService :
Started TokenService in 4.729 seconds (JVM running for 7.082)

Run the following curl command, which talks to the STS and gets a JWT. You should
be familiar with the request, which is a standard OAuth 2.0 request following the pass-
word grant type. We use password grant type here only as an example, and for simplicity.
In a production deployment, you may pick authorization code grant type or any other
grant type that fits better for your use cases. (In appendix A, we discuss OAuth 2.0 grant
types in detail.)

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

1 Gluu, Keycloak, and WSO2 Identity Server are all open source, production-ready, identity management prod-
ucts that you can use as an STS.

https://github.com/microservices-security-in-action/samples

169Setting up an STS to issue a JWT
You can think of this request as being generated by an external application, such as a
web application, on behalf of an end user. In this example, the client ID and secret
represent the web application, and the username and password represent the end
user. Figure 7.6 illustrates this use case. For simplicity, we have removed the API gate-
way from figure 7.6.

Figure 7.6 STS issues a JWT access token to the web application.

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works, the STS returns an
OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJwZXRlciIsI
mF1ZCI6IiouZWNvbW0uY29tIiwidXNlcl9uYW1lIjoicGV0ZXIiLCJzY29wZSI6WyJmb28iXSwi
aXNzIjoic3RzLmVjb21tLmNvbSIsImV4cCI6MTUzMzI4MDAyNCwiaWF0IjoxNTMzMjc5OTY0LCJ
hdXRob3JpdGllcyI6WyJST0xFX1VTRVIiXSwianRpIjoiYjJjMzkxZjItMWI4MC00ZTgzLThlYjEt
NGE1ZmZmNDRlNjkyIiwiY2xpZW50X2lkIjoiMTAxMDEwMTAifQ.MBPq2ngesDB3eCjAQg_ZZd
sTd7_Vw4aRocS-ig-UHa92xe4LvEl7vADr7SUxPuWrCSre4VkMwN8uc7KAxJYWH2i0Hfb5haL3j
P7074POcRlKzoSoEB6ZJu7VhW5TVY4hsOJXWeldHqPccHTJNKbloUWBDyGYnnRyMG47wmQb2MMan
YURFCFKwFZdO3eEOz0BRV5BX-PsyESgK6qwOV5C6MErVe_Ga_dbVjUR5BGjgjMDlmCoDf4O3gX
K2ifzh_PYlGgx9eHKPZiq9T1l3yWSvribNgIs9donciJHh6WSxT_SFyg7gS-CD66PgOuA8YRJ5g
g3vW6kJVtqsgS8oMYjA",
"token_type":"bearer",
"refresh_token":"",
"expires_in":1533280024,
"scope":"foo"}

STS returns a JWT, which
carries the user context
related to Peter

Web application gets an access
token on behalf of the user Peter

Client application invokes the
microservice by passing the
JWT in an HTTP header

Security Token
Service (STS)

Peter

<Trust>

Order
Processing

Service

JWT

JWT

1

2

3

170 CHAPTER 7 Securing east/west traffic with JWT
Following is the payload of the decoded JWT access token. If you are not familiar with
JWT, please check appendix B:

{
 "sub": "peter",
 "aud": "*.ecomm.com",
 "user_name": "peter",
 "scope": [
 "foo"
],
 "iss": "sts.ecomm.com",
 "exp": 1533280024,
 "iat": 1533279964,
 "authorities": [
 "ROLE_USER"
],
 "jti": "b2c391f2-1b80-4e83-8eb1-4a5fff44e692",
 "client_id": "10101010"
}

You can find more details about the STS configuration and the source code in the
README file available inside the chapter07/sample01 directory. In the next section,
you see how to use this JWT to access a secured microservice.

7.3 Securing microservices with JWT
In this section, you first secure a microservice with JWT and then use a curl client to
invoke it with a JWT obtained from the STS that you set up in the preceding section.
You can find the complete source code related to this example in the chapter07/
sample02 directory. Here, we’ll build the Order Processing microservice written in
Java with Spring Boot and secure it with JWT. First, we’ll build the project from the
chapter07/sample02 directory with the following Maven command. If everything
goes well, you should see the BUILD SUCCESS message at the end:

\> mvn clean install

[INFO] BUILD SUCCESS

To start the Order Processing microservice, run the following command from the
same directory. When the server boots up, it prints the time that it took to boot up on
the terminal. Per the default setting, the Order Processing microservice runs on
HTTPS port 9443:

\> mvn spring-boot:run

INFO 32024 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 9443 (https)
INFO 32024 --- [main] c.m.m.ch07.sample02.OrderProcessingApp :
Started OrderProcessingApp in 6.555 seconds (JVM running for 9.62)

171Securing microservices with JWT
Now let’s invoke the Order Processing microservice with the following curl com-
mand with no security token. As expected, you should see an error message:

\> curl -k https://localhost:9443/orders/11

{"error":"unauthorized","error_description":
 "Full authentication is required to access this resource"}

To invoke the Order Processing microservice with proper security, you need to get a
JWT from the STS using the following curl command. This example assumes that the
security token service discussed in the preceding section still runs on HTTPS port
8443. For clarity, we removed the long JWT in the response and replaced it with the
value jwt_access_token:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

{
"access_token":"jwt_access_token",
"token_type":"bearer",
"refresh_token":"",
"expires_in":1533280024,
"scope":"foo"
}

Now let’s invoke the Order Processing microservice with the JWT we got from the
curl command. Set the same JWT in the HTTP Authorization Bearer header using
the following curl command and invoke the Order Processing microservice. Because
the JWT is a little lengthy, you can use a small trick when using the curl command.
First, export the JWT to an environmental variable (TOKEN), and then use that envi-
ronmental variable in your request to the Order Processing microservice:

\> export TOKEN=jwt_access_token

\> curl -k -H "Authorization: Bearer $TOKEN" \
https://localhost:9443/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose,CA"
 },
 "items":[{"code":"101","qty":1},{"code":"103","qty":5}],
 "shipping_address":"201, 1st Street, San Jose, CA"
}

172 CHAPTER 7 Securing east/west traffic with JWT
You can find more details about the Order Processing microservice configuration and
the source code in the README file available in the chapter07/sample02 directory.

7.4 Using JWT as a data source for access control
The example in this section is an extension of the example in section 7.3. Here, we
use the same codebase to enforce access control at the Order Processing microser-
vice’s end by using the data that comes with the JWT itself. If you’re already running
the Order Processing microservice, first take it down (but keep the STS running).
Open the OrderProcessingService.java file in the directory sample02/src/main/java/
com/manning/mss/ch07/sample02/service/ and uncomment the method-level
annotation @PreAuthorize("#oauth2.hasScope('bar')") from the getOrder
method so that the code looks like the following:

@PreAuthorize("#oauth2.hasScope('bar')")
@RequestMapping(value = "/{id}", method = RequestMethod.GET)
public ResponseEntity<?> getOrder(@PathVariable("id") String orderId) {

}

Rebuild and spin up the Order Processing microservice from the chapter07/
sample02 directory by using the following two Maven commands:

\> mvn clean install
\> mvn spring-boot:run

After the Order Processing microservice boots up, you need to get a JWT again from
the STS and use it to access the Order Processing microservice. One important thing
to notice is that when the client application talks to the STS, it’s asking for an access
token for the scope foo. You’ll find the value foo in both the curl request and in the
response. Also, if you decode the JWT in the response from the STS, that too includes
an attribute called scope with the value foo:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

{
"access_token":"jwt_access_token",
"token_type":"bearer",
"refresh_token":"",
"expires_in":1533280024,
"scope":"foo"
}

Now you have a JWT with the foo scope from the STS. Try to invoke the Order Pro-
cessing microservice, which asks for a token with the bar scope. Ideally, the request
should fail with an access-denied message:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \

173Securing service-to-service communications with JWT
https://localhost:9443/orders/11

{"error":"access_denied","error_description":"Access is denied"}

It failed as expected. Try the same thing with a valid scope. First, request a JWT with
the bar scope from the STS:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=bar" \
https://localhost:8443/oauth/token

{
"access_token":"jwt_access_token",
"token_type":"bearer",
"refresh_token":"",
"expires_in":1533280024,
"scope":"bar"
}

Now invoke the Order Processing microservice with the right token, and we should
get a positive response:

\> curl -k -H "Authorization: Bearer $TOKEN" \
https://localhost:9443/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose,CA"
 },
 "items":[{"code":"101","qty":1},{"code":"103","qty":5}],
 "shipping_address":"201, 1st Street, San Jose, CA"
}

In this particular example, when the curl client asks for a token with foo or bar
scopes from the STS, STS didn’t do any access-control checks to see whether the user
(peter) in the request is authorized to get a token under the requested scope. Ide-
ally, in a production deployment, when you use a production-ready STS, you should
be able to enforce access-control policies at the STS to carry out such validations.

7.5 Securing service-to-service communications with JWT
Now you have the STS and the Order Processing microservice secured with JWT. In
this section, we introduce the Inventory microservice, which is also secured with JWT.
We’ll show you how to pass the same JWT that the Order Processing microservice got
from the client application to the Inventory microservice. You’ll keep both the Order
Processing microservice and the STS running and introduce the new Inventory

174 CHAPTER 7 Securing east/west traffic with JWT
microservice. First, build the project from the chapter07/sample03 directory with the
following Maven command. If everything goes well, you should see the BUILD SUC-
CESS message at the end:

\> mvn clean install

[INFO] BUILD SUCCESS

To start the Inventory microservice, run the following command from the same direc-
tory. After the server boots up, it prints the time that it took to boot up on the termi-
nal. Per the default setting, the Inventory microservice runs on HTTPS port 10443:

\> mvn spring-boot:run

INFO 32024 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 10443 (https)
INFO 32024 --- [main] c.m.m.ch07.sample03.InventoryApp :
Started InventoryApp in 6.555 seconds (JVM running for 6.79)

Now we want to get a JWT from the STS by using the following curl command, which
is the same one you used in the preceding section. For clarity, we removed the long
JWT in the response and replaced it with the value jwt_access_token:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=bar" \
https://localhost:8443/oauth/token

{
"access_token":"jwt_access_token",
"token_type":"bearer",
"refresh_token":"",
"expires_in":1533280024,
"scope":"foo"
}

Now let’s post an order to the Order Processing microservice with the JWT you got
from the preceding curl command. First, export the JWT to an environmental vari-
able (TOKEN) and then use that environmental variable in your request to the Order
Processing microservice. If everything goes well, the Order Processing microservice
validates the JWT, accepts it, and then talks to the Inventory microservice to update
the inventory. You’ll find the item numbers printed on the terminal that runs the
Inventory microservice:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
-H 'Content-Type: application/json' \
-v https://localhost:9443/orders \
-d @- << EOF
{ "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",

175Exchanging a JWT for a new one with a new audience
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[{"code":"101","qty":1},{"code":"103","qty":5}],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

You can find more details about the Inventory microservice configuration and the
source code in the README file available inside the chapter07/sample05 directory.

7.6 Exchanging a JWT for a new one with a new audience
Token exchange is a responsibility of the STS. In this section, you’ll see how to
exchange a JWT to a new one by talking to the STS we spun up in section 7.2. Make
sure that STS is up and running. Figure 7.7 illustrates the complete flow of what we’re
trying to do here. In step 1, the client application gets a JWT access token on behalf of
the user.

Figure 7.7 Token exchange with STS

Now run the following curl command, which talks to the STS and gets a JWT:

\> curl -v -k -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-d "grant_type=password&username=peter&password=peter123&scope=bar" \
https://localhost:8443/oauth/token

STS returns a JWT, which
carries the user context
releated to Peter

Web application gets an access
token on behalf of the user Peter

Client application invokes the
microservice by passing the
JWT in an HTTP header

New JWT with a new
audience value

Security Token
Service (STS)

Peter

Order
Processing

Service

JWT

JWT

JWT

JWT

1

2

3 5

4

176 CHAPTER 7 Securing east/west traffic with JWT
In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works, the STS returns an
OAuth 2.0 access token that’s a JWT (or a JWS, to be precise):

{"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiJwZXRlciIsI
mF1ZCI6IiouZWNvbW0uY29tIiwidXNlcl9uYW1lIjoicGV0ZXIiLCJzY29wZSI6WyJmb28iXSwi
aXNzIjoic3RzLmVjb21tLmNvbSIsImV4cCI6MTUzMzI4MDAyNCwiaWF0IjoxNTMzMjc5OTY0LCJ
hdXRob3JpdGllcyI6WyJST0xFX1VTRVIiXSwianRpIjoiYjJjMzkxZjItMWI4MC00ZTgzLThlYjEt
NGE1ZmZmNDRlNjkyIiwiY2xpZW50X2lkIjoiMTAxMDEwMTAifQ.MBPq2ngesDB3eCjAQg_ZZd
sTd7_Vw4aRocS-ig-UHa92xe4LvEl7vADr7SUxPuWrCSre4VkMwN8uc7KAxJYWH2i0Hfb5haL3j
P7074POcRlKzoSoEB6ZJu7VhW5TVY4hsOJXWeldHqPccHTJNKbloUWBDyGYnnRyMG47wmQb2MManY
URFCFKwFZdO3eEOz0BRV5BX-PsyESgK6qwOV5C6MErVe_Ga_dbVjUR5BGjgjMDlmCoDf4O3gX
K2ifzh_PYlGgx9eHKPZiq9T1l3yWSvribNgIs9donciJHh6WSxT_SFyg7gS-CD66PgOuA8YRJ5g
g3vW6kJVtqsgS8oMYjA",
"token_type":"bearer",
"refresh_token":"",
"expires_in":1533280024,
"scope":"foo"}

The following is the payload of the decoded JWT access token that carries the audi-
ence value *.ecomm.com:

{
 "sub": "peter",
 "aud": "*.ecomm.com",
 "user_name": "peter",
 "scope": [
 "foo"
],
 "iss": "sts.ecomm.com",
 "exp": 1533280024,
 "iat": 1533279964,
 "authorities": [
 "ROLE_USER"
],
 "jti": "b2c391f2-1b80-4e83-8eb1-4a5fff44e692",
 "client_id": "10101010"
}

Now you’re done with steps 1 and 2 (figure 7.7), and the client application has a JWT
access token. In step 3, the client application talks to the Order Processing microser-
vice with this JWT. We’re going to skip that step and show you what happens in steps 4
and 5—the two most important steps, which show you how token exchange happens.

NOTE The STS we use in this chapter has not implemented the token ex-
change functionality (RFC 8693). So, you won’t be able to see how the token
exchange works with that STS, as explained in the rest of the section. Most of
the production-ready STS implementations support RFC 8693, and you can
use one of them in your real production deployment. Since the token
exchange is a standard API exposed by an STS following RFC 8693, the curl
commands we explain in the rest of the section will still work with any STS
that supports RFC 8693.

177Exchanging a JWT for a new one with a new audience
Suppose that the Order Processing microservice makes the following call with the
JWT it got in step 3. An STS that supports the token-exchange functionality in a stan-
dard way must implement the OAuth 2.0 Token Exchange specification (https://
tools.ietf.org/html/rfc8693). Run the following curl command, which exchanges
the JWT we have to a new one by talking to the STS. First, export the JWT you already
got from the STS (step 3 in figure 7.7) to an environmental variable (TOKEN) and
then use that environmental variable in your token exchange request:

\> export TOKEN=jwt_access_token
\> curl -v -X POST https://localhost:8443/oauth/token \
--basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" -k \
-d @- << EOF
grant_type=urn:ietf:params:oauth:grant-type:token-exchange&
subject_token=$TOKEN&
subject_token_type=urn:ietf:params:oauth:token-type:jwt&
audience=inventory.ecomm.com
EOF

In the request to the token endpoint of the STS, we need to send the original JWT in
the subject_token argument, and the value of the subject_token_type argu-
ment must be set to urn:ietf:params:oauth:token-type:jwt. For clarity, in the
preceding curl command, we used the TOKEN environmental variable to represent
the original JWT. Another important argument we use here is grant_type with the
value urn:ietf:params:oauth:grant-type:token-exchange.

 The STS validates the provided JWT, and if everything looks good, it returns a new
JWT with the requested audience value as in the following. Now the Order Processing
microservice can use this JWT to talk to the Inventory microservice:

{
 "access_token":"new_jwt_access_token",
 "issued_token_type":"urn:ietf:params:oauth:token-type:jwt",
 "token_type":"Bearer",
 "expires_in":60
}

If you run the preceding curl command against the STS that comes with this chapter,
it will fail and will result in the following error, because that STS does not support the
token exchange functionality:

{
 "error":"unsupported_grant_type",
 "error_description":
 "Unsupported grant type: urn:ietf:params:oauth:grant-type:token-exchange"
}

NOTE In chapter 12, we discuss how to use JWT to secure service-to-service
communications in a service mesh deployment with Istio. Istio is a service
mesh developed by Google that runs on Kubernetes. A service mesh is a decen-
tralized application-networking infrastructure between microservices in a

https://tools.ietf.org/html/rfc8693
https://tools.ietf.org/html/rfc8693

178 CHAPTER 7 Securing east/west traffic with JWT
particular deployment that provides resiliency, security, observability, and
routing control.

Summary
 A JWT, which provides a way to carry a set of claims or attributes from one party

to another in a cryptographically secure way, plays a key role in securing service-
to-service communications in a microservices deployment.

 You can use a JWT to carry the identity of the calling microservice, or the iden-
tity of the end user or system that initiated the request.

 JWT addresses two main concerns in a microservices security design: secur-
ing service-to-service communications and passing end-user context across
microservices.

 When the identity of the microservice isn’t relevant, but the identity of the end
user (system or human) is, you should prefer using JWT over mTLS. But still, in
practice you will use JWT with mTLS together to build a second layer of defense.

 Having a different or new JWT for each interaction among microservices is a
more secure approach than sharing the same JWT among all the microservices.

 JWT can be used for cross-domain authentication and attribute sharing.
 A self-issued JWT is issued by a microservice itself and used for authentication

among microservices.
 A nested JWT is a JWT that embeds another JWT. It carries the identity of both

the calling microservice and the end user.

Securing east/west
traffic over gRPC
In chapters 6 and 7, we discussed how to secure communications among microser-
vices with mTLS and JWT. All the examples in those chapters assumed that the
communication between the calling microservice and the recipient microservice
happens over HTTP in a RESTful manner with JSON messages. JSON over HTTP is
a common way of communicating among microservices. But another school of
thought believes that is not the optimal way.

 The argument is that human-readable, well-structured data interchange format
is of no value when the communication happens between two systems (or micro-
services). This is true, since you need human-readable message formats only for
troubleshooting purposes and not when your systems are running live. Instead of a

This chapter covers
 The role of gRPC in interservice communications

in a microservices deployment

 Securing interservice communications that
happen over gRPC using mTLS

 Securing interservice communications that
happen over gRPC using JWTs
179

180 CHAPTER 8 Securing east/west traffic over gRPC
text-based protocol like JSON, you can use a binary protocol like Protocol Buffers
(Protobuf). It provides a way of encoding structured data in an efficient manner when
communications happen among microservices.

 gRPC (https://grpc.io/) is an open source remote procedure call framework (or a
library), originally developed by Google. It’s the next generation of a system called
Stubby, which Google has been being using internally for over a decade. gRPC
achieves efficiency for communication between systems using HTTP/2 as the trans-
port and Protocol Buffers as the interface definition language (IDL). In this chapter,
we discuss how to secure communications between two microservices that happen
over gRPC. If you are new to gRPC, we recommend you first go through appendix I,
which covers gRPC fundamentals.

8.1 Service-to-service communications over gRPC
In this section, we discuss the basics of establishing a communication channel between
two parties over gRPC. We teach you how to run a simple gRPC client and a server
in Java. You can find the source code for this example in the chapter08/sample01
directory of the https://github.com/microservices-security-in-action/samples GitHub
repository.

 Our use case is something that simulates a service-to-service communication. The
popular scenario used throughout this book is an example of a retail store. We discuss
various use cases of this retail store in different chapters. In this section’s use case, a
customer makes an order by using our system. When a customer places an order, the
system needs to update its inventory to make sure the relevant product items that were
ordered are removed from the database.

 Our system is built in such a way that all major functions are separated into individ-
ual microservices. We have microservices for getting product information, processing
orders, updating inventory, shipping orders, and so on. In this particular use case, you
can assume that the Order Processing microservice is exposed to our clients via an
API gateway. When a client application makes a call to place an order, the Order Pro-
cessing microservice takes on the responsibility of making sure the order is properly
placed. Within this process, it performs a set of coordinated actions, such as process-
ing the payment, updating inventory, initiating the shipping process, and so on.

 The Inventory microservice is implemented as a gRPC service. Therefore, when
the Order Processing microservice needs to update the inventory while processing an
order, it needs to make a gRPC request to the Inventory microservice. Figure 8.1 illus-
trates this use case.

 As you can see, the communication between the Order Processing microservice
and Inventory microservice happens over gRPC. We will be focusing on the communi-
cation between only these two microservices in this section of the chapter.

 Let’s first look at the interface definition of the Inventory microservice, which uses
Protocol Buffers as its IDL. You can find the IDL of the Inventory microservice at

https://grpc.io/
https://github.com/microservices-security-in-action/samples

181Service-to-service communications over gRPC
chapter08/sample01/src/main/proto/inventory.proto. Here’s the service definition
of the Inventory microservice:

service Inventory {
 rpc UpdateInventory (Order) returns (UpdateReply) {}
}

This defines the Inventory microservice as having a single RPC method named
UpdateInventory. It accepts a message of type Order and returns a message of type
UpdateReply. The Order and UpdateReply message types are defined further in
the following listing.

message Order {
 int32 orderId = 1;
 repeated LineItem items = 2;
}

message LineItem {
 Product product = 1;
 int32 quantity = 2;
}

message Product {
 int32 id = 1;
 string name = 2;

Listing 8.1 The Protobuf definition of the Order and UpdateReply messages

Client
Application

Order
Processing

Service

A
P

I G
at

ew
ay

Inventory
Service

Order Processing microservice
calls the Inventory microservice
over gRPC

Figure 8.1 The client application places an order through an API
exposed on the API gateway. The client’s request is then delegated to the
Order Processing microservice. The Order Processing microservice calls
the Inventory microservice after the order is placed. The communication
between the Order Processing microservice and the Inventory
microservice happens over gRPC.

An Order has an ID and consists
of a collection of LineItem objects.

Each LineItem has a
quantity and a product.

182 CHAPTER 8 Securing east/west traffic over gRPC
 string category = 3;
 float unitPrice = 4;
}

message UpdateReply {
 string message = 1;
}

Let’s compile the code to autogenerate the service stub and client stub of the Inven-
tory microservice. To do that, navigate to the chapter08/sample01 directory by using
your command-line client and execute the following command:

\> ./gradlew installDist

If the stubs are successfully built, you should see a message saying BUILD SUCCESS-
FUL. You should also see a new directory being created with the name build. This
directory has the autogenerated stub classes from the sample01/src/main/proto/
inventory.proto file.

 Open the InventoryGrpc.java file in the build/generated/source/proto/main/
grpc/com/manning/mss/ch08/sample01 directory by using a text editor or IDE.
Within this file, you’ll find an inner class named InventoryImplBase with the fol-
lowing class definition:

public static abstract class InventoryImplBase implements
io.grpc.BindableService {

This is our Inventory microservice’s server stub. To provide the actual implementation
of the UpdateInventory RPC, we need to extend this class and override the
updateInventory method. Let’s take a quick look at how to run the inventory server
(which is the Inventory microservice) and inventory client now. To run the server, nav-
igate back to the chapter08/sample01 directory from your command-line client and
execute the following command:

\> ./build/install/sample01/bin/inventory-server

It should output a message saying the server has started on port 50051. Once the
server is started, we can execute our client program. To do that, open a new terminal
window, navigate to the chapter08/sample01 directory, and execute the following
command:

\> ./build/install/sample01/bin/inventory-client

If the client runs successfully, you should see a message on your terminal saying INFO:
Message: Updated inventory for 1 products. What happened here is that
the inventory client program executed the UpdateInventory RPC running on a dif-
ferent port/process (not a different host, because we’ve been using the same machine
for both client and server). The server process received the message from the client
and executed its UpdateReply method to send back the reply.

 Now that we’ve seen how a typical client server interaction happens, let’s take a
look at the server and client source code. To understand the client code, open up the

The message sent as a response to the
inventory update. The UpdateReply
message has a variable of type string.

183Service-to-service communications over gRPC
chapter08/sample01/src/main/java/com/manning/mss/ch08/sample01/Inventory
Client.java file by using a text editor or IDE. The client class in this case is instantiated
using its constructor in the manner shown in the following listing.

public InventoryClient(String host, int port) {

 this(ManagedChannelBuilder.forAddress(host, port)
 .usePlaintext()
 .build());
}

private InventoryClient(ManagedChannel channel) {
 this.channel = channel;
 inventoryBlockingStub = InventoryGrpc.newBlockingStub(channel);
}

What happens in listing 8.2 is that when the client is instantiated, a Channel is cre-
ated between the client and server. A gRPC Channel provides a connection to a
gRPC server on a specified host and port. In this particular example, we are disabling
TLS to keep things simple. You may notice that we explicitly set usePlaintext to
indicate that we are not doing TLS or mTLS on this Channel. We look at TLS specif-
ics later in this chapter. The created Channel is then used to instantiate a stub, named
InventoryBlockingStub. This stub will be used to communicate with the server
when RPCs are being executed. The reason this is called a blocking stub is because, in
this particular case, we’re using a stub that blocks the running thread until the client
receives a response or raises an error. The other alternative is to use the Inventory-
FutureStub, which is a stub that does not block the running thread and expects the
server to respond later.

 The communication between the client and server happens in the update-
Inventory method in the InventoryClient class. This method receives an object
of type OrderEntity, which contains the details of the confirmed order. It converts
the OrderEntity object into its respective RPC object and passes the RPC object to
the server:

public void updateInventory(OrderEntity order) {
UpdateReply updateResponse;
try {
updateResponse =
inventoryBlockingStub.updateInventory(orderBuilder.build());
} catch (StatusRuntimeException e) {
 logger.log(Level.WARNING, "RPC failed: {0}", e.getStatus());
 return;
 }
}

Listing 8.2 Instantiating the gRPC client

Construct the client connecting to
the InventoryServer with the
provided hostname and the port.

Channels are secure by
default (via TLS). We
disable TLS to avoid
needing certificates.

Instantiate the InventoryClient for
accessing the InventoryServer.

184 CHAPTER 8 Securing east/west traffic over gRPC
The inventoryBlockingStub.updateInventory(. .) statement transports the
Order object to the server and gets the response from the server. The server code
of the Inventory microservice is relatively simpler. To see what the server code
looks like, open the sample01/src/main/java/com/manning/mss/ch08/sample01/
InventoryServer.java file by using a text editor or IDE. The start method of
the InventoryServer.java file contains the code that starts the server, as shown in the
following listing.

private void start() throws IOException {
int port = 50051;
server = ServerBuilder.forPort(port)
 .addService(new InventoryImpl())
 .build()
 .start();

Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 InventoryServer.this.stop();
 System.err.println("Server shut down");
 }
});
}

This code starts the server on port 50051. It then adds gRPC services to be hosted on
this server process. In this particular example, we add only the Inventory microservice
by using the Java class InventoryImpl. This is an inner class declared within the
InventoryServer class, as shown in the following listing. It extends the autogene-
rated InventoryImplBase class and overrides the updateInventory method.

static class InventoryImpl extends InventoryGrpc.InventoryImplBase {

@Override
public void updateInventory(Order req,
 StreamObserver<UpdateReply> responseObserver) {

 UpdateReply updateReply = UpdateReply.newBuilder()
 .setMessage("Updated inventory for " + req.getItemsCount()
 + " products").build();
 responseObserver.onNext(updateReply);
 responseObserver.onCompleted();
}
}

When the InventoryClient class executes its updateInventory method, the
client stub is transported over the network through the Channel that was created

Listing 8.3 Starting the gRPC server

Listing 8.4 The implementation of the Inventory microservice

Adds gRPC services to be
hosted on this server process

Shutting down gRPC server
since JVM is shutting down

Updates the inventory
upon receiving a message

185Securing gRPC service-to-service communications with mTLS
between the client and server and executes the updateInventory method on the
server. In this example, the updateInventory method on the server simply replies
to the client, saying the inventory was updated with the number of items received on
the order request. In a typical scenario, this would probably update a database and
remove the items that were ordered from the stock.

8.2 Securing gRPC service-to-service
communications with mTLS
In this section, we look at securing a channel between two parties that communicate
over gRPC, using mTLS. In section 8.1, we discussed a simple communication channel
between a client and server over gRPC. We discussed a retail-store use case where the
Order Processing microservice communicates with the Inventory microservice to
update the inventory. In a traditional monolithic application architecture pattern,
processing orders and updating the inventory would have been done via two functions
within the same process/service. The scope of the updateInventory function would
be designed in such a way that it is directly (within the same process) accessible only
from the orders function.

 As you can see in figure 8.2, the only entry point into the monolith application is
through the /orders endpoint, which is exposed via the API gateway. The update-
Inventory function is directly inaccessible by anyone else.

Figure 8.2 In a monolithic application, functions that are not exposed over a network do not
have direct access unless within the application itself.

In microservices architecture, the Inventory microservice is deployed independently.
Therefore, anyone with direct access to the microservice at the network level can
invoke its functions. From our use case point of view, we need to prevent this. We need
to ensure that the inventory is updated only upon processing an order. We therefore

Client
Application

A
P

I G
at

ew
ay

Orders Function

Monolithic Application

updateInventory
Function

Database

/orders endpoint

The updateInventory
function is accessible only
via the orders function.

186 CHAPTER 8 Securing east/west traffic over gRPC
need to ensure that only the Order Processing microservice can execute the functions
on the Inventory microservice, even if others have direct access to it. Figure 8.3 illus-
trates this scenario.

Figure 8.3 Only the Order Processing microservice should be able to
access the Inventory microservice. All other accesses should be prevented.

As we discussed in chapter 6, this is where mTLS comes into play. mTLS allows us to
build an explicit trust between the Order Processing microservice and Inventory
microservice by using certificates. Whenever a communication happens between the
two parties over mTLS, the Order Processing microservice validates that it is actually
talking to the Inventory microservice by using regular TLS. And the Inventory
microservice validates that it is indeed the Order Processing microservice that calls it
by validating the certificate of the client (Order Processing microservice).

 Let’s run the same example as in section 8.1, but with mTLS enabled between the
Order Processing microservice and Inventory microservice. You can find the samples
for this section in the chapter08/sample02 directory. In addition to the prerequisites
defined in section 2.1.1, you also need to install OpenSSL on your computer.

NOTE If you do not want the pain of installing OpenSSL, you can run
OpenSSL as a Docker container, in the way we discussed in section 6.2.4.

You can check whether you already have OpenSSL installed by executing the follow-
ing command on your command-line tool:

\> openssl version

Client
Application

Order
Processing

Service

A
P

I G
at

ew
ay

Inventory
Service

Shipping
Service

Access should be granted when
being accessed by the Order
Processing microservice.

Access should be prevented
when being accessed by any
other microservice.

187Securing gRPC service-to-service communications with mTLS
The output of this command indicates the version of OpenSSL on your computer if
you have it installed. Check out the samples from the GitHub repository to your com-
puter and use your command-line client to navigate to the chapter08/sample02 direc-
tory. Execute the following command to compile the source code and build the
binaries for the client and server:

\> ./gradlew installDist

If the source is successfully built, you should see a message saying BUILD SUCCESSFUL.
You should also see a directory named build being created inside the sample02 directory.

 As the next step, we need to create the certificates and keys required for the inven-
tory client and inventory server (which is the Inventory microservice). In chapter 6, we
discussed in detail the fundamentals of mTLS, including the steps required to create
keys and certificates. We therefore will not repeat the same steps here. The mkcerts.sh
script (in the sample02 directory) will create the required certificates for us in one go.

 Note that you need to have OpenSSL installed on your computer for the script to
work. Execute the script from sample02 directory by using this command:

\> ./mkcerts.sh

The preceding command creates the required certificates in the /tmp/sslcert direc-
tory. Once the certificates are successfully created, we can start the inventory server,
which hosts the Inventory microservice by using the following command:

\> ./build/install/sample02/bin/inventory-server localhost 50440 \
/tmp/sslcert/server.crt /tmp/sslcert/server.pem /tmp/sslcert/ca.crt

If the server starts successfully, you should see the following message:

INFO: Server started, listening on 50440

As you can observe from the command we just executed, we pass in five parameters to
the process. Their values, along with their usages, are listed here:

 localhost—The host address to which the server process binds to
 50440—The port on which the server starts
 /tmp/sslcert/server.crt—The certificate chain file of the server, which

includes the server’s public certificate
 /tmp/sslcert/server.pem—The private key file of the server
 /tmp/sslcert/ca.crt—The trust store collection file, which contains the

certificates to be trusted by the server

NOTE If you need to know the importance of the certificate files and private
key file listed here, see chapter 6, which explains their importance in detail.

To start the client process, open a new terminal window and navigate to the
chapter08/sample02 directory and then execute this command:

\> ./build/install/sample02/bin/inventory-client localhost 50440 \
/tmp/sslcert/ca.crt /tmp/sslcert/client.crt /tmp/sslcert/client.pem

188 CHAPTER 8 Securing east/west traffic over gRPC
Similar to the way we executed the server process, we need to pass in similar parame-
ters to the client process as well. The parameters are as follows:

 localhost—The host address of the server
 50440—The port of the server
 /tmp/sslcert/client.crt—The certificate chain file of the client, which

includes the client’s public certificate
 /tmp/sslcert/client.pem—The private key file of the client
 /tmp/sslcert/ca.crt—The trust store collection file, which contains the

certificates to be trusted by the client

If the client executes successfully, you should see a message on your terminal:

INFO: Message: Updated inventory for 1 products

Let’s look at the source code to understand how we enabled mTLS on our server and
client processes. To look at the server code, open the sample02/src/main/java/com/
manning/mss/ch08/sample02/InventoryServer.java file by using a text editor or IDE.
Let’s first take a look at the start method, which starts the server process.

private void start() throws IOException {
server = NettyServerBuilder.forAddress(new InetSocketAddress(host, port))
 .addService(new InventoryImpl())
 .sslContext(getSslContextBuilder().build())
 .build()
 .start();

Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 System.err.println("Shutting down gRPC server since JVM is shutting down");
 InventoryServer.this.stop();
 System.err.println("*** server shut down");
 }
});
}

As you can see, we start the inventory server process by binding it to the host, which is
the first argument we passed to the server-starting command. The process is started on
the passed-in port. The following listing shows the getSslContextBuilder method.

private SslContextBuilder getSslContextBuilder() {
 SslContextBuilder sslClientContextBuilder =
 SslContextBuilder.forServer(new File(certChainFilePath),
 new File(privateKeyFilePath));

Listing 8.5 Starting the server to listen on the provided port over TLS

Listing 8.6 Building the server SSL context

The InventoryImpl constructor builds and
adds the Inventory microservice to the server

process by using the addService function.

This sslContext that is passed in
contains information such as the
server certificate file, private key

file, and trust store file.

189Securing gRPC service-to-service communications with mTLS
 if (trustCertCollectionFilePath != null) {
 sslClientContextBuilder.trustManager(
 new File(trustCertCollectionFilePath));
 sslClientContextBuilder.clientAuth(ClientAuth.REQUIRE);
 }
 return GrpcSslContexts.configure(sslClientContextBuilder,
 SslProvider.OPENSSL);
}

This sets some context variables, which define the behavior of the server process. By
setting sslClientContextBuilder.clientAuth(ClientAuth.REQUIRE), we are
mandating that the client application present its certificate to the server for verifica-
tion (mandating mTLS). Let’s now look at the client code and see the changes we had
to make in order for it to work over mTLS. First let’s recall a part of the client code
from listing 8.1; here’s how we implemented the constructor of the client class:

public InventoryClient(String host, int port) {
 this(ManagedChannelBuilder.forAddress(host, port)
 .usePlaintext()
 .build());
}

You may notice that we explicitly set usePlaintext to indicate that we are not doing
TLS or mTLS on this channel. The same constructor has been enhanced as follows to
enable TLS/mTLS:

public InventoryClient(String host, int port, SslContext sslContext)
throws SSLException {
 this(NettyChannelBuilder.forAddress(host, port)
 .negotiationType(NegotiationType.TLS)
 .sslContext(sslContext)
 .build());
}

We now have sslContext being set instead of using usePlaintext. The ssl-
Context bears information about the trust store file, client certificate chain file, and
the private key of the client. The following listing shows how the client sslContext is
built.

private static SslContext buildSslContext(String trustCertCollectionFilePath,
String clientCertChainFilePath, String clientPrivateKeyFilePath)
throws SSLException {
 SslContextBuilder builder = GrpcSslContexts.forClient();
 if (trustCertCollectionFilePath != null) {
 builder.trustManager(new File(trustCertCollectionFilePath));
 }
 if (clientCertChainFilePath != null

Listing 8.7 Building client SSL context

If a collection of trusted certificates is
provided, build the TrustManager. This is

required for any TLS connection.

190 CHAPTER 8 Securing east/west traffic over gRPC
 && clientPrivateKeyFilePath != null) {
 builder.keyManager(new File(clientCertChainFilePath),
 new File(clientPrivateKeyFilePath));
 }
 return builder.build();
}

The client is built in a way that you could run it with mTLS, with TLS, or without any-
thing at all. If you do not pass values to trustCertCollectionFilePath, client-
CertChainFilePath, and clientPrivateKeyFilePath in listing 8.7, the client
supports neither TLS nor mTLS. If you do not pass values to clientCertChain-
FilePath and clientPrivateKeyFilePath, but to trustCertCollection-
FilePath, then the client supports only TLS. If you pass values to all three
parameters, the client supports mTLS. When you tried out the client previously in this
section, you passed values to all three parameters, and that’s why it could successfully
connect to the Inventory microservice, which has mTLS enabled.

 Let’s try to run the client with just TLS (not mTLS) and see how our server
responds. Assuming your server process is still running, rerun the client process as fol-
lows (with fewer arguments):

\> ./build/install/sample02/bin/inventory-client localhost 50440 \
/tmp/sslcert/ca.crt

Here, we are providing only the trust store collection to the client, which makes the
client work in TLS mode only. After executing this command, you should notice an
error indicting the connection was refused. This is because on the server side we have
mandated mTLS, as we discussed in this section. In this mode, the server expects the
client to present its certificate information, and we have executed the client process
without specifying its own certificate and private key information.

8.3 Securing gRPC service-to-service
communications with JWT
In this section, we discuss in detail how to secure a communication channel between
two parties over gRPC using JWTs. In chapter 7, we discussed securing service-to-
service communications using JWTs. The same fundamentals apply throughout this
section as well. We’ll use the knowledge we gained in chapter 7 to understand how the
same concepts apply in the context of a gRPC communication channel.

 Also in chapter 7, we discussed the use cases for securing microservices with JWT,
the benefits of JWT over mTLS, and how both JWT and mTLS complement each
other. In this section, we use a practical scenario to demonstrate how you can use
JWTs effectively over gRPC.

 As shown in figure 8.4, we have the Order Processing microservice, which
exchanges the JWT it receives from the client application for another (second) JWT

If the client’s public/private keys are
provided, build the KeyManager.

This is required for mTLS.

191Securing gRPC service-to-service communications with JWT
with the help of an STS. This new JWT will then be passed along to the Inventory
microservice.

 When the Order Processing microservice performs the JWT exchange in step 3,
the STS has complete control over the JWT being issued. The STS can therefore
decide who the audience of the JWT should be, what other information to include/
exclude in the JWT, the scopes of the JWT, and so on. By specifying the scopes associ-
ated to the JWT, the STS determines which operations this JWT is allowed to perform
on the respective audience.

 You can find the source code related to the sample we discuss in this section inside
the chapter08/sample03 directory. This sample implements steps 3, 4, and 5 in figure
8.4. In the sample03 directory, you’ll find two subdirectories: one named sts and the
other named client_server. Let’s start by compiling and running the STS for us to get
a JWT.

 Open a command-line client tool, navigate to the sample03/sts directory, and exe-
cute the following command to compile the source code of the STS:

\> mvn clean install

The STS governs the
JWTs being issued.

The API gateway authenticates
Peter and gets JWT for which
the subject is Peter.

The Order Processing microservice
exchanges the JWT it receives for
another JWT that is scoped for the
operation it intends to perform.

The second JWT is passed along
to the Inventory microservice.

The API gateway forwards the request to
the Order Processing microservice and
adds the JWT as a header.

Client
ApplicationPeter uses the

application.

Order
Processing

Service

A
P

I G
at

ew
ay

Inventory
Service

Security Token
Service (STS)1

2

3

5

4

Figure 8.4 The JWT received by the Order Processing microservice is exchanged for a secondary JWT, which is
scoped to access the relevant operations on the Inventory microservice.

192 CHAPTER 8 Securing east/west traffic over gRPC
If the build is successful, you’ll see a BUILD SUCCESS message. Run the following
command to spin up the STS:

\> mvn spring-boot:run

If the STS starts properly, you should see a message similar to Started Token-

Service in 3.875 seconds. After the STS is started, open a new terminal tab and
use the following command to generate a JWT:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" -k \
-d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

This command makes a token request to the STS by using Peter’s credentials. And you
should get an access token in JWT form in the response, as shown next. Note that
we’ve omitted the long string that represents the JWT (which is the value of the
access_token parameter) and replaced it with jwt_token_value for brevity. You
can inspect the JWT token via https://jwt.io. It will show you the decoded JWT string.
Here’s the response:

{
 "access_token":"jwt_token_value",
 "expires_in":5999,
 "scope":"foo",
 "jti":"badc4a65-b6d6-4a1c-affc-3d0565cd2b55"
}

Once we have a JWT access token, we can use it to access the Inventory microservice.
To begin our gRPC service, first navigate to the chapter08/sample04/client_server
directory and execute the following command:

\> ./gradlew installDist

If the program compiles successfully, you should see a BUILD SUCCESSFUL message.
Let’s start the server process by executing the following command:

\> ./build/install/client_server/bin/inventory-server localhost 50440 \
/tmp/sslcert/server.crt /tmp/sslcert/server.pem

If the server starts successfully, you should see a message saying INFO: Server

started, listening on 50440. Note that we are using TLS only (not mTLS) for
this sample. We are using JWT as the client verification process. The next step would
be to start the client process. As per figure 8.4, this client process simulates the Order
Processing microservice. Before starting the client process, open a new terminal win-
dow, navigate to the chapter08/sample03/client_server directory, and set the value of
the access token as an environment variable by using the following command. Make
sure to replace jwt_token_value with your token’s actual value:

\> export TOKEN=jwt_token_value

https://jwt.io

193Securing gRPC service-to-service communications with JWT
Next, execute the following command on the same terminal window to execute the
gRPC client. Note that we are providing the value of the obtained JWT access token to
the gRPC client as an argument:

\> ./build/install/client_server/bin/inventory-client localhost 50440 \
/tmp/sslcert/ca.crt $TOKEN

If the client executes successfully, you should see a message saying INFO: Message:
Updated inventory for 1 products. Ideally, you can think of this as a request
initiated from the Order Processing microservice to the Inventory microservice. Let’s
now execute the same gRPC client without providing the JWT access token as an argu-
ment. Execute the following command on the same terminal window:

\> ./build/install/client_server/bin/inventory-client localhost 50440 \
/tmp/sslcert/ca.crt

You should see an error message: WARNING: RPC failed: Status {code=UNAU-
THENTICATED, description=JWT Token is missing from Metadata, cause
=null}. This is because the Inventory microservice is expecting a valid client JWT,
and when it doesn’t receive it, it throws an error.

 Unlike in HTTP, gRPC doesn’t have headers. gRPC supports sending metadata
between client and server. The metadata is a key-value pair map; the key is a string, and
the value can be a string or in binary form. Keys that contain binary data as the values
need to be suffixed with the string -bin; for example, key-bin. In the example we just
executed, we used metadata to transfer the JWT access token from client to server. We
used something called a ClientInterceptor, which intercepts the messages being
passed from client to server on the channel to inject the JWT access token as gRPC
metadata. The code for the ClientInterceptor can be found in the chapter08/
sample03/client_server/src/main/java/com/manning/mss/ch08/sample03/JWT
ClientInterceptor.java file. Its interceptCall method is the one that’s executed on
each message passed. The following listing shows what it looks like.

@Override
public <ReqT, RespT> ClientCall<ReqT, RespT> interceptCall(
 MethodDescriptor<ReqT, RespT> methodDescriptor,
 CallOptions callOptions, Channel channel) {
 return new ForwardingClientCall
 .SimpleForwardingClientCall<ReqT, RespT>(channel.newCall(
 methodDescriptor, callOptions)) {
 @Override
 public void start(Listener<RespT> responseListener, Metadata headers)
 {
 headers.put(Constants.JWT_KEY, tokenValue);
 super.start(responseListener, headers);
 }
 };
}

Listing 8.8 Method that executes on each message to inject the JWT

Sets the value of the
JWT access token
to request metadata

194 CHAPTER 8 Securing east/west traffic over gRPC
To understand how the JWTClientInterceptor class is set to the gRPC client, take a
look at the method in the following listing. This method is found in the Inventory-
Client class under the same package as the JWTClientInterceptor class.

public InventoryClient(String host,
 int port,
 SslContext sslContext,
 JWTClientInterceptor clientInterceptor) throws
 SSLException {
 this(NettyChannelBuilder.forAddress(host, port)
 .negotiationType(NegotiationType.TLS)
 .sslContext(sslContext)
 .intercept(clientInterceptor)
 .build());
}

We follow a similar approach on the server side to validate the JWT access token. The
server too uses an interceptor, called ServerInterceptor, to intercept incoming
messages and perform validations on them. The server interceptor class can be found
in the file chapter08/sample03/client_server/src/main/java/com/manning/mss/
ch08/sample03/JWTServerInterceptor.java. Its interceptCall method, shown in
the following listing, is executed on each message. We retrieve the JWT access token
from the metadata and validate it at this point.

@Override
public <ReqT, RespT> ServerCall.Listener<ReqT>
 interceptCall(ServerCall<ReqT, RespT> serverCall,
 Metadata metadata,
 ServerCallHandler<ReqT, RespT> serverCallHandler) {
 String token = metadata.get(Constants.JWT_KEY);

 if (!validateJWT(token)) {
 serverCall.close(Status.UNAUTHENTICATED
 .withDescription("JWT Token is missing from Metadata"), metadata);
 return NOOP_LISTENER;
 }

 return serverCallHandler.startCall(serverCall, metadata);
}

Summary
 In a microservices deployment, given that many interactions happen over the

network among microservices, JSON over HTTP/1.1 is not efficient enough.

Listing 8.9 Setting the JWTClientInterceptor class to the gRPC client

Listing 8.10 Method that executes on each message to validate the JWT

The client interceptor is set
to the channel being created
between the client and server.

Gets token from the request metadata. This
way, we can use gRPC metadata to pass in

an access token from client to server.

Validates
the token

195Summary
 gRPC operates over HTTP/2, which is significantly more efficient than HTTP/
1.1 because of request response multiplexing, binary encoding, and header
compression.

 Unlike in HTTP/1.1, HTTP/2 supports bidirectional streaming, which is bene-
ficial in microservice architectures.

 gRPC supports mTLS, which you can use to secure communication channels
among microservices.

 mTLS does not necessarily address the full spectrum of security we need to
ensure on microservice architectures; we therefore need to resort to JWTs in
certain cases.

 Unlike HTTP, gRPC does not have a concept of headers, so we have to use
metadata fields in gRPC to send JWTs.

 The client interceptors and server interceptors available in gRPC help to send
JWTs from clients to servers and to validate them.

Securing reactive
microservices
In chapter 6 and chapter 7, we discussed how to secure service-to-service communi-
cations with mTLS and JWT. Chapter 8 extended that discussion and explained
how mTLS and JWT can be used to secure communications happening over gRPC.
In all those cases, our examples assumed synchronous communications between
the calling microservice and the recipient microservice. The security model that
you develop to protect service-to-service communications should consider how
the actual communications take place among microservices: synchronously or
asynchronously.

This chapter covers
 Using Kafka as a message broker for interservice

communications

 Using TLS in Kafka to secure messages in transit

 Using mTLS to authenticate microservices
connecting to Kafka

 Controlling access to Kafka topics using access
control lists

 Using NATS for reactive microservices
196

197Why reactive microservices?
 In most cases, synchronous communications happen over HTTP. Asynchronous
communications can happen over any kind of messaging system such as RabbitMQ,
Apache Kafka, NATS, ActiveMQ, or even Amazon SQS. In this chapter, we discuss how
to use Kafka and NATS as a message broker, which enables microservices to communi-
cate with each other in an event-driven fashion, and how to secure the communica-
tion channels.

 Kafka is the most popular messaging system used in many microservice deploy-
ments. If you’re interested in learning more about Kafka, we recommend Kafka in
Action by Dylan Scott (Manning, 2020). NATS is an open source, lightweight, high-
performing messaging system designed for cloud-native applications, which is also an
alternative to Kafka. If you’re interested in learning more about NATS, we recom-
mend Practical NATS by Waldemar Quevedo (Apress, 2018).

9.1 Why reactive microservices?
In this section, we discuss the need to have reactive microservices in your microser-
vices deployment. A microservice is considered to be reactive when it can react to
events that occur in a system without explicitly being called by the event originator;
the recipient microservice is decoupled from the calling microservice. The microser-
vice that generates events doesn’t necessarily need to know which microservices con-
sume those events.

 Let’s take the example of a typical order-placement scenario. As we discussed in
chapter 8, multiple actions occur when an order is placed, some of which include the
following:

 Preparing the invoice and processing the payment
 Updating the inventory to reduce the items in stock
 Processing the shipment to the customer who placed the order
 Sending an email notification to the customer regarding the status of the

order

In a typical microservices deployment, each of these actions is performed by an inde-
pendent microservice. That way, each operation is independent from the other, and a
failure in one doesn’t cause an impact on others. For example, if a bug in the Ship-
ping microservice causes it to go out of memory, it doesn’t impact the rest of the func-
tionality when processing the order, and the order can still be completed.

 In previous chapters, we looked at how the Order Processing microservice becomes
the triggering point for the rest of the actions that take place. When an order is pro-
cessed by the Order Processing microservice, it initiates the rest of the actions that take
place, such as updating the inventory, initializing the shipment, and so on. This way, the
Order Processing microservice becomes the orchestrator for the rest of the actions
related to processing an order. Figure 9.1 illustrates this pattern further.

198 CHAPTER 9 Securing reactive microservices
Figure 9.1 The Order Processing microservice talks to other microservices to initiate events related to
processing an order, such as paying for the order, updating the inventory, and so on.

As you can see, the Order Processing microservice calls out to all the other microser-
vices so that they can perform their own respective actions. These types of interactions
between microservices elicit two types of actions: synchronous and asynchronous:

 The synchronous actions are those types that need to be completed in real time. For exam-
ple, the payment needs to be successfully concluded before the order can be
considered completed. Also, the Order Processing microservice needs to
update the system’s database to record an order successfully.

 The asynchronous actions are those types that can be performed later. The order can be
considered complete even if these actions (for example, updating the inven-
tory, processing the shipment, and sending an email to the customer) aren’t
performed in real time. These are the actions that we can perform offline, asyn-
chronous to the main operation.

For the Order Processing microservice to be the orchestrator that calls to the respec-
tive microservices to perform the remaining actions related to processing an order, it
needs to know how to invoke these microservices. This might include the connectivity
information of the relevant microservices, the parameters that need to be passed in,

The Order Processing microservice
talks to the rest of the microservices to
perform their own respective functions.

The client application makes a request
to the Order Processing microservice
to place an order.

Order
Processing

Microservice

Shipping
Microservice

Payment
Microservice

Notification
Microservice

Inventory
Microservice

199Why reactive microservices?
and so on. Take a look at the following listing for a code sample showing how the
Order Processing microservice would have to invoke functions to trigger the rest of
the actions to be performed.

try {
 updateResponse = inventoryStub.updateInventory(orderBuilder.build());
} catch (StatusRuntimeException e) {
 logger.log(Level.WARNING,
 "Unable to update inventory. RPC failed: {0}", e.getStatus());
 return;
}

try {
 updateResponse = shippingStub.makeShipment(orderBuilder.build());
} catch (StatusRuntimeException e) {
 logger.log(Level.WARNING,
 "Unable to make shipment. RPC failed: {0}", e.getStatus());
 return;
}

try {
 updateResponse = notificationsStub.sendEmail(orderBuilder.build());
} catch (StatusRuntimeException e) {
 logger.log(Level.WARNING,
 "Unable to send email to customer. RPC failed: {0}", e.getStatus());
 return;
}

Imagine a situation where we need a new action to be performed when an order is
being processed. Say, for example, we introduce a new feature that tracks the buying
patterns of each customer so that we can provide recommendations to other buyers. If
we introduce this new feature as a separate microservice, we would need to update the
Order Processing microservice to invoke this new microservice as well. This causes us
to make code changes to the Order Processing microservice and to redeploy it in
order to consume the features the new microservice provides.

 As you may have observed, the Order Processing microservice becomes a trigger
for multiple actions being performed. It’s responsible for initiating the shipment,
sending email, and updating the inventory. But although these actions must be per-
formed for an order to be complete, having the Order Processing microservice per-
form so many actions is not ideal, as per the principles of microservices architecture.

 The two main things that are mandatory for the order to be successfully recorded
are the payment processing and the database update (which records the transac-
tions). The rest of the actions can be performed asynchronously after the two main
actions are complete. This is where reactive microservices become useful.

 Reactive microservices work in such a way that the microservices are attentive to
events that occur in the system and act accordingly, based on the type of event that

Listing 9.1 Order Processing microservice calls other services synchronously

200 CHAPTER 9 Securing reactive microservices
occurs. In our example, the Order Processing microservice, when finished recording
the customer’s order, emits an event to the system with the details of the order. The
rest of the microservices, which are paying attention to these events, receive the order
event and react to it accordingly. By reacting, they perform their respective operations
upon receiving the event. For example, when the Shipping microservice receives the
order event, it performs the actions necessary to ship the order to the customer who
placed it.

 Reactive microservices create a loose coupling between the source microservice
that initiates the event and the target microservices that receive and react to the event.
As we saw in figure 9.1, in the older, traditional way of performing these actions,
there’s a direct link from the Order Processing microservice to the rest of the
microservices (Inventory, Shipping, and so on). With reactive microservices, this link
becomes indirect. This happens by introducing a message broker solution into our
microservices deployment. Figure 9.2 illustrates this solution.

 As you see, the Order Processing microservice emits an event (sends a message) to
the message broker. All other microservices interested in knowing about the orders
being processed in the system are subscribed to the particular topic on the broker.

Upon receiving an order event, the consumer microservices start executing their pro-
cesses to complete the tasks they are responsible for. For example, when the Inventory
microservice receives the order event, it starts executing its code to update the inven-
tory as per the details in the order. The key benefit in this architecture is the loose
coupling between the source and the target microservices. This loose coupling allows
the Order Processing microservice to focus on its main responsibility, which is to
ensure that the payment is properly processed (synchronously) via the Payment
microservice and the recording of the order itself in the system.

 Another major benefit with event-driven architecture is that it allows us to add new
functionality to the system without affecting the current code. Referring to the same
example we discussed earlier, imagine that we want to introduce a feature that tracks a
user’s buying patterns. With the older architecture, if we had to introduce a new
microservice to track the buying patterns, we also had to change the Order Processing
microservice so that it could talk to the Buying History microservice.

Topics vs. Queues
In messaging systems, the message producers publish messages to either a queue
or a topic. Consumers of the message subscribe to the queues or topics of interest
to receive the messages. A topic is used when we want all the subscribers to receive
the event and process it. A queue is used when an event needs to be processed by
one subscriber only, the first subscriber to receive it.

201Why reactive microservices?
Figure 9.2 Introducing a message broker into the architecture. The Order Processing microservice calls the
Payment microservice directly because payment is a mandatory and synchronous step in processing the order.
It then emits an event to the message broker that delivers the order details to the rest of the microservices
asynchronously. This makes the link between the Order Processing microservice and the other microservices
indirect.

But with the reactive architecture, all we need to do is to make the Buying History
microservice aware of the order event by linking it to a message broker. This way, the
Buying History microservice gets to know the details of each order when an order is
processed. This gives us the flexibility to add new functionality to the system without
having to change and redeploy old code. Figure 9.3 illustrates the introduction of the
Buying History microservice into this architecture.

Notification
Microservice

Inventory
Microservice

Shipping
Microservice

Payment
Microservice

Order Processing microservice calls the
Payment microservice directly since this
is a synchronous and mandatory step in
processing the order.

The message broker notifies the
rest of the microservices that are
subscribed to the order events.

Client application makes a
request to the Order Processing
microservice to place an order.

Order Processing microservice
emits an event to the broker
with the details of the order.

Order
Processing

Microservice

Message
Broker

202 CHAPTER 9 Securing reactive microservices
Figure 9.3 Introducing the Buying History microservice to the system so that we can benefit from its capabilities
without having to make any changes in the Order Processing microservice or in anything else

9.2 Setting up Kafka as a message broker
In this section, we look at how to set up Apache Kafka as a message broker in our
microservices deployment to receive streams of data events from some microservices
and deliver them to other microservices in an asynchronous fashion. We discuss how
to install Kafka, create a topic, and then transfer a message from a message producer
to a receiver.

 Apache Kafka is an open source, distributed streaming platform. One microservice
can publish streams of records to topics in Kafka, and another microservice can sub-
scribe to one or more topics in Kafka and consume streams of records. Kafka can
receive, process, and store streams of data.

 To set up Kafka on your local machine, first go to https://kafka.apache.org/
downloads and download it. The version we use in this chapter is 2.5.0 (with Scala ver-
sion 2.13), the latest version as of this writing. Kafka 2.5.0, released in April 2020, is
the first Kafka version to support TLS 1.3 (along with Java 11 support). Once you have
downloaded it, extract the zip archive to a location of your choice. Use your
command-line tool to navigate to the location where you extracted Kafka and navigate
inside the Kafka directory; we refer to this location as kafka_home.

Notification
Microservice

Buying History
Microservice

Inventory
Microservice

Shipping
Microservice

Payment
Microservice

The Buying History microservice
has been added to the system
with no impact to the rest of the
microservices.

Order
Processing

Microservice

Message
Broker

https://kafka.apache.org/downloads
https://kafka.apache.org/downloads

203Setting up Kafka as a message broker
 Note that we’ll use the Linux executables in Kafka for the examples in this chapter.
If you’re operating in a Windows environment, the corresponding executables (alter-
natives for the .sh files) can be found in the kafka_home/bin/windows directory. For
example, the alternative for the executable bin/zookeeper-server-start.sh for Windows
is bin/windows/zookeeper-server-start.bat.

 Kafka requires a ZooKeeper server to run. Apache ZooKeeper (https://zookeeper
.apache.org/) is a centralized service that provides various capabilities for managing
and running distributed systems. Some of these capabilities include distributed syn-
chronization, grouping services, naming services, and so on. Figure 9.4 illustrates how
ZooKeeper coordinates across the Kafka cluster.

Figure 9.4 ZooKeeper coordinates the nodes in the Kafka cluster.

To run ZooKeeper, execute the following command by using your command-line ter-
minal from within the kafka_home directory:

\> bin/zookeeper-server-start.sh config/zookeeper.properties

Once ZooKeeper is up and running, we can start the Kafka server. Open a new tab on
your command-line client and navigate to the kafka_home directory; then execute the
following command:

\> bin/kafka-server-start.sh config/server.properties

Once the Kafka server is running, we can create our topic for publishing messages.
Kafka, by default, comes with a utility tool that helps us to create topics easily. Open a
new tab on your command-line client and navigate to the kafka_home directory as
before. Let’s create our first topic by executing the following command. Note that
we’ll use firsttopic as the name of the topic we’re creating:

\> bin/kafka-topics.sh --create --bootstrap-server localhost:9092 \
--replication-factor 1 --partitions 1 --topic firsttopic

ZooKeeper

First Topic

Kafka Broker Cluster

\> producer \> consumer

https://zookeeper .apache.org/

204 CHAPTER 9 Securing reactive microservices
To see whether the topic was created successfully, you can execute the following com-
mand in your command-line client. It should list the topic that we just created in the
output:

\> bin/kafka-topics.sh --list --bootstrap-server localhost:9092

Now that Kafka is up and running and a topic is created on it, we can start to send and
receive messages from Kafka. Open a new tab in your command-line client from the
kafka_home directory and execute the following command to start a console process
that we can type a message into:

\> bin/kafka-console-producer.sh --broker-list localhost:9092 \
--topic firsttopic

This returns a prompt so you can type your messages. Before we start typing in any
message, though, let’s start a message consumer process as well, so we can observe the
messages being typed in. Open a new terminal tab from the kafka_home directory
and execute this command to start a consumer process:

\> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
--topic firsttopic --from-beginning

Now go back to the previous prompt and start typing in messages. Press the Enter key
after each message. You should notice that the messages you type appear on the termi-
nal tab on which you started the consumer process. What happens here is that your
first command prompt delivers a message to a topic named firsttopic. The con-
sumer process is subscribed to this topic. When a message is delivered to a topic that
the consumer process has subscribed to, it receives the corresponding message. And,
in this particular case, the consumer process simply outputs the received message to
the console. This is illustrated in figure 9.5.

Figure 9.5 The producer process puts events into the topic in the Kafka server. The consumer process
receives the events.

First Topic

Kafka Server

\> producer \> consumer

Producer puts events
into the topic in Kafka.

Consumers subscribed
to the topic receive
the published events.

205Developing a microservice to push events to a Kafka topic
Once you’ve tried out this part, you can close the console process that you typed mes-
sages into and the consumer process that displayed the messages. But keep the Kafka
processes up and running because we need Kafka for trying out the examples in
section 9.3.

9.3 Developing a microservice to push
events to a Kafka topic
In this section, we discuss how to develop a microservice in Spring Boot to push events
to a Kafka topic. The microservice receives messages via HTTP, and those messages
are then converted into events and pushed to a topic on Kafka. You can find all the
samples in the https://github.com/microservices-security-in-action/samples GitHub
repository. Navigate to the chapter09/sampe01 directory by using your command-line
tool and execute the following command from within the sample01 directory to build
the Order Processing microservice:

\> mvn clean install

Make sure that you have Kafka running as per the instructions given in section 9.2.
Execute the following command to run the Order Processing microservice:

\> mvn spring-boot:run

Once the Order Processing microservice starts, you should see a topic named ORDERS
being created on Kafka. You can verify that it’s there by listing the topics in Kafka. Exe-
cute the following command in a new terminal window from within the kafka_home
location:

\> bin/kafka-topics.sh --list --bootstrap-server localhost:9092

Let’s now open a new console process that prints the messages sent to the ORDERS topic.
As in section 9.2, we execute this command from within the kafka_home directory:

\> bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 \
--topic ORDERS --from-beginning

Once the console process is running, we can send a message to the Order Processing
microservice and observe its behavior. Open a new terminal window and navigate to
the sample01 directory and execute the following curl command to send a request
to the Order Processing microservice to place an order:

\> curl http://localhost:8080/order -X POST -d @order.json \
-H "Content-Type: application/json" -v

The order.json file (which is inside the sample01 directory) contains the message (in
JSON format) that we sent to the Order Processing microservice. If the order was placed
successfully, you should get an HTTP 201 response code to the request. If you observe
the console process that prints messages on the ORDERS topic, you should see that the
content within the order.json file (request payload) has been printed on the console.

https://github.com/microservices-security-in-action/samples

206 CHAPTER 9 Securing reactive microservices
 What happened here was that we used curl to send an HTTP request to the Order
Processing microservice to place an order. While the Order Processing microservice
took care of the business logic related to placing the order, it also sent an event (mes-
sage) to the Kafka ORDERS topic. Any process that subscribes to the ORDERS topic now
receives the order details via the topic and can execute their respective actions. In our
case, the console process printed the order details to the output. Figure 9.6 illustrates
this scenario. In section 9.4, we discuss a process that listens to these order events and
performs some actions.

Figure 9.6 curl makes an HTTP request to the Order Processing microservice to place an order. After
processing its logic, the Order Processing microservice puts an event into the ORDERS topic in Kafka
with the details of the order. The consumer process subscribed to the ORDERS topic receives the order’s
details through Kafka.

Let’s take a look at the code that processes the order. The OrderProcessing.java file
found in sample01/src/main/java/com/manning/mss/ch09/sample01/service hosts
the Order Processing microservice code. Its createOrder method is executed when
it receives the HTTP request to place the order, as the following listing shows.

@RequestMapping(method = RequestMethod.POST)
public ResponseEntity<?> createOrder(@RequestBody Order order) {
 if (order != null) {
 order.setOrderId(UUID.randomUUID().toString());
 URI location = ServletUriComponentsBuilder
 .fromCurrentRequest().path("/{id}")

Listing 9.2 The createOrder method in the Order Processing microservice

Order
Processing

Microservice

ORDERS

Kafka Server

\> curl

\> consumer

Using curl, we make an HTTP request
to the Order Processing microservice
to place an order in the system.

The Order Processing
microservice publishes an
event to the ORDERS topic
with the details of the order.

The consumer process
receives the order detail
via the topic in Kafka.

207Developing a microservice to read events from a Kafka topic
 .buildAndExpand(order.getOrderId()).toUri();
 publisher.publish(order);
 return ResponseEntity.created(location).build();
 }
 return ResponseEntity.status(HttpStatus.BAD_REQUEST).build();
}

The publish method used in listing 9.2 is declared in the OrderPublisher.java file, as
shown in the following listing.

@Service
public class OrderPublisher {
 @Autowired
 private Source source;
 public void publish(Order order){
 source.output().send(MessageBuilder
 .withPayload(order).build());
 }
}

We use Spring Cloud’s Binders (http://mng.bz/zjZ6) to bind the Order Processing
microservice to Kafka. Spring’s Binder abstractions allow us to bind our program to
different types of streaming implementations. To find out how it connects to the
Kafka server, take a look at the applications.properties file in the chapter09/
sample01/src/main/resources directory, also listed here:

spring.cloud.stream.bindings.output.destination:ORDERS
spring.cloud.stream.bindings.output.content-type:application/json
spring.cloud.stream.kafka.binder.zkNodes:localhost
spring.cloud.stream.kafka.binder.zkNodes.brokers: localhost

You’ll see several properties. One property tells our program which topic in Kafka to
connect to (in this case, ORDERS), and two other properties specify the ZooKeeper
connection details (in this case, localhost). You may notice that we haven’t speci-
fied the ZooKeeper ports. That’s because we’re working with the default ports in Zoo-
Keeper (2181). If you want to use nondefault ports, you need to specify the
connection details in the format <host>:<port> (localhost:2181).

9.4 Developing a microservice to read
events from a Kafka topic
In this section, we discuss how to create a microservice that reads and acts upon the
events received from our Order Processing microservice. In section 9.3, we discussed
how we could get the Order Processing microservice to send events to a topic in Kafka
when an order is processed. In this section, we discuss how to implement our Buying

Listing 9.3 Publishing the order to the Kafka topic

Publishes the message to the
Kafka topic after the order-
processing logic completes

http://mng.bz/zjZ6

208 CHAPTER 9 Securing reactive microservices
History microservice to track customers’ buying patterns. This service listens on the
ORDERS topic in Kafka. When it receives an order event, it acts on the event and exe-
cutes its logic related to analyzing and recording the purchase. Figure 9.7 illustrates
this architecture.

Figure 9.7 The Buying History microservice now receives the order details via Kafka. It then starts
processing its task related to tracking the buying patterns of customers. This task is done
asynchronously to the processing of the order.

Let’s first run the Buying History microservice sample to see how the interactions
shown in figure 9.7 work. You can find the code related to the Buying History microser-
vice inside the chapter09/sample02 directory. You need to have both the Kafka server
(from section 9.2) and the Order Processing microservice up and running.

 The Order Processing microservice is the event source to the Kafka topic. The Buy-
ing History microservice is the one that consumes the events received on the Kafka
topic. Open your command-line tool and navigate to the sample02 directory and then
execute the following command to build this example:

\> mvn clean install

Once it’s built, execute this command to start the Buying History microservice:

\> mvn spring-boot:run

When the Buying History microservice starts, it subscribes to the Kafka topic named
ORDERS. Once the Buying History microservice is running, you can send an HTTP

Order
Processing

Microservice

ORDERS

Kafka Server

\> curl
Using curl, we make an HTTP request
to the Order Processing microservice
to place an order in the system.

The Order Processing
microservice publishes an
event to the ORDERS topic
with the details of the order.

The Buying History microservice
receives the details of the order
and performs its tasks related
to tracking the buying patterns
of customers.

Buying History
Microservice

209Developing a microservice to read events from a Kafka topic
request to the Order Processing microservice to create an order. Open a new tab on
your command-line tool and navigate to the sample02 directory. Execute the follow-
ing command to make an order request (note the Order Processing microservice
from section 9.3 handles this request):

\> curl http://localhost:8080/order -X POST -d @order.json \
-H "Content-Type: application/json" -v

If successful, this command returns a 201 response code. If you observe the console
output of the terminal tab that runs the Buying History microservice, you should see
the following message:

Updated buying history of customer with order: <order_id>

The Buying History microservice received the order details via the Kafka topic ORDERS.
On receiving this event, it executes its logic to track the purchase history of the cus-
tomer. In this particular case, it prints a message to the console saying it received the
order event and processed it. Figure 9.8 illustrates the sequence of events.

Figure 9.8 The sequence of events that happen when a client (curl) makes a request to place an
order. Note that steps 4 and 5 can happen in parallel because they’re on two independent processes.

Let’s take a look at the code of the Buying History microservice, which received the
message from Kafka when the order was placed. The BuyingHistoryMicroservice.java
file located in the sample02/src/main/java/com/manning/mss/ch09/sample02
directory contains the code of the Buying History microservice. The following listing
provides this code.

Order
Processing

Microservice

ORDERS

Kafka Server

\> curl

Responds to the client
with an HTTP 201

Records buying
pattern of customers

Order
request
via curl

Order Processing
microservice
processes the order

Buying History microservice
receives the order details via
the topic

Publishes an order
event to the topic

Buying History
Microservice

1

2

6

3 5

4

210 CHAPTER 9 Securing reactive microservices

@SpringBootApplication
@EnableBinding(Sink.class)
public class BuyingHistoryMicroservice {

 public static void main(String[] args) {
 SpringApplication.run(BuyingHistoryMicroservice.class, args);
 }

 @StreamListener(Sink.INPUT)
 public void updateHistory(Order order) {
 System.out.println(
 "Updated buying history of customer with order: "
 + order.getOrderId());
 }
}

As we discussed in section 9.3, the Spring runtime is configured to connect to Kafka
through the properties defined in the applications.properties file located in the
sample02/src/main/resources directory.

9.5 Using TLS to protect data in transit
In this section, we teach you how to enable TLS to protect the data that’s being passed
to and from the Kafka server to the Kafka producers and consumers (microservices).
In sections 9.3 and 9.4, we implemented the Order Processing microservice, which
sent events to Kafka, and the Buying History microservice, which received events
from Kafka.

 In both cases, the data that was passed along the wire between the Kafka server and
the respective microservices was in plaintext. This means that anyone having access to
the network layer of the microservices deployment can read the messages being
passed between the two microservices and the Kafka server. This isn’t ideal.

 We should encrypt data passed via the network, and the way to do that is to enable
TLS between the communicating parties. We’ll look at how to enable TLS on Kafka,
and how to enable TLS for both the Order Processing and Buying History
microservices.

9.5.1 Creating and signing the TLS keys and certificates for Kafka

In this section, we discuss how to create a key and a certificate for the Kafka server to
enable TLS communication. We also discuss how to sign the Kafka certificate by using
a self-generated CA. To create the CA and other related keys, you can use the gen-key.sh
file in the chapter09/keys directory, which includes a set of OpenSSL commands.

 OpenSSL is a commercial-grade toolkit and cryptographic library for TLS that’s
available for multiple platforms. Here we run OpenSSL as a Docker container, so you
don’t need to install OpenSSL on your computer, but you should have Docker
installed. If you’re new to Docker, check appendix E, but you don’t need to know

Listing 9.4 Microservice code that reads messages from Kafka

Tells the Spring runtime to
trigger this method when
a message is received on
the topic it’s listening to

211Using TLS to protect data in transit

pr
k
th
Docker to follow the rest of this section. To spin up the OpenSSL Docker container,
run the following command from the chapter09/keys directory.

\> docker run -it -v $(pwd):/export prabath/openssl

This docker run command starts OpenSSL in a Docker container with a bind mount
that maps the keys directory (or the current directory, which is indicated by ${pwd})
from the host filesystem to the /export directory of the container filesystem. This
bind mount lets you share part of the host filesystem with the container filesystem.
When the OpenSSL container generates certificates, it writes those to the /export
directory of the container filesystem. Because we have a bind mount, everything
inside the /export directory of the container filesystem is also accessible from the keys
directory of the host filesystem.

 When you run the command in listing 9.5 for the first time, it can take a couple of
minutes to execute and ends with a command prompt, where we can execute our
script to create all the keys. The following command that runs from the Docker con-
tainer executes the gen-key.sh file, which is inside the export directory of the con-
tainer. It’s the same script that’s inside the keys directory of your local filesystem:

sh /export/gen-key.sh
exit

Now, if you look at the keys directory in the host filesystem, you’ll find a set of files as
shown in the following listing. If you want to understand what happens underneath
the script, check out appendix G.

 buyinghistory
 buyinghistory.jks
 truststore.jks
 ca
 ca_cert.pem
 ca_key.pem
 kafka_server
 kafka_server.jks
 truststore.jks
 orderprocessing
 orderprocessing.jks
 truststore.jks

Listing 9.5 Spinning up OpenSSL in a Docker container

Listing 9.6 Generated keys and certificates

The keystore that carries the private
key and the CA signed certificate of
the Buying History microservice

The keystore that carries
the public certificate of the CA

The public certificate
of the CAThe

ivate
ey of
e CA

The keystore that carries the private key and
the CA signed certificate of the Kafka server

The keystore that carries
the public certificate of the CA

The keystore that carries the private
key and the CA signed certificate of
the Order Processing microserviceThe keystore that carries

the public certificate of the CA

212 CHAPTER 9 Securing reactive microservices
9.5.2 Configuring TLS on the Kafka server

In this section, we discuss how to enable TLS on the Kafka server. This requires chang-
ing a few configuration parameters and restarting the Kafka server.

 To enable TLS on Kafka, first make sure the Kafka server is shut down if it’s already
running, but keep the ZooKeeper server running (from section 9.2). You need to
press Ctrl-C on your keyboard on the respective command-line terminal process. After
the process shuts down, use your command-line client tool or file explorer to navigate
to the kafka_home/config directory. Open the server.properties file by using your text
editor of choice and add the following properties to the file.

listeners=PLAINTEXT://:9092,SSL://:9093
ssl.keystore.location=chapter09/keys/kafka_server/kafka_server.jks
ssl.keystore.password=manning123
ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1
ssl.keystore.type=JKS
ssl.secure.random.implementation=SHA1PRNG

Once the configurations are done, as shown in listing 9.7, you can save and close the
file and start the Kafka server. Use your command-line client and navigate to the
kafka_home directory and execute this command to start Kafka:

\> bin/kafka-server-start.sh config/server.properties

9.5.3 Configuring TLS on the microservices

In this section, we discuss how to enable TLS on our Order Processing and Buying
History microservices. We need to enable a few properties and provide these microser-
vices with the details of the truststore.jks file that we created in section 9.5.1. You can
find the updated code of the Order Processing microservice in the chapter09/
sample03/orders_ms directory, and the updated code of the Buying History microser-
vice in the chapter09/sample03/buying_history_ms directory.

 First, we need to configure the keystores that we created in section 9.5.1 with the
Order Processing and Buying History microservices. Let’s copy the keystore files from
the chapter09/keys directory to the corresponding microservice by executing the fol-
lowing commands from the chapter09 directory:

\> cp keys/orderprocessing/*.jks sample03/orders_ms/
\> cp keys/buyinghistory/*.jks sample03/buying_history_ms/

When configuring keystores with the Order Processing and Buying History microser-
vices, we need to consider two things:

 Enabling HTTPS for the Order Processing microservice so the client applica-
tions that talk to the Order Processing microservice must use HTTPS. We don’t

Listing 9.7 Content of server.properties file

Tells the Kafka server to listen on ports
9092 for plaintext (nonsecure) connections
and port 9093 for secure connections

Provides the absolute path to the
kafka_server.jks file. Make sure to

change this value appropriately.

213Using TLS to protect data in transit

,
need to do the same for the Buying History microservice because we don’t
expose it over HTTP.

 Configuring both Order Processing and Buying History microservices to trust
the public certificate of the CA that signed the public certificate of the Kafka
server. The Order Processing microservice connects to the Kafka server to pub-
lish messages, and the Buying History microservice connects to the Kafka server
to read messages. Both of these communications now happen over TLS, and
both the microservices have to trust the CA who issued the public certificate of
the Kafka server.

Use your file editor of choice to open the application.properties file located in
sample03/orders_ms/src/main/resources and then provide the proper values for the
properties spring.kafka.ssl.trust-store-location and spring.kafka.ssl.trust-store-password.
These are the properties that instruct Spring Boot to trust the CA who issued the public
certificate of the Kafka server.

 Also check the values of server.ssl.key-store and server.ssl.key-store-password prop-
erties. These two properties enable HTTPS transport for the Order Processing
microservice. Save and close the file after these changes are done. If you accept the
default values we used in our examples, as shown in the following listing, you don’t
need to make any changes.

server.ssl.key-store: orderprocessing.jks
server.ssl.key-store-password: manning123
spring.kafka.bootstrap-servers:localhost:9093
spring.kafka.properties.security.protocol=SSL
spring.kafka.properties.ssl.endpoint
 .identification.algorithm=
spring.kafka.ssl
 .trust-store-location=file:truststore.jks
spring.kafka.ssl.trust-store-password=manning123
spring.kafka.ssl.trust-store-type=JKS

NOTE By setting the ssl.endpoint.identification.algorithm property
as empty in listing 9.8, we effectively get our microservice to ignore the hostname
verification of the server certificate. In a real production system, we wouldn’t ide-
ally do this. A production server should have a proper DNS setup for the Kafka
server, and it should be exposed using a valid hostname (not localhost).
We could use the hostname in our server certificate and enforce hostname

Listing 9.8 Content of application.properties file

The location of the keystore that carries
the keys to enable HTTPS communicationThe password

of the keystore
Instructs the microservice to connect
to the TLS port (9093) of Kafka. If no
port is specified, the microservice
connects to the default Kafka port 9092
which is the plaintext port (no TLS).

Sets the protocol to SSL, which
enables TLS communication

By leaving this empty, we effectively get our
microservice to ignore the hostname verification
of the server certificate. In a production
deployment, you shouldn’t do this.

The location of the
keystore that carries
the CA’s public certificate

The password of
the trust store

The type of
trust store

214 CHAPTER 9 Securing reactive microservices
verification on the client (microservice), but for now, because we don’t have a
proper hostname to use, we’ll skip the hostname verification on the client.

Do the same for the application.properties file located at buying_history_ms/src/
main/resources and save and close the file. Once both these changes are done, use
your command-line client and navigate to the sample03/orders_ms directory. Execute
the following command to build the new Order Processing microservice:

\> mvn clean install

Once the build is successful, execute the following command to run the Order Pro-
cessing microservice. Make sure you have the Kafka server running before you exe-
cute this command. In case you’re still running the Order Processing microservice
from section 9.3, make sure you shut it down as well:

\> mvn spring-boot:run

Let’s now do the same for our Buying History microservice. In a new terminal tab, nav-
igate to the sample03/buying_history_ms directory and execute the following com-
mand to build the Buying History microservice:

\> mvn clean install

Once the build is successful, execute the following command to run the Buying His-
tory microservice. In case you’re still running the Buying History microservice from
section 9.4, make sure you shut it down as well:

\> mvn spring-boot:run

As in section 9.4, we can now make an order request using curl. Open a new terminal
tab on your command-line client, navigate to the sample03/orders_ms directory, and
execute the following command:

\> curl -k https://localhost:8080/order -X POST -d @order.json \
-H "Content-Type: application/json" -v

If you observe the console output of the terminal tab on which you ran the Buying
History microservice, you should see this output:

Updated buying history of customer with order: <order_id>

The preceding output means that the curl client has talked successfully to the Order
Processing microservice over TLS, and then the Order Processing microservice has
published an event to the ORDERS topic on Kafka over TLS, and finally, the Buying His-
tory microservice has read the order details from the ORDERS topic on Kafka over TLS.

9.6 Using mTLS for authentication
In section 9.5, we looked at enabling TLS between the microservices and the Kafka
server. In this section, we discuss how to protect communications between the
Order Processing microservice and the Kafka server, as well as the communications

215Using mTLS for authentication
between the Buying History microservice and the Kafka server with mTLS for client
authentication.

 By enabling TLS between the microservices and Kafka, we ensure that the data
being transmitted over the network among these parties is encrypted. Nobody sniffing
into the network would be able to read the data being transmitted unless they had
access to the server’s (Kafka) private key. By enabling TLS, we also made sure that the
microservices (clients) are connected to the intended/trusted Kafka server and not to
anyone or anything pretending to be the server.

 One problem that still remains, however, is that anyone that has network access to
the Kafka server and that trusts the CA that signed Kafka’s certificate can publish and
receive events to and from the Kafka server. For example, anyone could impersonate
the Order Processing microservice and send bogus order events to Kafka. Figure 9.9
illustrates this scenario.

Figure 9.9 The Bogus microservice impersonates the Order Processing microservice by
sending order events to Kafka. This makes the other microservices process these order events.
Kafka needs to explicitly allow only the trusted microservices to connect to it.

Here, the Bogus microservice is also sending events to Kafka, which would trigger
false events in the system and make the other microservices act on it. This would cause
our system to break. To prevent this from happening, we need to make sure that only

Notification
Microservice

Buying History
Microservice

Inventory
Microservice

Shipping
Microservice

The Bogus microservice
can also send events to
Kafka unless restricted by
Kafka itself.

The Order Processing
microservice sends
order events to Kafka.

Order
Processing

Microservice

Message
Broker

Bogus
Microservice

216 CHAPTER 9 Securing reactive microservices

.

the trusted Order Processing microservice and other trusted microservices are permit-
ted to send and receive events from Kafka.

 In section 9.5, we used TLS to establish this trust one way; the client was made to
trust the server before sending events to it. We now need to enable trust both ways, so
the server also trusts the clients connecting to it through mTLS. Let’s see how to
enable this on Kafka.

 Make sure your Kafka server is stopped. (You can stop it by pressing Ctrl-C on the
terminal process that’s running the Kafka server process.) Then open the server.prop-
erties file located at kafka_home/config with your text editor. Add the following
two configuration properties to it. Make sure to provide the absolute path pointing
to chapter09/keys/kafka_server/trustore.jks as the value of the ssl.truststore
.location property (we created the truststore.jks in section 9.5.1):

ssl.truststore.location=chapter09/keys/kafka_server/truststore.jks
ssl.truststore.password=manning123

Change the value of the property ssl.client.auth to required (in the same
server.properties file), as shown next. If this property is not there in the server.proper-
ties file, you need to add it. This tells the Kafka server to authenticate the clients con-
necting to Kafka before establishing a connection with them:

ssl.client.auth=required

Once these properties are set, save and close the file and start the Kafka server. The
Kafka server is now ready to accept requests from clients who can authenticate them-
selves. If you attempt to run the microservices from section 9.5, those would fail
because we’ve mandated client authentication on Kafka. The microservices from sec-
tion 9.5 didn’t have mTLS configurations enabled, hence the failure.

 The next step would be to configure the Order Processing and Buying History
microservices to be able to authenticate themselves when connecting to the Kafka
server. You can take a look at the code that’s related to the microservices in the
chapter09/sample03 directory.

 Let’s see how to enable mTLS authentication support for the Order Processing
microservice. Open the application.properties file located in the chapter09/
samole03/orders_ms/src/main/resources directory. You should see three new prop-
erties added, compared to the same in listing 9.8. Those are commented out by default,
so let’s uncomment them. The following listing shows the updated configuration.

spring.kafka.ssl.
 key-store-location=file:orderprocessing.jks
spring.kafka.ssl.key-store-password=manning123
spring.kafka.ssl.key-store-type=JKS

Listing 9.9 Content of application.properties file with mTLS support

The location of the keystore that
carries the microservice’s public
certificate and the private key. We
created this keystore in section 9.5.1

The password
of the keystoreThe type of

the keystore

217Controlling access to Kafka topics with ACLs
Do the same for the Buying History microservice as well. You can find the applica-
tion.properties file corresponding to the Buying History microservice located in the
chapter09/sample03/buying_history_ms/src/main/resources directory. There we
need to use buyinghistory.jks as the location of the keystore file. (We created the buying-
history.jks file in section 9.5.1 and copied it to the chapter09/sample03/buying
_history_ms directory in section 9.5.3.)

 Once both the application.properties files are updated, we can build and
run the two microservices. Make sure you aren’t running the microservices from previ-
ous sections before you execute the next steps. Build the Order Processing microser-
vice by executing the following command using your command-line client within the
sample03/orders_ms directory:

\> mvn clean install

Once the microservice is built, execute the following command to run the Order Pro-
cessing microservice:

\> mvn spring-boot:run

Perform the same steps to build and run the Buying History microservice from the
sample03/buying_history_ms directory and then execute the following curl com-
mand from sample03/orders_ms to make an order request to the Order Processing
microservice:

\> curl -k https://localhost:8080/order -X POST -d @order.json \
-H "Content-Type: application/json" -v

You should receive a successful response from this command, and you should notice
the following message printed on the terminal tab that’s running the Buying History
microservice:

Updated buying history of customer with order: <order_id>

9.7 Controlling access to Kafka topics with ACLs
In this section, we discuss how to control client (microservice) access to topics in
Kafka with access control lists (ACLs). In section 9.6, we discussed how to enable cli-
ent authentication using mTLS. We discussed how we could control connections to
the Kafka server by using mTLS. We made sure that only trusted clients could connect
to Kafka. We used mutually trusted certificates both on the client (microservice) and
the Kafka server to achieve this. We did that by getting a mutually trusted CA to sign
the certificates of both parties (the client and the server).

 We now want to get to a state where only selected microservices are given selective
permissions to Kafka topics. For example, we need to ensure that only the Order Pro-
cessing microservice can publish events into the ORDERS topic in Kafka, and only the
Buying History microservice should be permitted to read events from the ORDERS
topic. We can’t achieve this with mTLS only. Because the Buying History microservice
from section 9.6 was granted connection rights through mTLS, it can technically

218 CHAPTER 9 Securing reactive microservices
publish events to the ORDERS topic even though the code examples we used didn’t.
Figure 9.10 illustrates this scenario.

 Let’s take a look at how to prevent this from happening. What we have so far
achieved in this chapter is client and server authentication. To enforce more fine-
grained access control on Kafka topics, we need to implement authorization on Kafka.
Kafka provides a way of implementing authorization using ACLs. An ACL is basically a
rule on Kafka that either permits or denies a particular entity from performing an
action on a Kafka resource. Kafka ACLs are defined in the following format:

Principal P is [Allowed/Denied] Operation O From Host H
on any Resource R matching ResourcePattern RP

where

 Principal represents the entity (the client) that attempts to perform an
operation.

 Operation can be any one of several actions including creating a topic, writing
events to a topic, reading events from a topic, and so on.

 Host is the IP address/hostname of the Kafka client.

Notification
Microservice

Buying History
Microservice

Inventory
Microservice

Shipping
Microservice

The Order Processing
microservice sends order
events to Kafka.

Any microservice that is
trusted by Kafka can technically
send events to its topics unless
restricted through ACLs.

Order
Processing

Microservice

Message
Broker

Figure 9.10 The Buying History microservice sends events to Kafka topics. Any
microservice that’s trusted by Kafka can technically send events to its topics unless
restricted by ACLs. These events are delivered to microservices that are subscribed
to the Kafka topic unless they have been restricted by ACLs.

219Controlling access to Kafka topics with ACLs
 Resource is an entity on Kafka, such as a topic, a consumer group, and so on.
 ResourcePattern is a pattern that’s used to identify the resources on which

the rule is to be applied.

9.7.1 Enabling ACLs on Kafka and identifying the clients

In this section, we discuss how to enable ACLs on Kafka by changing configuration set-
tings. Before you make these changes to the configuration file, make sure your Kafka
server is shut down.

NOTE We’re continuing our configurations from the previous sections. If
you’ve directly jumped to this section, you need to first enable mTLS on
Kafka by reading through sections 9.5 and 9.6.

Open the server.properties file located at kafka_home/config with your text editor
and add the following properties to it:

authorizer.class.name=kafka.security.auth.SimpleAclAuthorizer
allow.everyone.if.no.acl.found=true
ssl.principal.mapping.rules=RULE:^CN=(.*?)$/$1/L,DEFAULT

The authorizer.class.name property contains the name of the class that executes
the authorization logic in Kafka. In this case, we use the default class that ships with
Kafka itself. If required, you can override the default implementation and add your
custom authorization class name to the configuration file. By adding this property to
the configuration file, we enable ACLs on Kafka.

 The allow.everyone.if.no.acl.found property specifies the action to be
performed in case an ACL isn’t found for a given resource. By default, Kafka denies
access to resources (topics) if no ACLs are declared on it. By setting this to true, we
override that behavior by saying unless a rule is applied on a resource via an ACL, let
anyone access it without restriction.

 The ssl.principal.mapping.rules property defines the patterns to identify
the principal (Kafka client). Because we use mTLS to authenticate clients (micro-
services), the Kafka server identifies a client through the properties in the correspond-
ing client certificate. We can have multiple rules defined in the ssl.principal
.mapping.rules property, and each rule is defined using the following format:

RULE:pattern/replacement/[LU]

This pattern is a regular expression that identifies the principal from the provided cre-
dentials (for example, a client certificate). By default, when we use an X509 certificate
for authentication (or mTLS), the principal identifier is its distinguished name (or DN).
The distinguished name of a certificate is a string that combines the certificate details
as key-value pairs delimited by commas. For a certificate having the common name (or
CN) orders.ecomm.com, the distinguished name could look like the following:

CN=orders.ecomm.com,OU=Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unknown

220 CHAPTER 9 Securing reactive microservices
Unless the ssl.principal.mapping.rules property is specified, Kafka checks for
the full distinguished name (as previously shown) when applying its ACLs. This prop-
erty lets you override the default behavior with a principal mapping rule such as that
shown here:

RULE:^CN=(.*?),OU=(.*?),O=(.*?),L=(.*?),ST=(.*?),C=(.*?)$/$1/L

We effectively instruct Kafka to accept any certificate (through the regular expression)
and consider only the value of its CN ($1) in lowercase (L) when matching declared
ACLs. We do that by setting the replacement string to $1 and by setting the optional
case matcher to L to indicate lowercase. For example, for a client (microservice) that
has a certificate whose distinguished name matches

CN=orders.ecomm.com,OU= Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unknown

Kafka identifies the client as orders.ecomm.com, and we need to set ACLs against
that name. When we created certificates for the Order Processing and Buying History
microservices in section 9.5.1, we used orders.ecomm.com and bh.ecomm.com,
respectively, as the CN for each microservice.

 Once the preceding configurations are done, save and close the server.properties
file and restart Kafka. Now that we have enabled ACLs on Kafka, the next step is to
define the ACLs on it.

9.7.2 Defining ACLs on Kafka

In this section, we use our command-line tool to define ACLs on Kafka. Because we
now have the ACLs enabled on Kafka and the server is up and running, we can pro-
ceed to define the rules we need to apply to the relevant topics. We’ll set up two rules:

 Allow only the Order Processing microservice to publish events to the ORDERS
topic (or to be the producer of the ORDERS topic).

 Allow only the Buying History microservice to consume events from the
ORDERS topic (or to be a consumer of the ORDERS topic).

Open your command-line tool, navigate to the kafka_home directory, and execute the
following command:

\> bin/kafka-acls.sh --authorizer-properties \
zookeeper.connect=localhost:2181 \
--add --allow-principal User:"orders.ecomm.com" --producer --topic ORDERS

This shows you output similar to the following:

Adding ACLs for resource `ResourcePattern(resourceType=TOPIC, name=ORDERS,
patternType=LITERAL)`:
 (principal=User:orders.ecomm.com, host=*, operation=DESCRIBE,
 permissionType=ALLOW)
 (principal=User:orders.ecomm.com, host=*, operation=CREATE,
 permissionType=ALLOW)
 (principal=User:orders.ecomm.com, host=*, operation=WRITE,
 permissionType=ALLOW)

221Controlling access to Kafka topics with ACLs
As you can observe from the output, we now have an ACL that says the user
orders.ecomm.com is allowed to create, write to, and describe the ORDERS topic. By
create, it indicates that orders.ecomm.com is allowed to create the topic if it doesn’t
exist. By write, it indicates that orders.ecomm.com is allowed to publish events to the
topic, and by describe, it indicates that orders.ecomm.com is allowed to view the
details of the topic. These operations are allowed from any host because we haven’t
explicitly mentioned which hosts to restrict these operations to. In case you want to
remove the ACL we just created, you can use the following command, but don’t run it
until we complete this chapter:

\> bin/kafka-acls.sh --authorizer-properties \
zookeeper.connect=localhost:2181 --remove \
--allow-principal User:"orders.ecomm.com" --producer --topic ORDERS

Next, execute the following command to enable read access to the ORDERS topic for
our Buying History microservice that has a certificate with the CN bh.ecomm.com:

\> bin/kafka-acls.sh --authorizer-properties \
zookeeper.connect=localhost:2181 --add \
--allow-principal User:"bh.ecomm.com" --operation Read --topic ORDERS

This shows you output similar to the following:

Adding ACLs for resource `ResourcePattern(resourceType=TOPIC, name=ORDERS,
patternType=LITERAL)`:
 (principal=User:bh.ecomm.com, host=*, operation=READ, permissionType=ALLOW)

If you want to remove the ACL we just created, you can use the following command,
but don’t run it until we complete this chapter:

\> bin/kafka-acls.sh --authorizer-properties \
zookeeper.connect=localhost:2181 --remove \
--allow-principal User:"bh.ecomm.com" --operation Read --topic ORDERS

You can list the ACLs on the ORDERS topic by executing the following command:

\> bin/kafka-acls.sh --authorizer-properties \
zookeeper.connect=localhost:2181 --list --topic ORDERS

This displays all the ACLs applied on the ORDERS topic. You should see output similar
to the following:

Current ACLs for resource `ResourcePattern(resourceType=TOPIC, name=ORDERS,
patternType=LITERAL)`:
 (principal=User:orders.ecomm.com, host=*, operation=DESCRIBE,
 permissionType=ALLOW)
 (principal=User:orders.ecomm.com, host=*, operation=CREATE,
 permissionType=ALLOW)
 (principal=User:orders.ecomm.com, host=*, operation=WRITE,
 permissionType=ALLOW)
 (principal=User:bh.ecomm.com, host=*, operation=READ,
 permissionType=ALLOW)

222 CHAPTER 9 Securing reactive microservices
We now have in place all the ACLs that control access to the ORDERS topic. Assuming
that both the Order Processing and Buying History microservices that we created in
section 9.6 are running, stop and then restart both. This is required because we
restarted the Kafka server.

 To test how ACLs work with Kafka, run the following curl command from the
chapter09/sample03/orders_ms directory to make an order request to the Order Pro-
cessing microservice:

\> curl -k https://localhost:8080/order -X POST -d @order.json \
-H "Content-Type: application/json" -v

You should receive a successful response from this command. Notice the following
message printed on the terminal tab that’s running the Buying History microservice:

Updated buying history of customer with order: <order_id>

9.8 Setting up NATS as a message broker
In this section, we take a look at NATS, an alternative message broker to Kafka, which
can be used by event-driven microservices to exchange messages/events. NATS
(https://nats.io/) is an open source, lightweight messaging system designed for cloud-
native applications. It is a project of the CNCF.

 Similar to Kafka, it too has a concept of publishers and subscribers. NATS publish-
ers send messages to subjects, and subscribers connected to those subjects can receive
the messages. A subject in NATS is just a string identifier that publishers and subscrib-
ers use to find each other. Figure 9.11 illustrates how subjects are used by NATS pub-
lishers and subscribers.

Figure 9.11 Publishers and subscribers connecting to the NATS server on the subject orders

NATS ServerNATS Publisher:
orders

NATS Subscriber 1:
orders

NATS Subscriber 2:
orders

Message

Message

Message

https://nats.io/

223Setting up NATS as a message broker
NATS offers an at-most-once quality of service for its messages: it will deliver messages
only to subscribers connected to and listening on the respective subject. Unlike in
Kafka, NATS core does not offer persistent message delivery. If the receiver is not con-
nected to the NATS server at the time of message delivery, it will not receive the mes-
sage after it reconnects. It is basically a fire-and-forget message delivery system. If the
clients require higher levels of message delivery guarantees, you either need to build
guarantees into the client applications themselves or use NATS streaming (https://
docs.nats.io/nats-streaming-concepts/intro).

 NATS is designed to perform fast processing of small messages, ideally less than
1 MB. However, teams have used NATS in production to exchange messages larger
than that, in the 10 MB range. Let’s take a quick look at setting up a NATS server and
getting a publisher and subscriber to connect to it.

 We will be using the NATS Docker image for this, so Docker is a prerequisite to
run this sample. Setting up a NATS server through Docker is simple. If you have
Docker installed, you just have to open a command-line terminal session and execute
the following command:

\> docker run -p 4222:4222 -p 8222:8222 -p 6222:6222 \
--name nats-server -ti nats:latest

If this is the first time you are running this command, this will download the NATS
server Docker image to your local Docker repository and run the Docker container.
You should see the following messages after the process has started:

Listening for client connections on 0.0.0.0:4222
Server is ready
Listening for route connections on 0.0.0.0:6222

We are now ready to connect to the NATS server for sending and receiving messages.
To stop the NATS server, you can execute the following command in a new terminal tab:

\> docker stop nats-server

To start the NATS server again, you can execute the following command:

\> docker start nats-server

Now that we have the NATS server up and running, the next step is to execute the
NATS client and server, which communicate with each other. The code of the client
and server can be found in the chapter09/sample05 directory. Open a new command-
line terminal, navigate to the sample05/natssub directory, and execute the following
command to compile the code of the subscriber (message receiver):

\> mvn clean install

Once the code is built, you should see a BUILD SUCCESS message on the terminal. You
should also see a directory named target being created within the natssub directory.

https://docs.nats.io/nats-streaming-concepts/intro
https://docs.nats.io/nats-streaming-concepts/intro

224 CHAPTER 9 Securing reactive microservices
Execute the following command on your terminal from within the natssub directory
to run the NATS subscriber process:

\> java -jar target/com.manning.mss.ch09.sample05.natssub-1.0.0.jar

This will start the NATS subscriber process, which will be listening on NATS for mes-
sages. Next, open a new command-line terminal, navigate to the sample05/natspub
directory, and execute the following command to compile the code of the NATS pub-
lisher process:

\> mvn clean install

Once the build is successful, execute the following command to run the NATS
publisher:

\> java -jar target/com.manning.mss.ch09.sample05.natspub-1.0.0.jar

This process will send a message to the NATS server. The NATS subscriber process
should receive the message that was sent. If you observe the terminal on which you
ran the NATS subscriber process, you should now see a message as follows:

Received message: Welcome to NATS

To take a look at the code that produced the message, open the file sample05/
natspub/src/main/java/com/manning/mss/ch09/sample05/natspub/NatsPublisher
.java with a text editor. You will see that the code in the following listing performs this
action.

try {
 natsConnection = Nats.connect("nats://localhost:4222");
 natsConnection.publish("updates", "Welcome to
 NATS".getBytes(StandardCharsets.UTF_8));
 natsConnection.flush(Duration.ZERO);
}

Similarly, open the file sample05/natssub/src/main/java/com/manning/mss/ch09/
sample05/natssub/NatsSubscriber.java with a text editor and observe the code in the
following listing that prints the message received via NATS.

try {
 natsConnection = Nats.connect("nats://localhost:4222");
 Subscription sub = natsConnection.subscribe("updates");
 Message msg = sub.nextMessage(Duration.ZERO);

Listing 9.10 Publishing a message via NATS

Listing 9.11 Consuming a message via NATS

Connects to the
NATS server

Pushes message to
subject "updates"

Makes sure the message goes
through before we close

Connects to the
NATS server

Subscribes to
subject "updates"

225Summary
 String str = new String(msg.getData(), StandardCharsets.UTF_8);
 System.out.print("Received message: ");
 System.out.println(str);
}

Similar to the options we discussed in securing a Kafka server, the connections to a
NATS server can be protected for confidentiality with TLS, and we can use mTLS or
JWT to authenticate client applications, which connect to the NATS server. We did not
talk about NATS security in detail in this book, but you can always refer to the NATS
documentation at https://docs.nats.io/nats-server/configuration/securing_nats.

Summary
 In a typical microservices deployment, the microservice that accepts requests

from a client application becomes a trigger for the rest of the microservices
involved in the flow of execution. This microservice can initiate both synchro-
nous and asynchronous types of events to other microservices to trigger their
execution.

 Reactive programming is a declarative programming paradigm that relies on
data streams and the propagation of change events in a system.

 A microservice being directly connected to another microservice causes scal-
ability and maintenance inefficiencies due to its dependency hierarchy. For
asynchronous events, we can build reactive microservices that are capable of
reacting to events that occur in a system, which reduces dependencies among
microservices.

 Apache Kafka is a distributed stream platform that operates similar to message
queues.

 In a microservices deployment, we use Kafka as a message broker to deliver
events from source microservices to target microservices asynchronously.

 With the reactive pattern, we eliminate direct links between microservices and
increase operational efficiencies. This pattern further reduces the response
times of the microservices for the users and provides a better foundation for
introducing new functionality into the system.

 TLS is used between the microservices and Kafka to encrypt messages being
transferred between them.

 Kafka uses mTLS to control which microservices are permitted to connect to it,
to authenticate the clients connecting to Kafka.

 Kafka uses ACLs as an authorization mechanism, which either permits or
denies various microservices performing different types of actions on Kafka
resources such as topics.

 Similar to Kafka, NATS is another popular open source technology that can be
used to build reactive microservices.

Prints the
received message

https://docs.nats.io/nats-server/configuration/securing_nats

226 CHAPTER 9 Securing reactive microservices

Part 4

Secure deployment

In part 3, you learned how to secure service-to-service communications in a
microservices deployment. But you still have all your microservices deployed on
your physical machine. In this part of the book, you’ll learn how to extend the sam-
ples you had in part 3 so you can deploy them in a containerized environment.

 Chapter 10 teaches you how to deploy your microservices in Docker and to
secure service-to-service interactions with mTLS and JWT. Also in chapter 10,
you’ll learn some of the built-in security features related to Docker.

 Chapter 11 teaches you how to deploy your microservices as Docker contain-
ers in Kubernetes and to secure service-to-service communications with JWT
over mTLS.

 In chapters 10 and 11, each microservice by itself must worry about doing
security processing. In short, each microservice embeds a set of Spring Boot
libraries to do security processing. In chapter 12, you’ll learn how to offload the
security processing overhead from your microservices by using the Istio service
mesh.

 When you’re finished with this part of the book, you’ll know how to deploy
your microservices in a containerized environment and protect service-to-service
communications by using the Istio service mesh.

228 CHAPTER

Conquering container
security with Docker
229

The benefits of microservices architecture come at a cost. Unless you have the
proper infrastructure to support microservices development and deployment with
a CI/CD pipeline, chances are that you’ll more than likely fail to meet your objec-
tives. Let us reiterate: one key objective of microservices architecture is the speed to
production. With hundreds of microservices, management becomes a nightmare
unless you have the right tools for automation. Packaging, distribution, and testing
of microservices in various environments before getting into production in an effi-
cient, less error-prone way is important.

 Over time, Docker has become the most popular tool (or platform) for packag-
ing and distributing microservices. It provides an abstraction over the physical
machine. Docker not only packages your software, but all its dependencies too.

This chapter covers
 Securing service-to-service communications with

JWT and mTLS in a containerized environment

 Managing secrets in a containerized environment

 Signing and verifying Docker images with Docker
Content Trust

 Running Docker Bench for Security

230 CHAPTER 10 Conquering container security with Docker
 In this chapter, we discuss deploying and securing microservices in a containerized
environment with Docker. We cover basic constructs of Docker in appendix E, so if
you’re new to Docker, look at that appendix first. Even if you’re familiar with Docker,
we still recommend you at least skim through appendix E, as the rest of the chapter
assumes you have the basic knowledge it presents.

 In practice, you don’t have only Docker; Docker is used within a container orches-
tration framework. A container orchestration framework (such as Kubernetes or Docker
Swarm) is an abstraction over the network. Container orchestration software like
Kubernetes lets you deploy, manage, and scale containers in a highly distributed envi-
ronment with thousands of nodes or more. In chapter 11, we discuss the role of a con-
tainer orchestration framework (Kubernetes) in securing microservices. We wanted to
highlight this at the beginning of this chapter to set your expectations correctly.

 The security of a microservices deployment should be thought of in the context of
a container orchestration framework, not just as container security in isolation. Also,
an important pattern we see in a containerized deployment is the Service Mesh pattern.
At a very high level, the Service Mesh pattern deals with service-to-service communica-
tions and helps to take most of the burden from microservices and delegate security
processing to a proxy. Istio is the most popular service mesh implementation, and in
chapter 12, we discuss securing microservices in a containerized environment with
Istio. Once again, this is another reason we shouldn’t think about container security
in isolation when securing microservices.

10.1 Running the security token service on Docker
In chapter 7, you learned about JWT and how to secure microservices with a JWT
issued by an STS. The use case from chapter 7 is illustrated in figure 10.1. In this sec-
tion, we build the same use case, but we deploy STS on Docker.

STS returns a JWT, which
carries the user context
related to Peter.

Client application gets an access
token on behalf of the user Peter.

Client application invokes
the microservice by
passing the JWT in
an HTTP header.

Security Token
Service (STS)

Peter

<Trust>

Order
Processing

Service

JWT

JWT

1

2

3

Figure 10.1 The STS issues a JWT self-contained access token to the web application (probably
following OAuth 2.0). The web application uses the token to access the Order Processing microservice
on behalf of Peter.

231Managing secrets in a Docker container
The source code related to all the samples in this chapter is available in the https://
github.com/microservices-security-in-action/samples GitHub repository, inside the
chapter10 directory. The source code of the STS, which is a Spring Boot application
developed in Java, is available in the chapter10/sample01 directory.

 To build the STS project and create a Docker image, run the first two commands
in listing 10.1 from the chapter10/sample01 directory. Then run the third command
in listing 10.1 to spin up the STS Docker container from the image you built. (Make
sure that you have no other services running on port 8443 on your local machine.)
These are standard commands that you’d use in any Docker project (section E.4 of
appendix E explains these in detail in case you’re not familiar with Docker).

\> mvn clean install
\> docker build -t com.manning.mss.ch10.sample01:v1 .
\> docker run -p 8443:8443 com.manning.mss.ch10.sample01:v1

Now let’s test the STS with the following curl command. This is the same curl com-
mand we used in section 7.6:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

In this command, the client ID of the web application is applicationid, and the client
secret (which is hardcoded in the STS) is applicationsecret. If everything works
fine, the STS returns an OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTI
zNzYsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0
aSI6IjRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6I
mFwcGxpY2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS
0Yoc2uBuAW5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ
4uFLAP0NpZ6BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2j-
dEhBp1TvMaRKLBDk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegB
bGgyXHVak2gB7I07ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlVeyjf
Ks_XIXgU5qizRm9mt5xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

10.2 Managing secrets in a Docker container
When we created a Docker image for the STS in section 10.1, we missed something
very important: we embedded all the keys and the credentials to access the keys in the
image itself. When we push this to a Docker registry, anyone having access to the

Listing 10.1 Building the STS and creating a Docker image

https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

232 CHAPTER 10 Conquering container security with Docker
image can figure out all our secrets; oh no, it’s the end of the world! Let’s see how
that’s possible.

 We’ve already published the insecure STS Docker image we created in section 10.1
to the Docker Hub as prabath/insecure-sts-ch10:v1, and it’s available to the
public. Anyone can execute the following docker run command to fetch the inse-
cure STS image and run it locally. (If you’re new to Docker, appendix E teaches you
how to publish a Docker image to Docker Hub.)

\> docker run -d prabath/insecure-sts-ch10:v1

34839d0c9e3b32b5f4fa6a8b4f7f52c134ed3e198ad739b722ca556903e74fbc

Once the container starts, we can use the following command to connect to the con-
tainer with the container ID and access the running shell. (Use the full container ID
from the output of the previous docker run command.)

\> docker exec -it 34839d0c9e3b32b5f4fa6a8b4f7f52c134… sh
#

Now we’re on the container’s shell and have direct access to its filesystem. Let’s first
list all the files under the root of the container filesystem:

ls
bin proc
com.manning.mss.ch10.sample01-1.0.0.jar root
dev run
etc sbin
home srv
keystore.jks sys
lib tmp
media usr
mnt var
opt

Now we can unzip the com.manning.mss.ch10.sample01-1.0.0.jar file and find all the
secrets in the application.properties file:

jar -xvf com.manning.mss.ch10.sample01-1.0.0.jar
vi BOOT-INF/classes/application.properties

The command displays the content of the application.properties file, which includes
the credentials to access the private key that’s used by the STS to sign the JWTs it
issues, as shown in the following listing.

server.port: 8443
server.ssl.key-store: /opt/keystore.jks
server.ssl.key-store-password: springboot
server.ssl.keyAlias: spring
spring.security.oauth.jwt: true

Listing 10.2 The content of the application.properties file

Keeps the private and public
keys of the service to use
in TLS communications

233Managing secrets in a Docker container
spring.security.oauth.jwt.keystore.password: springboot
spring.security.oauth.jwt.keystore.alias: jwtkey
spring.security.oauth.jwt.keystore.name: /opt/jwt.jks

10.2.1 Externalizing secrets from Docker images

In this section, let’s externalize the configuration files from the Docker image we cre-
ated for the STS. We need to externalize both the keystores (keystore.jks and jwt.jks)
and the application.properties files, where all our secrets reside.

 Let’s create a directory called config under chapter10/sample01 and move (not
just copy) the application.properties file from the chapter10/sample01/src/main/
resources/ directory to the new directory (chapter10/sample01/config). The sample
you downloaded from the GitHub already has the config directory; probably you can
delete it and create a new one. Then, let’s run the following two commands in listing
10.3 from the chapter10/sample01 directory to build a new JAR file without the appli-
cation.properties file and create a Docker image. This new Docker image won’t have
the two keystores (keystore.jks and jwt.jks) and the application.properties file in it.

\> mvn clean install

[INFO] BUILD SUCCESS

\> docker build -t com.manning.mss.ch10.sample01:v2 -f Dockerfile-2 .

Step 1/4 : FROM openjdk:8-jdk-alpine
 ---> 792ff45a2a17
Step 2/4 : ADD target/com.manning.mss.ch10.sample01-1.0.0.jar
com.manning.mss.ch10.sample01-1.0.0.jar
 ---> 2be952989323
Step 3/4 : ENV SPRING_CONFIG_LOCATION=/application.properties
 ---> Running in 9b62fdebd566
Removing intermediate container 9b62fdebd566
 ---> 97077304dbdb
Step 4/4 : ENTRYPOINT ["java", "-jar",
 "com.manning.mss.ch10.sample01-1.0.0.jar"]
 ---> Running in 215919f70683
Removing intermediate container 215919f70683
 ---> e7090e36543b
Successfully built e7090e36543b
Successfully tagged com.manning.mss.ch10.sample01:latest

You may notice a difference in this command from the command we ran in listing
10.1 to create a Docker image. In listing 10.3, we pass an extra argument, called -f,
with the value Dockerfile-2. This is how we can instruct Docker to use a custom file
as the manifest to create a Docker image instead of looking for a file with the name
Dockerfile. Let’s have a look at the content of Dockerfile-2, as shown in the follow-
ing listing.

Listing 10.3 Building the STS and creating a Docker image with externalized secrets

Keeps the private key,
which is used by the STS
to sign the JWTs it issues

234 CHAPTER 10 Conquering container security with Docker

FROM openjdk:8-jdk-alpine
ADD target/com.manning.mss.ch10.sample01-1.0.0.jar \
 com.manning.mss.ch10.sample01-1.0.0.jar
ENV SPRING_CONFIG_LOCATION=/opt/application.properties
ENTRYPOINT ["java", "-jar", \
 "com.manning.mss.ch10.sample01-1.0.0.jar"]

The first line of Dockerfile-2 instructs Docker to fetch the Docker image called
openjdk:8-jdk-alpine from the Docker registry and, in this case, from the public
Docker Hub. This is the base image of the Docker image we want to create. The sec-
ond line instructs Docker to copy the file com.manning.mss.ch10.sample01-1.0.0.jar
from the target directory of the host filesystem to the root of the container filesystem.
The third line instructs Docker to create an environment variable called SPRING
_CONFIG_LOCATION and point it to the /opt/application.properties file. The process
running inside the container reads this environment variable to find the location of
the application.properties file; then it looks for the file under the /opt directory of
the container filesystem. Finally, the fourth line tells Docker the entry point to the
container, or which process to run when we start the container.

 Unlike the image we created in section 10.1, we don’t add any keystore to the image
here, and there’s no application.properties file inside the image. When we spin up a
container from this image, we need to specify from where in the host filesystem the con-
tainer has to load those three files (two keystores and the application.properties file).

 Let’s run the commands in the following listing from the chapter10/sample01
directory to spin up a container from the Docker image we just created. If you’ve care-
fully looked into the command (listing 10.3) we used to build the Docker image, we
tagged it this time with v2, so we need to use the image in the following listing with
the v2 tag.

\> export JKS_SOURCE="$(pwd)/keystores/keystore.jks"
\> export JKS_TARGET="/opt/keystore.jks"
\> export JWT_SOURCE="$(pwd)/keystores/jwt.jks"
\> export JWT_TARGET="/opt/jwt.jks"
\> export APP_SOURCE="$(pwd)/config/application.properties"
\> export APP_TARGET="/opt/application.properties"

\> docker run -p 8443:8443 \
--mount type=bind,source="$JKS_SOURCE",target="$JKS_TARGET" \
--mount type=bind,source="$JWT_SOURCE",target="$JWT_TARGET" \

Listing 10.4 The content of Dockerfile-2

Listing 10.5 Running a Docker container with externalized files

Path from the host machine to
the keystore that carries TLS keysPath from the container filesystem to

the keystore that carries TLS keys Path from the host
machine to the
keystore that carries
the keys to sign JWTs

Path from the container
filesystem to the
keystore that carries
the keys to sign JWTs

Path from the host machine to
the application.properties file

Path from the container
filesystem to the

application.properties file

235Managing secrets in a Docker container
--mount type=bind,source="$APP_SOURCE",target="$APP_TARGET" \
com.manning.mss.ch10.sample01:v2

This looks different from the docker run command we executed in section 10.1.
Here we pass three extra –-mount arguments. The Docker image we used in section
10.1 to run the container had keystore.jks, jwt.jks, and application.properties files
built in. Now, because we don’t have those files inside the image, each time we exe-
cute docker run, we need to tell Docker how to load those files from the host filesys-
tem; that’s what the --mount argument does.

 The first –-mount argument binds the keystore/keystore.jks file from the host file-
system to the /opt/keystore.jks file in the container filesystem; the second –-mount
argument binds the keystore/jwt.jks file from the host filesystem to the /opt/jwt.jks
file in the container filesystem; and the third --mount argument binds the /config/
application.properties file from the host filesystem to the /opt/application.properties
file in the container filesystem. Once we start the container successfully, we see the fol-
lowing logs printed on the terminal:

INFO 30901 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 8443 (https)
INFO 30901 --- [main] c.m.m.ch10.sample01.TokenService :
Started TokenService in 4.729 seconds (JVM running for 7.082)

Now let’s test the STS with the following curl command. This is the same curl com-
mand we used in section 10.1.2:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

10.2.2 Passing secrets as environment variables

Once we externalize the configuration files and keystores from the Docker image, no
one will be able to find any secrets in it. But we still have secrets hardcoded in a config-
uration file that we keep in the host filesystem. Anyone who has access to the host file-
system will be able to find those. In this section, let’s see how to remove the secrets
from the configuration file (application.properties) and pass them to the container as
arguments at runtime.

 Let’s copy the content from the chapter10/sample01/application.properties file
and replace the content in the chapter10/sample01/config/application.properties
file with it. The following listing shows the updated content of the chapter10/
sample01/config/application.properties file.

server.port: 8443
server.ssl.key-store: /opt/keystore.jks
server.ssl.key-store-password: ${KEYSTORE_SECRET}

Listing 10.6 The sample01/config/application.properties file

A placeholder to read the
password of the keystore.jks file

236 CHAPTER 10 Conquering container security with Docker
server.ssl.keyAlias: spring
spring.security.oauth.jwt: true
spring.security.oauth.jwt.keystore.password: ${JWT_KEYSTORE_SECRET}
spring.security.oauth.jwt.keystore.alias: jwtkey
spring.security.oauth.jwt.keystore.name: /opt/jwt.jks

Here, we’ve removed all the secrets from the application.properties file and replaced
them with two placeholders: ${KEYSTORE_SECRET} and ${JWT_KEYSTORE

_SECRET}. Because our change is only in a file we’ve already externalized from the
Docker image, we don’t need to build a new image. Let’s spin up a container of the STS
Docker image with the command in the following listing (run from the chapter10/
sample01 directory) with the updated application.properties file.

\> export JKS_SOURCE="$(pwd)/keystores/keystore.jks"
\> export JKS_TARGET="/opt/keystore.jks"
\> export JWT_SOURCE="$(pwd)/keystores/jwt.jks"
\> export JWT_TARGET="/opt/jwt.jks"
\> export APP_SOURCE="$(pwd)/config/application.properties"
\> export APP_TARGET="/opt/application.properties"

\> docker run -p 8443:8443 \
--mount type=bind,source="$JKS_SOURCE",target="$JKS_TARGET" \
--mount type=bind,source="$JWT_SOURCE",target="$JWT_TARGET" \
--mount type=bind,source="$APP_SOURCE",target="$APP_TARGET" \
-e KEYSTORE_SECRET=springboot \
-e JWT_KEYSTORE_SECRET=springboot \
com.manning.mss.ch10.sample01:v2

Here we pass the values corresponding to the placeholders we kept in the applica-
tion.properties file as an argument to the docker run command under the name –e.
Once we start the container successfully, we’ll see the following logs printed on the
terminal:

INFO 30901 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 8443 (https)
INFO 30901 --- [main] c.m.m.ch10.sample01.TokenService :
Started TokenService in 4.729 seconds (JVM running for 7.082)

Now let’s test the STS with the following curl command. This is the same curl com-
mand we used in section 10.2.1:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

Listing 10.7 Running a Docker container with externalized files and credentials

A placeholder to
 read the password

of the jwt.jks file

Password to
access the
keystore.jks file

Password to access
the jwt.jks file

237Using Docker Content Trust to sign and verify Docker images
10.2.3 Managing secrets in a Docker production
deployment

Both approaches we discussed in sections 10.2.1 and 10.2.2 are fundamental for man-
aging secrets in a production containerized deployment. But neither approach pro-
vides a clean solution. In both cases, we keep credentials in cleartext.

 As we discussed at the beginning of the chapter, when we deploy Docker in a pro-
duction setup, we do that with some kind of a container orchestration framework.
Kubernetes is the most popular container orchestration framework, while Docker
Swarm is the container orchestration framework built into Docker. Both provide bet-
ter solutions to manage secrets in a containerized environment. In chapter 11, we dis-
cuss in detail how to manage secrets with Kubernetes. If you are new to Kubernetes,
appendix J provides a comprehensive overview.

10.3 Using Docker Content Trust to sign
and verify Docker images
In this section, we discuss how to use Docker Content Trust (DCT) to sign and verify
Docker images. DCT uses Notary (https://github.com/theupdateframework/notary)
for image signing and verification. Notary is an open source project that doesn’t have a
direct dependency on Docker.

 You can use Notary to sign and verify any content, not necessarily only Docker
images. As a best practice, when you publish a Docker image to a Docker registry (say,
for example, Docker Hub), you need to sign it so anyone who pulls it can verify its
integrity before use. Notary is an opinionated implementation of The Update Frame-
work (TUF) that we discuss in section 10.3.1, which makes better security easy.1

10.3.1 The Update Framework

In 2009, a set of security researchers implemented TUF, which was based on security
flaws identified in Linux package managers. It aimed to help developers maintain the
security of a software update system, even against attackers who compromise the
repository or signing keys.2 The first referenced implementation of the TUF specifica-
tion is called Thandy, which is an application updater for the popular software Tor
(www.torproject.org). If you’re interested in learning TUF in detail, we recommend
having a look at the TUF specification available at https://github.com/theupdate-
framework/specification.

1 An opinionated implementation guides you through something in a well-defined way with a concrete set of tools;
it gives you fewer options and dictates how to do something. This helps in a way, because when you are given
multiple options to pick from, you might struggle to find what is the best.

2 The Update Framework is a framework for securing software update systems; see https://theupdateframe
work.github.io/.

https://github.com/theupdateframework/specification
https://github.com/theupdateframework/specification
https://theupdateframework.github.io/
https://theupdateframework.github.io/
https://github.com/theupdateframework/notary
www.torproject.org

238 CHAPTER 10 Conquering container security with Docker
10.3.2 Docker Content Trust

DCT integrates Notary with Docker (from Docker 1.8 release onward) in an opinion-
ated way. In doing that, DCT doesn’t support all the functions Notary does, but only a
subset. If you’d like to do some advanced tasks related to key management, you’d still
need to use Notary, and a Notary command-line tool comes with the Docker distribu-
tion. Once the DCT is set up, it lets developers use pull, push, build, create, and
run Docker commands in the same way as before, but behind the scenes, DCT makes
sure all the corresponding images that are published to the Docker registry are signed
and that only signed images are pulled from a Docker registry.

 When you publish an image to the Docker registry, it’s signed by the publisher’s
(or your) private key. When you interact with a Docker image for the first time (via
pull, run, and so forth), you establish trust with the publisher of that image, and the
image’s signature is verified against the corresponding public key (of the publisher).
If you’ve used SSH, this model of bootstrapping trust is similar to that. When you SSH
a server for the first time, you’re asked whether to trust the server, and for subsequent
interactions, the SSH client remembers your decision.

10.3.3 Generating keys

Let’s use the following command to generate keys for signing with DCT. The docker
trust key generate command generates a public/private key pair with a key ID and
stores the corresponding public key in the filesystem under the same directory where
you ran the command. You can find the corresponding private key under ~/.docker/
trust/private directory. The key ID is generated by the system and is mapped to the
given name of the signer (in this example, prabath is the name of the signer). Also,
while generating the key, you will be asked to enter a passphrase and will need to
know the passphrase when you use the generated key later:

\> docker trust key generate prabath

Generating key for prabath...
Enter passphrase for new prabath key with ID 1a60acb:XXXXX
Repeat passphrase for new prabath key with ID 1a60acb: XXXXX
Successfully generated and loaded private key. \
Corresponding public key available: \
 /Users/prabathsiriwardana/dct/prabath.pub

The key generated by the command is called a delegation key, which you can find under
the same location you ran the command. Since we use prabath as the signer in the
command, the generated key carries the name prabath.pub.

 Next, we need to associate the public key of the delegation key with a Docker repos-
itory (don’t get it confused with a Docker registry; if you’re new to Docker, see appendix
E for the definition). Run the following command from the same location that you ran
the previous one to associate the public key of the delegation key with the prabath/

239Using Docker Content Trust to sign and verify Docker images
insecure-sts-ch10 repository. You should use your own repository (instead of
prabath/insecure-sts-ch10) in the following command, with your own key
(instead of prabath.pub) and your own signer name (instead of prabath). We’ve
already created this repository in Docker Hub with the image we built in section 10.1.

 If you get a 401 error response when you run the following command, that means
you have not logged into the Docker Hub—and you can use the docker login
command to log in. When we run the following command for the first time, it gener-
ates two more key pairs: the root key pair and the target key pair, and during the key gen-
eration process, for each key pair you will be asked to enter a passphrase:

\> docker trust signer add --key prabath.pub prabath \
prabath/insecure-sts-ch10

Adding signer "prabath" to prabath/insecure-sts-ch10...
Initializing signed repository for prabath/insecure-sts-ch10...
You are about to create a new root signing key passphrase. This passphrase
will be used to protect the most sensitive key in your signing system. Please
choose a long, complex passphrase and be careful to keep the password and the
key file itself secure and backed up. It is highly recommended that you use a
password manager to generate the passphrase and keep it safe. There will be no
way to recover this key. You can find the key in your config directory.
Enter passphrase for new root key with ID 494b9b7: XXXXX
Repeat passphrase for new root key with ID 494b9b7: XXXXX
Enter passphrase for new repository key with ID 44f0da3: XXXXX
Repeat passphrase for new repository key with ID 44f0da3: XXXXX
Successfully initialized "prabath/insecure-sts-ch10"
Successfully added signer: prabath to prabath/insecure-sts-ch10

The –-key argument takes the public key (prabath.pub) of the delegation key as
the value and then the name of the signer (prabath). Finally, at the end of the com-
mand, you can specify one or more repositories delimited by a space. DCT generates a
target key pair for each repository. Because we specify only one repository in the com-
mand, it generates only one target key pair. The root key signs each of these target
keys. Target keys are also known as repository keys. All the generated private keys corre-
sponding to the root, target, and delegation keys in the previous code example are, by
default, available in the ~/.docker/trust/private directory. The following shows the
scrambled private keys:

-----BEGIN ENCRYPTED PRIVATE KEY-----
role: root

MIHuMEkGCSqGSIb3DQEFDTA8MBsGCSqGSIb3DQEFDDAOBAgwNkfrd4OJDQICCAAw
==
-----END ENCRYPTED PRIVATE KEY-----

-----BEGIN ENCRYPTED PRIVATE KEY-----
gun: docker.io/prabath/manning-sts
role: targets

240 CHAPTER 10 Conquering container security with Docker
MIHuMEkGCSqGSIb3DQEFDTA8MBsGCSqGSIb3DQEFDDAOBAhs5CaEbLT65gICCAAw
==
-----END ENCRYPTED PRIVATE KEY-----

-----BEGIN ENCRYPTED PRIVATE KEY-----
role: prabath

MIHuMEkGCSqGSIb3DQEFDTA8MBsGCSqGSIb3DQEFDDAOBAiX8J+5px9aogICCAAw
==
-----END ENCRYPTED PRIVATE KEY-----

10.3.4 Signing with DCT

Let’s use the following command to sign the prabath/insecure-sts-ch10:v1
Docker image with the delegation key that we generated in the previous section under
the name prabath. This is, in fact, the signer’s key and you should use your own
image (instead of prabath/insecure-sts-ch10:v1) in the following command.
Also please note that here we are signing a Docker image with a tag, not a repository:

\> docker trust sign prabath/insecure-sts-ch10:v1

Signing and pushing trust data for local image
prabath/insecure-sts-ch10:v1, may overwrite remote trust data
The push refers to repository [docker.io/prabath/insecure-sts-ch10]
be39ecbbf21c: Layer already exists
4c6899b75fdb: Layer already exists
744b4cd8cf79: Layer already exists
503e53e365f3: Layer already exists
latest: digest:

sha256:a3186dadb017be1fef8ead32eedf8db8b99a69af25db97955d74a0941a5fb502
size: 1159
Signing and pushing trust metadata
Enter passphrase for prabath key with ID 706043c: XXXXX
Successfully signed docker.io/prabath/insecure-sts-ch10:v1

Now we can use the following command to publish the signed Docker image to
Docker Hub:

\> docker push prabath/insecure-sts-ch10:v1

The push refers to repository [docker.io/prabath/insecure-sts-ch10]
be39ecbbf21c: Layer already exists
4c6899b75fdb: Layer already exists
744b4cd8cf79: Layer already exists
503e53e365f3: Layer already exists
latest: digest:

sha256:a3186dadb017be1fef8ead32eedf8db8b99a69af25db97955d74a0941a5fb502
size: 1159
Signing and pushing trust metadata
Enter passphrase for prabath key with ID 706043c:
Passphrase incorrect. Please retry.
Enter passphrase for prabath key with ID 706043c:
Successfully signed docker.io/prabath/insecure-sts-ch10:v1

241Using Docker Content Trust to sign and verify Docker images
Once we publish the signed image to Docker Hub, we can use the following command
to inspect the trust data associated with it:

\> docker trust inspect --pretty prabath/insecure-sts-ch10:v1

Signatures for prabath/insecure-sts-ch10:v1
SIGNED TAG DIGEST SIGNERS
v1 0f99bb308437528da436c13369 prabath

List of signers and their keys for prabath/insecure-sts-ch10:v1

SIGNER KEYS
prabath 706043cc4ae3

Administrative keys for prabath/insecure-sts-ch10:v1

Repository Key
44f0da3f488ff4d4870b6a635be2af60bcef78ac15ccb88d91223c9a5c3d31ef
Root Key
5824a2be3b4ffe4703dfae2032255d3cbf434aa8d1839a2e4e205d92628fb247

10.3.5 Signature verification with DCT

Out-of-the-box content trust is disabled on the Docker client side. To enable it, we
need to set the DOCKER_CONTENT_TRUST environment variable to 1, as shown in the
following command:

\> export DOCKER_CONTENT_TRUST=1

Once content trust is enabled, the Docker client makes sure all the push, build,
create, pull, and run Docker commands are executed only against signed images.
The following command shows what happens if we try to run an unsigned Docker
image:

\> docker run prabath/insecure-sts-ch10:v2

docker: Error: remote trust data does not exist for
docker.io/prabath/insecure-sts-ch10:v2: notary.docker.io does not have trust
data for docker.io/prabath/insecure-sts-ch10:v2.

To disable content trust, we can override the value of the DOCKER_CONTENT_TRUST
environment variable to be empty, as shown in the following command:

\> export DOCKER_CONTENT_TRUST=

10.3.6 Types of keys used in DCT

DCT uses five types of keys: the root key, the target key, the delegation key, the time-
stamp key, and the snapshot key. So far, we know about only the root, the target, and
the delegation keys. The target key is also known as repository key. Figure 10.2 shows
the hierarchical relationship among the different types of keys.

242 CHAPTER 10 Conquering container security with Docker

Figure 10.2 DCT uses a key hierarchy to sign and verify Docker images.

The root key, which is also known as the offline key, is the most important key in DCT. It
has a long expiration and must be protected with highest security. It’s recommended
to keep it offline (that’s how the name offline key was derived), possibly in a USB or
another kind of offline device. A developer or an organization owns the root key and
uses it to sign other keys in DCT.

 When you sign a Docker image with a delegation key, a set of trust data gets associ-
ated with that image, which you can find in your local filesystem in the ~/.docker/
trust/tuf/docker.io/[repository_name]/metadata directory. Also, you will find the
same set of files in the same location of your filesystem when you pull a signed Docker
image. For example, the metadata for prabath/insecure-sts-ch10 is in the ~/
.docker/trust/tuf/docker.io/prabath/insecure-sts-ch10/metadata directory. The fol-
lowing shows the list of files available in the metadata directory:

\> cd ~/.docker/trust/tuf/docker.io/prabath/insecure-sts-ch10/metadata
\> ls

The root key signs the
timestamp key, snapshot
key, and target key.

The target key signs the
delegation keys. There will be
a target key for a given
repository.

Within a repository, multiple
delegation keys can be used.
A given delegation key signs
an image tag.

DCT uses timestamp keys to
protect a Docker image
against replay attacks.
Signs the snapshot.json file.

Signs metadata related to all
the other keys, except the
timestamp key

Timestamp Key

Signs

Snapshot Key

Root Key

Target Key

Delegation Key

Delegation Key

Signs

Signs
Signs

Signs

243Using Docker Content Trust to sign and verify Docker images
root.json snapshot.json targets targets.json timestamp.json
\> ls targets
prabath.json releases.json

The root key signs the root.json file, which lists all the valid public keys corresponding
to the prabath/insecure-sts-ch10 repository. These public keys include the root
key, target key, snapshot key, and timestamp key.

 The target key (referred from the root.json file) signs the target.json file, which
lists all the valid delegation keys. Inside the target.json file, you will find a reference to
the delegation key that we generated before under the name prabath. DCT gener-
ates a target key per each Docker repository, and the root key signs each target key.
Once we generate the root key, we need it again only when we generate target keys. A
given repository has one target key, but multiple delegation keys.

 DCT uses these delegation keys to sign and push images to repositories. You can use
different delegation keys to sign different tags of a given image. If you look at the
metadata/target directory, you will find a file named under the delegation key we gen-
erated: prabath.json. This file, which is signed by the delegation key, carries the
hash of the insecure-sts-ch10:v1 Docker image. If we sign another tag, say
insecure-sts-ch10:v2 with the same delegation key, DTC will update the prabath
.json file with the v2 hash.

 The snapshot key (which is referred from the root.json file) generated by DCT signs
the snapshot.json file. This file lists all the valid trust metadata files (except time-
stamp.json), along with the hash of each file.

 The timestamp key (which is referred from the root.json file) signs the time-
stamp.json file, which carries the hash of the currently valid snapshot.json file. The
timestamp key has a short expiration period, and each time DCT generates a new
timestamp key, it re-signs the timestamp.json file. DCT introduced the timestamp key
to protect client applications from replay attacks, and we discuss in the next section
how DCT does that.

10.3.7 How DCT protects the client application from replay attacks

An attacker can execute a replay attack by replaying previously valid trust metadata
files, which we discussed in section 10.3.6, along with an old Docker image. This old
Docker image could have some vulnerabilities, which are fixed by the latest image
published to the registry by the publisher. However, because of the replay attack by
the attacker, the victim would think they had the latest version of the Docker image,
which is also properly signed by its publisher.

 When you pull an image from a Docker registry, you also get the trust metadata asso-
ciated with it, which you can find in your local filesystem in the ~/.docker/trust/tuf/
docker.io/[repository_name]/metadata directory. However, if the attacker manages to
replay old metadata files to your system, you won’t have access to the latest. As we dis-
cussed in section 10.3.6, DCT introduced the timestamp metadata file to fix this issue.

 DCT generates a timestamp file, with an updated timestamp and a version, every
time the publisher publishes a Docker image to the corresponding repository. The

244 CHAPTER 10 Conquering container security with Docker
timestamp key signs this timestamp file, and the timestamp file includes the hash of
the snapshot.json file. And, the snapshot.json file includes the hash of the updated
(or the new) Docker image.

 Whenever a Docker image gets updated at the client side, DCT will download the
latest timestamp.json file from the corresponding repository. Then it will validate the
signature of the downloaded file (which was replayed by the attacker in this case) and
will check whether the version in the downloaded timestamp file is greater than the
one in the current timestamp file. If the downloaded file, which is replayed by the
attacker, has an older version, DCT will abort the update operation, and will protect
the system from the replay attack, which tries to downgrade your Docker image to an
older version with vulnerabilities.

10.4 Running the Order Processing microservice on Docker
In this section, you’ll first build and then deploy the Order Processing microservice on
Docker. The Order Processing microservice we use here is the same one that we used
in section 7.7. It’s a secured microservice; to access it, we need a valid JWT from the STS
that we discussed in section 10.1. You can find the complete source code related to the
Order Processing microservice in the chapter10/sample02 directory.

 First, let’s build the project from the chapter10/sample02 directory with the fol-
lowing Maven command. If everything goes well, you should see the BUILD SUCCESS
message at the end:

\> mvn clean install
[INFO] BUILD SUCCESS

Now, let’s run the following command to build a Docker image for the Order Pro-
cessing microservice from the chapter10/sample02 directory. This command uses
the Dockerfile manifest, which is inside the chapter10/sample02 directory:

\> docker build -t com.manning.mss.ch10.sample02:v1 .

Before we proceed further, let’s revisit our use case. As illustrated in figure 10.3, we try
to invoke the Order Processing microservice from a token issued by the STS. The client
application has to get a token from the STS and then pass it to the Order Processing
microservice. Next, the Order Processing microservice talks to the STS to get its public
key, which corresponds to the private key used by the STS to sign the token it issued.
This is the only communication that happens between the Order Processing micro-
service and the STS. If you check the application.properties file in the chapter10/
sample02/config directory, you’ll find a property called security.oauth2

.resource.jwt.keyUri, which points to the STS.
 To enable direct communication between the containers running the Order Pro-

cessing microservice and the STS, we need to create a user-defined network. When
two Docker containers are in the same user-defined network, they can talk to each
other by using the container name. The following command creates a user-defined

245Running the Order Processing microservice on Docker
network called manning-network. (If you’re new to Docker, appendix E provides
more Docker networking options.)

\> docker network create manning-network

06d1307dc12d01f890d74cb76b5e5a16ba75c2e8490c718a67f7d6a02c802e91

Now let’s spin up the STS from the chapter10/sample01 directory with the commands
in the following listing, which attach it to the manning-network we just created.

\> export JKS_SOURCE="$(pwd)/keystores/keystore.jks"
\> export JKS_TARGET="/opt/keystore.jks"
\> export JWT_SOURCE="$(pwd)/keystores/jwt.jks"
\> export JWT_TARGET="/opt/jwt.jks"
\> export APP_SOURCE="$(pwd)/config/application.properties"
\> export APP_TARGET="/opt/application.properties"

\> docker run -p 8443:8443 \
--name sts --net manning-network \
--mount type=bind,source="$JKS_SOURCE",target="$JKS_TARGET" \
--mount type=bind,source="$JWT_SOURCE",target="$JWT_TARGET" \
--mount type=bind,source="$APP_SOURCE",target="$APP_TARGET" \
-e KEYSTORE_SECRET=springboot \
-e JWT_KEYSTORE_SECRET=springboot \
com.manning.mss.ch10.sample01:v2

Listing 10.8 Running a Docker container attached to a custom network

STS returns a JWT, which
carries the user context
related to Peter

Client application gets an access
token on behalf of the user Peter

Client application invokes the
microservice by passing the
JWT in an HTTP header

Security Token
Service (STS)

Peter

<Trust>

Order
Processing

Service

JWT

JWT

1

2

3

Figure 10.3 STS issues a JWT access token to the web application. The web
application uses it to access the microservice on behalf of the user, Peter.

Defines a name of the
container and attaches it
to the manning-network

246 CHAPTER 10 Conquering container security with Docker
Here we use the –-net argument to specify the name of the network, and the –-name
argument to specify the name of the container. This container is now accessible using
the container name by any container in the same network. Also, the command uses
the STS image we published to Docker Hub in section 10.2. Make sure that your
–-mount arguments in the previous command point to the correct file locations. If
you run the command from chapter10/sample01, it should work just fine.

 Next, let’s spin up the Order Processing microservice from the image we created at
the beginning of this section. Execute the commands in the following listing from
within the chapter10/sample02 directory.

\> export JKS_SOURCE="$(pwd)/keystores/keystore.jks"
\> export JKS_TARGET="/opt/keystore.jks"
\> export TRUST_SOURCE="$(pwd)/keystores/trust-store.jks"
\> export TRUST_TARGET="/opt/trust-store.jks"
\> export APP_SOURCE="$(pwd)/config/application.properties"
\> export APP_TARGET="/opt/application.properties"

\> docker run -p 9443:9443 \
--net manning-network \
--mount type=bind,source="$JKS_SOURCE",target="$JKS_TARGET" \
--mount type=bind,source="$TRUST_SOURCE",target="$TRUST_TARGET" \
--mount type=bind,source="$APP_SOURCE",target="$APP_TARGET" \
-e KEYSTORE_SECRET=springboot \
-e TRUSTSTORE_SECRET=springboot \
com.manning.mss.ch10.sample02:v1

We pass the keystore.jks, trust-store.jks, and application.properties files as –-mount
arguments. If you look at the application.properties file in the chapter10/sample02/
config directory, you’ll find a property called security.oauth2.resource.jwt
.keyUri, which points to the endpoint https://sts:8443/oauth/token_key
with the hostname of the STS container (sts).

 To invoke the Order Processing microservice with proper security, you need to get
a JWT from the STS using the following curl command. For clarity, we removed the
long JWT in the response and replaced it with the value jwt_access_token:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

{
"access_token":"jwt_access_token",
"token_type":"bearer",
"refresh_token":"",
"expires_in":1533280024,
"scope":"foo"
}

Listing 10.9 Running the Order Processing microservice attached to a custom network

Attaches to the
manning-network

247Running containers with limited privileges
Now let’s invoke the Order Processing microservice with the JWT you got from this
curl command. Using the following curl command, set the same JWT we got from
the STS, in the HTTP Authorization Bearer header and invoke the Order Processing
microservice. Because the JWT is a little lengthy, you can use a small trick when using
the curl command. First, export the JWT to an environment variable (TOKEN). Then
use that environment variable in your request to the Order Processing microservice:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
https://localhost:9443/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose,CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}

10.5 Running containers with limited privileges
In any operating system, there’s a super user or an administrator who can basically do
anything. This user is called root in most of the Linux distributions. Traditionally, in the
Linux kernel, there are two types of processes: privileged processes and unprivileged
processes. Any privileged process runs with the special user ID 0, which belongs to the root
user. Any process carrying a nonzero user ID is an unprivileged process. When performing
a task, a privileged process bypasses all the kernel-level permission checks, while all the
unprivileged processes are subjected to a permission check. This approach gives too
much power to the root user; in any case, too much power is dangerous.

 All Docker containers, by default, run as the root user. Does that mean anyone hav-
ing access to the container can do anything to the host filesystem from a container? In
appendix E (section E.13.4), we discuss how Docker provides process isolation with six
namespaces. In Linux, a namespace partitions kernel resources so that each running
process has its own independent view of those resources. The mount namespace (one
of the six namespaces) helps isolate one container’s view of the filesystem from other
containers, as well from the host filesystem.

248 CHAPTER 10 Conquering container security with Docker
 Each container sees its own /usr, /var, /home, /opt, and /dev directories. Any
change you make as the root user within a container remains inside the container file-
system. But when you use a volume (see appendix E, section E.12), which maps a loca-
tion in the container filesystem to the host filesystem, the root user can be destructive.
Also, an attacker having access to a container running as root can use root privileges
to install tools within the container and use those tools to find any vulnerability in
other services in the network. In the following sections, we explore the options avail-
able to run a container as an unprivileged process.

10.5.1 Running a container with a nonroot user

There are two approaches to running a container with a nonroot user. One way is to
use the flag --user (or –u) in the docker run command. The other way is to
define the user you want to run the container in the Dockerfile itself. Let’s see how
the first approach works. In the following command, we start a Docker container
from the prabath/insecure-sts-ch10:v1 image that we’ve already published to
Docker Hub:

\> docker run --name insecure-sts prabath/insecure-sts-ch10:v1

Let the container run, and use the following command from a different terminal to
connect to the filesystem of the running container (insecure-sts is the name of the
container we started in the previous command):

\> docker exec -it insecure-sts sh
#

Now you’re connected to the container filesystem. You can try out any available com-
mands in Alpine Linux there. The id command gives you the user ID (uid) and the
group ID (gid) of the user who runs the container:

id
uid=0(root) gid=0(root)

Let’s exit from the container, and remove insecure-sts with the following com-
mand run from a different terminal. The –f option in the command removes the con-
tainer forcefully, even if it is not stopped:

\> docker rm –f insecure-sts

The following command runs insecure-sts from the prabath/insecure-sts-
ch10:v1 image with the –-user flag. This flag instructs Docker to run the container
with the user having the user ID 1000 and the group ID 800:

\> docker run --name insecure-sts --user 1000:800 \
prabath/insecure-sts-ch10:v1

Again, let the container run and use the following command from a different termi-
nal to connect to the filesystem of the running container to find the user ID (uid)
and the group ID (gid) of the user who runs the container:

249Running containers with limited privileges
\> docker exec -it insecure-sts sh

id
uid=1000 gid=800

The second approach to run a container as a nonroot user is to define the user we
want to run the container in the Dockerfile itself. This is a good approach if you’re
the developer who builds the Docker images, but it won’t help if you’re just the user.
The first approach helps in such a case. In the following listing, let’s have a look at the
Dockerfile we used in section 10.1. You can find the source code related to this sample
inside the chapter10/sample01 directory.

FROM openjdk:8-jdk-alpine
ADD target/com.manning.mss.ch10.sample01-1.0.0.jar \
com.manning.mss.ch10.sample01-1.0.0.jar
ENV SPRING_CONFIG_LOCATION=/application.properties
ENTRYPOINT ["java", "-jar", "com.manning.mss.ch10.sample01-1.0.0.jar"]

In the code, there’s no instruction to define a user to run this container in the Docker-
file. In such a case, Docker looks for the base image, which is openjdk:8-jdk-
alpine. You can use the following docker inspect command to find out the details
of a Docker image. It produces a lengthy output, but if you look for the User element
under the ContainerConfig element, you can find out who the user is:

\> docker inspect openjdk:8-jdk-alpine

[
 {
 "ContainerConfig": {
 "User": ""
 }
 }
]

According to the output, even the base image (openjdk:8-jdk-alpine) doesn’t
instruct Docker to run the corresponding container as a nonroot user. In such a case,
by default, Docker uses the root user to run the container. To fix that, we need to
update our Dockerfile with the USER instruction, which asks Docker to run the corre-
sponding container as a user with the user ID 1000.

FROM openjdk:8-jdk-alpine
ADD target/com.manning.mss.ch10.sample01-1.0.0.jar \
com.manning.mss.ch10.sample01-1.0.0.jar
ENV SPRING_CONFIG_LOCATION=/application.properties
USER 1000
ENTRYPOINT ["java", "-jar", "com.manning.mss.ch10.sample01-1.0.0.jar"]

Listing 10.10 The content of the Dockerfile

Listing 10.11 The updated content of the Dockerfile with the USER instruction

250 CHAPTER 10 Conquering container security with Docker
10.5.2 Dropping capabilities from the root user

Linux kernel 2.2 introduced a new feature called capabilities, which categorizes all the
privileged operations a root user can perform. For example, the cap_chown capabil-
ity lets a user execute the chown operation, which can be used to change the user ID
(uid) and/or group ID (gid) of a file. All these capabilities can be independently
enabled or disabled on the root user. This approach lets you start a Docker container
as the root user, but with a limited set of privileges.

 Let’s use the Docker image we created in section 10.1 to experiment with this
approach. The following command starts a Docker container from the prabath/
insecure-sts-ch10:v1 image, which we already published to Docker Hub:

\> docker run --name insecure-sts prabath/insecure-sts-ch10:v1

Let the container run, and use the following command (as in section 10.5.1) from a
different terminal to connect to the filesystem of the running container to find the
user ID (uid) and the group ID (gid) of the user who runs the container:

\> docker exec -it insecure-sts sh

id
uid=0(root) gid=0(root)

To find out which capabilities the root user has on the system, we need to run a tool
called getpcaps, which comes as part of the libcap package. Because the default distri-
bution of Alpine Linux does not have this tool, we’ll use the Alpine package manager
(apk) to install libcap with the following command. Because we’re still inside the con-
tainer filesystem, this installation has no impact on the host filesystem:

apk add libcap

fetch http://dl-cdn.alpinelinux.org/alpine/v3.9/main/x86_64/APKINDEX.tar.gz
fetch http://dl-cdn.alpinelinux.org/alpine/v3.9/community/x86_64/

APKINDEX.tar.gz
(1/1) Installing libcap (2.26-r0)
Executing busybox-1.29.3-r10.trigger
OK: 103 MiB in 55 packages

Once the installation completes successfully, we can use the following command to
find out the capabilities associated with the root user:

getpcaps root

Capabilities for `root': =
cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,
cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,
cap_mknod,cap_audit_write,cap_setfcap+eip

Let’s remove insecure-sts with the following command run from a different
terminal:

\> docker rm -f insecure-sts

251Running Docker Bench for security
The following command runs the insecure-sts container from the prabath/
insecure-sts-ch10:v1 image, with the –-cap-drop flag. This flag instructs
Docker to drop the chown capability from the root user who runs the container. The
Linux kernel prefixes all capability constants with cap_; for example, cap_chown,
cap_kill, cap_setuid, and so on. Docker capability constants aren’t prefixed with
cap_ but otherwise match the kernel’s constants; for example, chown instead of
cap_chown:

\> docker run --name insecure-sts --cap-drop chown \
prabath/insecure-sts-ch10:v1

Let the container run, and use the following command from a different terminal to
connect to the filesystem of the running container:

\> docker exec -it insecure-sts sh

Because we started a new container, and because the container filesystem is immuta-
ble, we need to install libcap again using the following command:

apk add libcap

If you check the capabilities of the root user again, you’ll see that the cap_chown
capability is missing:

getpcaps root

Capabilities for `root': =
cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,
cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,cap_mknod,
cap_audit_write,cap_setfcap+eip

One main benefit of capabilities is that you don’t need to know the user who runs the
container. The capabilities you define in the docker run command are applicable to
any user who runs the container.

 Just as we dropped some capabilities in the docker run command, we can also
add those. The following command drops all the capabilities and adds only one
capability:

\> docker run --name insecure-sts --cap-drop ALL \
--cap-add audit_write prabath/insecure-sts-ch10:v1

10.6 Running Docker Bench for security
Docker Bench for Security is a script that checks a Docker deployment for common, well-
known best practices as defined by the Center for Internet Security (CIS) in the
Docker Community Edition Benchmark document (https://downloads.cisecurity
.org). It’s maintained as an open source project in the Git repository: https://github
.com/docker/docker-bench-security.

 This script can be executed either by itself or as a Docker container. The following
command uses the second approach, where we run Docker Bench for Security with

https://github.com/docker/docker-bench-security
https://github.com/docker/docker-bench-security
https://downloads.cisecurity.org
https://downloads.cisecurity.org

252 CHAPTER 10 Conquering container security with Docker
the Docker image docker/docker-bench-security. It checks the Docker host
configuration, Docker daemon configuration, all the container images available in
the host machine, and container runtimes for possible vulnerabilities. Here we’ve
truncated the output to show you only the important areas covered by the Docker for
Security Bench at a high level:

\> docker run -it --net host --pid host \
--cap-add audit_control -v /var/lib:/var/lib \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /etc:/etc --label docker_bench_security \
docker/docker-bench-security

Docker Bench for Security v1.3.0
#
Docker, Inc. (c) 2015-
#
Checks for dozens of common best practices around deploying Docker
containers in production.
Inspired by the CIS Docker 1.13 Benchmark.

[INFO] 1 - Host Configuration
[WARN] 1.1 - Create a separate partition for containers
[INFO] 1.2 - Harden the container host
[PASS] 1.3 - Keep Docker up to date

[INFO] 2 - Docker Daemon Configuration
[WARN] 2.1 - Restrict network traffic between containers
[PASS] 2.2 - Set the logging level
[PASS] 2.3 - Allow Docker to make changes to iptables

[INFO] 3 - Docker Daemon Configuration Files
[INFO] 3.1 - Verify that docker.service file ownership is
set to root:root
[INFO] * File not found
[INFO] 3.2 - Verify that docker.service file permissions
are set to 644 or more restrictive
[INFO] * File not found

[INFO] 4 - Container Images and Build Files
[WARN] 4.1 - Create a user for the container
[WARN] * Running as root: affectionate_lichterman
[INFO] 4.2 - Use trusted base images for containers

[INFO] 5 - Container Runtime
[WARN] 5.1 - Do not disable AppArmor Profile
[WARN] * No AppArmorProfile Found: affectionate_lichterman
[WARN] 5.2 - Verify SELinux security options, if applicable

[INFO] 6 - Docker Security Operations
[INFO] 6.1 - Perform regular security audits of your
host system and containers
[INFO] 6.2 - Monitor Docker containers usage, performance
and metering

253Securing access to the Docker host
Apart from Docker Bench for Security, a few other alternatives can scan Docker images
for known vulnerabilities. Clair is one such open source project (https://github.com/
quay/clair) backed by CoreOS (and now RedHat). Anchore (https://github.com/
anchore/anchore-engine) is another popular open source project for analyzing vul-
nerabilities in containers.

10.7 Securing access to the Docker host
In appendix E, section E.3, we discuss the high-level architecture of Docker. If you’re
new to Docker, we recommend you read through that first.

 Figure 10.4 (copied from appendix E) illustrates the communication between a
Docker client and a Docker host. If you want to intercept the communication between
the client and host and see what’s going on, you can use a tool like socat (see appen-
dix E, section E.15).

Figure 10.4 In this high-level Docker component architecture, the Docker client talks to the Docker
daemon running on the Docker host over a REST API to perform various operations on Docker images
and containers.

So far in this chapter, most of the Docker commands we used via the Docker client
assumed we ran both the Docker client and the daemon in the same machine. In this
section, we discuss how to set up a Docker host to accept requests securely from a
remote Docker client. In practice, this isn’t the case when we run Docker with Kuber-
netes (see appendix J). You don’t need direct access to the Docker daemon, but only
to the Kubernetes API server. In chapter 11, we discuss securing access to the Kuber-
netes API server. Still, many people run Docker without Kubernetes; for example,
those who use the CI/CD tools to spin up Docker containers that connect remotely to
a Docker host. In such cases, we need to expose the Docker daemon securely to the
remote clients.

Client

\> docker build

Registry

Images

Host

Docker Daemon

ImagesContainers\> docker run
1

2 3

5
4

https://github.com/quay/clair
https://github.com/quay/clair
https://github.com/anchore/anchore-engine
https://github.com/anchore/anchore-engine

254 CHAPTER 10 Conquering container security with Docker
10.7.1 Enabling remote access to the Docker daemon

The Docker daemon supports listening on three types of sockets: UNIX, TCP, and FD
(file descriptor). Enabling the TCP socket lets your Docker client talk to the daemon
remotely. But if you run the Docker host on a Mac, you’ll find it hard to enable the
TCP socket on the Docker daemon. Here, we follow a workaround that works across
any operating system and gives you more flexibility to control access to Docker APIs.
Figure 10.5 illustrates what we want to build.

Figure 10.5 Exposing Docker APIs securely to remote clients via NGINX. Socat is used as a traffic
forwarder between NGINX and the Docker daemon.

As per figure 10.5, we run socat as a traffic-forwarder on the same machine that runs
the Docker daemon. It listens for TCP traffic on port 2345 and forwards that to the
UNIX socket that the Docker daemon listens to. Then we have a NGINX (http://
nginx.org/en/docs/) instance, which acts as a reverse proxy to socat. All the external
Docker clients talk to the Docker daemon via NGINX.

 In this section, we’re going to set up NGINX and socat with Docker Compose. If
you’re new to Docker Compose, we recommend you read through section E.16 of
appendix E. The following listing shows the complete docker-compose.yaml file. You
can find the same in the chapter10/sample03 directory.

\> docker build

Client

\> docker run

Listens for TCP traffic on
port 2345 and is bound to the
loopback interface so the remote
clients cannot directly access it

Docker daemon listens on UNIX
socket/var/run/docker.sock

NGINX exposes Docker APIs
to the remote client applications
via HTTPS, and protects them
with mutual TLS.

Host

NGINX

socat

Docker Daemon

1

2
6

3

5

4

http://nginx.org/en/docs/
http://nginx.org/en/docs/

255Securing access to the Docker host

version: '3'
services:
 nginx:
 image: nginx:alpine
 volumes:
 - ./nginx.conf:/etc/nginx/nginx.conf
 ports:
 - "8080:8080"
 depends_on:
 - "socat"
 socat:
 image: alpine/socat
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 ports:
 - "2345:2345"
 command: TCP-L:2345,fork,reuseaddr,bind=socat UNIX:/var/run/docker.sock

This defines two services: one for NGINX and the other for socat. The NGINX service
uses the nginx:alpine Docker image, and the socat service uses the alpine/socat
Docker image. For the NGINX image, we have a bind mount that mounts the
nginx.conf file from the chapter10/sample03 directory of the host filesystem to the
/etc/nginx/nginx.conf file of the container filesystem. This is the main NGINX con-
figuration file that forwards all the traffic it gets to socat. The following listing shows
the NGINX configuration.

events {}
http {
 server {
 listen 8080;
 location / {
 proxy_pass http://socat:2345/;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }
 }
}

For the socat image, we have a bind mount that mounts the /var/run/docker.sock file
from the host filesystem to the /var/run/docker.sock file of the container filesystem.
This is the file that represents the UNIX socket the Docker daemon listens to on the
host machine. When we do this bind mounting, the container that runs socat can write
directly to the UNIX socket on the host filesystem so that the Docker daemon gets the
messages. Let’s have a look at the following line, which is the last line in listing 10.12:

command: TCP-L:2345,fork,reuseaddr,bind=socat UNIX:/var/run/docker.sock

Listing 10.12 The docker-compose.yaml file

Listing 10.13 The nginx.conf file

256 CHAPTER 10 Conquering container security with Docker
The TCP-L:2345 flag instructs socat to listen on port 2345 for TCP traffic. The fork
flag enables socat to handle each arriving packet by its own subprocess. When we
use fork, socat creates a new process for each newly accepted connection. The
bind=127.0.0.1 flag instructs socat to listen only on the loopback interface, so no
one outside the host machine can directly talk to socat. UNIX:/var/run/docker
.sock is the address of the UNIX socket where the Docker daemon accepts connec-
tions. In effect, the command asks socat to listen for TCP traffic on port 2345, log it,
and then forward it to the UNIX socket /var/run/docker.sock. Let’s run the fol-
lowing command from the chapter10/sample03 directory to start both the NGINX
and socat containers:

\> docker-compose up

Pulling socat (alpine/socat:)...
latest: Pulling from alpine/socat
ff3a5c916c92: Pull complete
abb964a97c4c: Pull complete
Pulling nginx (nginx:alpine)...
alpine: Pulling from library/nginx
e7c96db7181b: Already exists
f0e40e45c95e: Pull complete
Creating sample03_socat_1 ... done
Creating sample03_nginx_1 ... done
Attaching to sample03_socat_1, sample03_nginx_1

To make sure everything works fine, you can run the following command from the
Docker client machine with the proper NGINX hostname. It should return a JSON
payload that carries Docker image details:

\> curl http://nginx-host:8080/v1.39/images/json

10.7.2 Enabling mTLS at the NGINX server to secure access
to Docker APIs

In this section, we’ll see how to secure the APIs exposed by the NGINX server with
mTLS, so that all the Docker APIs will be secured too. To do that, we need to create a
public/private key pair for the NGINX server as well as for the Docker client. The
Docker client uses its key pair to authenticate to the NGINX server.

GENERATING KEYS AND CERTIFICATES FOR THE NGINX SERVER AND THE DOCKER CLIENT

Here we introduce a single script to perform all the actions to create keys for the CA,
NGINX server, and Docker client. The CA signs both the NGINX certificate and
Docker client’s certificate. We run OpenSSL in a Docker container to generate keys.
OpenSSL is a commercial-grade toolkit and cryptographic library for TLS, available
for multiple platforms. Refer to appendix G to find more details on OpenSSL and key
generation. To spin up the OpenSSL Docker container, run the following command
from the chapter10/sample03/keys directory:

\> docker run -it -v $(pwd):/export prabath/openssl

257Securing access to the Docker host
This docker run command starts OpenSSL in a Docker container with a bind mount,
which maps the chapter10/sample03/keys directory (or the current directory, which
is indicated by $(pwd)) from the host filesystem to the /export directory of the con-
tainer filesystem. This bind mount lets you share part of the host filesystem with the
container filesystem. When the OpenSSL container generates certificates, those are
written to the /export directory of the container filesystem. Because we have a bind
mount, everything inside the /export directory of the container filesystem is also
accessible from the chapter10/sample03/keys directory of the host filesystem.

 When you run the docker run command for the first time, it can take a couple of
minutes to execute and should end with a command prompt where you can execute
this script to create all the keys:

sh /export/gen-key.sh
exit

Now, if you look at the chapter10/sample03/keys directory in the host filesystem,
you’ll find the following set of files. If you want to understand what happens in the
script, check appendix G:

 ca_key.pem and ca_cert.pem in the chapter10/sample03/keys/ca directory—ca_key.pem
is the private key of the CA, and ca_cert.pem is the public key.

 nginx_key.pem and nginx_cert.pem in the chapter10/sample03/keys/nginx directory—
nginx_key.pem is the private key of the NGINX server, and nginx_cert.pem is
the public key, which is signed by the CA.

 docker_key.pem and docker_cert.pem in the chapter10/sample03/keys/docker directory—
docker_key.pem is the private key of the Docker client, and docker_cert.pem is
the public key, which is signed by the CA. The Docker client uses these keys to
authenticate to the NGINX server

PROTECTING THE NGINX SERVER WITH MTLS
In this section, we set up NGINX to work with mTLS with the keys we generated in the
previous section. If you’re running the NGINX container from section 10.7.1, stop it
first by pressing Ctrl-C on the terminal that runs the container.

 Listing 10.14 shows the content from the nginx-secured.conf file in the chapter10/
sample03 directory. This is the same file in listing 10.13 with some new parameters
related to the TLS configuration. The parameter ssl_certificate instructs
NGINX to look for the server certificate at the /etc/nginx/nginx_cert.pem location
in the container filesystem.

events {}
http {
 server {
 listen 8443 ssl;
 server_name nginx.ecomm.com;

Listing 10.14 The nginx-secured.conf file

258 CHAPTER 10 Conquering container security with Docker
 ssl_certificate /etc/nginx/nginx_cert.pem;
 ssl_certificate_key /etc/nginx/nginx_key.pem;
 ssl_protocols TLSv1.2;
 ssl_verify_client on;
 ssl_client_certificate /etc/nginx/ca_cert.pem;
 location / {
 proxy_pass http://socat:2345/;
 proxy_redirect off;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Host $server_name;
 }
 }
}

Because we keep all the key files in the host filesystem in the updated docker-compose
configuration file (listing 10.15), we have a new set of bind mounts. From the host file-
system, we map sample03/keys/nginx/nginx_cert.pem to the /etc/nginx/nginx_cert
.pem file in the container filesystem. In the same way, we have a bind mount for the
private key (ssl_certificate_key) of the NGINX server. To enable mTLS, we set
the value of ssl_verify_client to on as in listing 10.14, and the ssl_client
_certificate parameter points to a file that carries the public keys of all trusted
CAs. In other words, we allow any client to access the Docker API if the client brings a
certificate issued by a trusted CA.

 Now, we need to update the docker-compose configuration to use the new nginx-
secured.conf file. The following listing shows the updated docker-compose configura-
tion, which is also available in the chapter10/sample03/docker-compose-secured
.yaml file.

services:
 nginx:
 image: nginx:alpine
 volumes:
 - ./nginx-secured.conf:/etc/nginx/nginx.conf
 - ./keys/nginx/nginx_cert.pem:/etc/nginx/nginx_cert.pem
 - ./keys/nginx/nginx_key.pem:/etc/nginx/nginx_key.pem
 - ./keys/ca/ca_cert.pem:/etc/nginx/ca_cert.pem
 ports:
 - "8443:8443"
 depends_on:
 - "socat"
 socat:
 image: alpine/socat
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 ports:
 - "2345:2345"
 command: TCP-L:2345,fork,reuseaddr,bind=socat UNIX:/var/run/docker.sock

Listing 10.15 The updated docker-compose-secured.yaml file

259Securing access to the Docker host
Let’s run the following command to start both the secured NGINX and socat contain-
ers from the chapter10/sample03 directory. This command points to the docker-
compose-secured.yaml file, which carries the new Docker Compose configuration:

\> docker-compose -f docker-compose-secured.yaml up

To make sure everything works fine, you can run the following command from the
chapter10/sample03 directory of the Docker client machine with the proper NGINX
hostname. Here we use the –k option to instruct curl to ignore any HTTPS server cer-
tificate validation. Still, this command will fail because we’ve now secured all Docker
APIs with mTLS:

\> curl –k https://nginx-host:8443/v1.39/images/json

The following command shows how to use curl with the proper client-side certificates.
Here, we use the key pair that we generated for the Docker client. This should return
a JSON payload that carries the Docker image details:

\> curl --cacert keys/ca/ca_cert.pem --cert keys/nginx/nginx_cert.pem \
--key keys/nginx/nginx_key.pem \
--resolve 'nginx.ecomm.com:8443:10.0.0.128' \
https://nginx.ecomm.com:8443/v1.39/images/json

The --cacert argument in the command points to the public key of the CA, and the
--cert and --key parameters point to the public key and the private key, respec-
tively, that we generated in the previous section for the Docker client. In the API end-
point, the hostname we use must match the CN of the certificate we use for NGINX;
otherwise, certificate validation fails. Then again, because we don’t have a DNS entry
for this hostname, we instruct curl to resolve it to the IP address 10.0.0.128 by using
the --resolve argument; you probably can use 127.0.0.1 as the IP address if you run
curl from the same machine where the Docker daemon runs.

CONFIGURING THE DOCKER CLIENT TO TALK TO THE SECURED DOCKER DAEMON

In this section, we configure the Docker client to talk to the Docker daemon via the
secured NGINX server. The following command instructs the Docker client to use
nginx.ecomm.com as the Docker host and 8443 as the port:

\> export DOCKER_HOST=nginx.ecomm.com:8443

Because we haven’t set up nginx.ecomm.com in a DNS server, we need to update the
/etc/hosts file of the machine, which runs the Docker client, with a hostname-to-IP-
address mapping. If you run both the Docker daemon and the client on the same
machine, you can use 127.0.0.1 as the IP address of the Docker daemon:

10.0.0.128 nginx.ecomm.com

Now run the following Docker client command from the same terminal where you
exported the DOCKER_HOST environment variable. The tlsverify argument
instructs the Docker client to use TLS to connect to the Docker daemon and verify the

260 CHAPTER 10 Conquering container security with Docker
remote certificate. The tlskey and tlscert arguments point to the private key and
the public key of the Docker client, respectively. These are the keys that we generated
in the previous section. The tlscacert argument points to the public key of the CA:

\> docker --tlsverify --tlskey keys/docker/docker_key.pem \
--tlscert keys/docker/docker_cert.pem \
--tlscacert keys/ca/ca_cert.pem images

If you want to make the command look simple, we can replace the default keys that
come with the Docker client, with the ones we generated. Replace the following:

 ~/.docker/key.pem with keys/docker/docker_key.pem
 ~/.docker/cert.pem with keys/docker/docker_cert.pem
 ~/.docker/ca.pem with keys/ca/ca_cert.pem

Now you can run your Docker client command as shown here:

\> docker --tlsverify images

10.8 Considering security beyond containers
In a typical microservices deployment, containers don’t act alone. Even though some
people deploy microservices with just containers, most of the scalable microservices
deployments use containers within a container orchestration framework such as Kuber-
netes. Securing a microservices deployment depends on the security constructs pro-
vided by your container orchestration framework. A few container orchestration
frameworks exist, but the world is defaulting to Kubernetes. We discuss Kubernetes in
detail in appendix J and chapter 11.

 Apart from Kubernetes, the service mesh also plays a key role in securing a micro-
services deployment. A service mesh is a decentralized application-networking infra-
structure between microservices, which provides resiliency, security, observability, and
routing control. If you’re familiar with software-defined networking (SDN), you can
think of a service mesh as SDN too. Multiple popular service mesh implementations
are available, but the one most used is Istio. In appendix K and chapter 12, we discuss
in detail how to secure microservices with Istio.

Ten layers of container security
The Red Hat whitepaper “Ten Layers of Container Security” talks about 10 elements
of security for containers: container host multitenancy, container content, container
registries, building containers, deploying containers, container orchestration, net-
work isolation, storage, API management, and federated clusters. Though the focus
of this whitepaper is on the Red Hat Enterprise Linux and Red Hat OpenShift plat-
forms, it’s still an excellent read; see www.redhat.com/en/resources/container-
security-openshift-cloud-devops-whitepaper for details.

www.redhat.com/en/resources/container-security-openshift-cloud-devops-whitepaper
www.redhat.com/en/resources/container-security-openshift-cloud-devops-whitepaper

261Summary
Summary
 Docker containers have become the de facto standard to package, distribute,

test, and deploy microservices.
 As a best practice, no secrets must be embedded in Docker images, and secrets

must be externalized. Container orchestration frameworks, such as Kubernetes
and Docker Swarm, provide better ways to manage secrets in a containerized
environment.

 When securing microservices, the security of a microservices deployment should
be thought of in the context of a container orchestration framework, not just
container security in isolation.

 DCT is used to sign and verify Docker images. This makes sure that you run
only trusted containers in your deployment and helps developers who rely on
Docker images developed by you to validate them.

 As a best practice, you shouldn’t run a container as the root user. One approach
is to define the user who you want to run the container in the Dockerfile itself
or to pass it as an argument to the docker run command. The other approach
is to use capabilities to restrict what a user can do within a container.

 Sometimes you need to expose the Docker daemon to remote clients. In such
cases, you must protect all Docker APIs to make sure only legitimate users have
access.

 Docker Bench for Security checks a Docker deployment for common, well-
known best practices, as defined by the CIS in the Docker Community Edition
Benchmark document (https://downloads.cisecurity.org), and then validates
your Docker environment.

https://downloads.cisecurity.org

Securing microservices
on Kubernetes
In chapter 10, we discussed how to deploy and secure microservices on Docker con-
tainers. In a real production deployment, you don’t have only containers; contain-
ers are used within a container orchestration framework. Just as a container is an
abstraction over the physical machine, the container orchestration framework is
an abstraction over the network. Kubernetes is the most popular container orchestra-
tion framework to date.

 Understanding the fundamentals of Kubernetes and its security features is
essential to any microservices developer. We cover basic constructs of Kubernetes in
appendix J, so if you’re new to Kubernetes, read that appendix first. Even if you’re

This chapter covers
 Securing service-to-service communications of a

microservices deployment

 Managing secrets in Kubernetes

 Creating service accounts and associating them
with Pods

 Protecting access to the Kubernetes API server
with RBAC
262

263Running an STS on Kubernetes
familiar with Kubernetes, we still recommend you at least skim through appendix J,
because the rest of this chapter assumes you have the knowledge contained in it.

11.1 Running an STS on Kubernetes
In this section, we deploy the Docker container that we built in chapter 10 with the
STS in Kubernetes. This Docker image is already published to the Docker Hub as
prabath/insecure-sts-ch10:v1. To deploy a container in Kubernetes, first we
need to create a Pod. If you read appendix J, you learned that developers or DevOps
don’t directly work with Pods but with Deployments. So, to create a Pod in Kuber-
netes, we need to create a Deployment.

11.1.1 Defining a Kubernetes Deployment for the STS in YAML

A Deployment is a Kubernetes object that we represent in a YAML file. Let’s create the
following YAML file (listing 11.1) with the prabath/insecure-sts-ch10:v1
Docker image. The source code related to all the samples in this chapter is available
in the GitHub repository at https://github.com/microservices-security-in-action/
samples in the chapter11 directory. You can also find the same YAML configuration
shown in the following listing in the chapter11/sample01/sts.deployment.yaml file.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: sts-deployment
 labels:
 app: sts
spec:
 replicas: 1
 selector:
 matchLabels:
 app: sts
 template:
 metadata:
 labels:
 app: sts
 spec:
 containers:
 - name: sts
 image: prabath/insecure-sts-ch10:v1
 ports:
 - containerPort: 8443

11.1.2 Creating the STS Deployment in Kubernetes

In this section, we create a Deployment in Kubernetes for the STS that we defined in the
YAML file in the above listing. We assume you have access to a Kubernetes cluster. If not,
follow the instructions in appendix J, section J.5, to create a Kubernetes cluster with the

Listing 11.1 The sts.deployment.yaml file

Instructs Kubernetes to run one
replica of the matching Pods

This Deployment will carry a matching Pod
as per the selector. This is an optional
section, which can carry multiple labels.

A template describes how each Pod in
the Deployment should look. If you
define a selector/matchLabels, the Pod
definition must carry a matching label.

https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

264 CHAPTER 11 Securing microservices on Kubernetes
GKE.1 Once you have access to a Kubernetes cluster, go to the chapter11/sample01
directory and run the following command from your local machine to create a Deploy-
ment for STS:

\> kubectl apply -f sts.deployment.yaml

deployment.apps/sts-deployment created

Use the following command to find all the Deployments in your Kubernetes cluster
(under the current namespace). If everything goes well, you should see one replica of
the STS up and running:

\> kubectl get deployment sts-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
sts-deployment 1/1 1 1 12s

11.1.3 Troubleshooting the Deployment

Not everything goes fine all the time. Multiple things can go wrong. If Kubernetes
complains about the YAML file, it could be due to an extra space or an error when you
copy and paste the content from the text in the e-book. Rather than copying and past-
ing from the e-book, always use the corresponding sample file from the GitHub repo.

 Also, in case you have doubts about your YAML file, you can use an online tool like
YAML Lint (www.yamllint.com) to validate it, or use kubeval (www.kubeval.com),
which is an open source tool. YAML Lint validates only the YAML file, while kubeval
also validates your configurations against the Kubernetes schema.

 Even though the kubectl apply command executes successfully, when you run
kubectl get deployments, it may show that none of your replicas are ready. The
following three commands are quite useful in such cases:

 The kubectl describe command shows a set of metadata related to the
deployment:

\> kubectl describe deployment sts-deployment

 The kubectl get events command shows all the events created in the cur-
rent Kubernetes namespace. If something goes wrong while creating the
Deployment, you’ll notice a set of errors or warnings:

\> kubectl get events

 Another useful command in troubleshooting is kubectl logs. You can run
this command against a given Pod. First, though, you can run kubectl get
pods to find the name of the Pod you want to get the logs from, and then use

1 All the examples in this book use Google Cloud, which is more straightforward and hassle-free when trying
out the examples, rather having your own local Kubernetes environment. If you still need to try out the exam-
ples locally, you can either use Docker Desktop or Minikube to set up a local, single-node Kubernetes cluster.

www.kubeval.com
www.yamllint.com

265Running an STS on Kubernetes
the following command with the Pod name (sts-deployment-799fdff46f-
hdp5s is the Pod name in the following command):

\> kubectl logs sts-deployment-799fdff46f-hdp5s –follow

Once you identify the issue related to your Kubernetes Deployment, and if you need
help to get that sorted out, you can either reach out to any of the Kubernetes commu-
nity forums (https://discuss.kubernetes.io) or use the Kubernetes Stack Overflow
channel (https://stackoverflow.com/questions/tagged/kubernetes).

11.1.4 Exposing the STS outside the Kubernetes cluster

In this section, we create a Kubernetes Service that exposes the STS outside the Kuber-
netes cluster. If you’re new to Kubernetes Services, remember to check appendix J.

 Here, we use a Kubernetes Service of LoadBalancer type. If there are multiple rep-
licas of a given Pod, the Service of LoadBalancer type acts as a load balancer. Usually,
it’s an external load balancer provided by the Kubernetes hosting environment, and
in our case, it’s the GKE. Let’s have a look at the YAML file to create the Service (list-
ing 11.2). The same YAML file is available at chapter11/sample01/sts.service.yaml.

 The Service listens on port 443 and forwards the traffic to port 8443. If you look at
listing 11.1, you’ll notice that when we create the Deployment, the container that car-
ries the STS microservice is listening on port 8443. Even though it’s not 100% accu-
rate to say that a Service listens on a given port, it’s a good way to simplify what’s
happening underneath. As we discussed in appendix J, what really happens when we
create a Service is that each node in the Kubernetes cluster updates the correspond-
ing iptables, so any request destined to a Service IP address/name and port will be dis-
patched to one of the Pods it backs.

apiVersion: v1
kind: Service
metadata:
 name: sts-service
spec:
 type: LoadBalancer
 selector:
 app: sts
 ports:
 - protocol: TCP
 port: 443
 targetPort: 8443

To create the Service in the Kubernetes cluster, go to the chapter11/sample01 direc-
tory and run the following command from your local machine:

\> kubectl apply -f sts.service.yml

service/sts-service created

Listing 11.2 The sts.service.yaml file

https://discuss.kubernetes.io
https://stackoverflow.com/questions/tagged/kubernetes

266 CHAPTER 11 Securing microservices on Kubernetes
Use the following command to find all the Services in your Kubernetes cluster (under
the current namespace):2

\> kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.39.240.1 <none> 443/TCP 134m
sts-service LoadBalancer 10.39.244.238 <pending> 443:30993/TCP 20s

It takes Kubernetes a few minutes to assign an external IP address for the sts-
service we just created. If you run the same command, you’ll notice the following
output after a couple of minutes, with an external IP address assigned to the sts-
service:

\> kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.39.240.1 <none> 443/TCP 135m
sts-service LoadBalancer 10.39.244.238 34.82.103.6 443:30993/TCP 52s

Now let’s test the STS with the following curl command run from your local machine.
This is exactly the same curl command we used in section 7.2. The IP address in the
command is the external IP address corresponding to the sts-service from the pre-
vious command:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://34.82.103.6/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret (these are hardcoded in the STS). If every-
thing works, the STS returns an OAuth 2.0 access token, which is a JWT (or a JWS, to
be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTIzNz
YsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6I
jRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6ImFwcGxp
Y2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS0Yoc2uBuA
W5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ4uFLAP0NpZ6
BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2jdEhBp1TvMaRKLB
Dk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegBbGgyXHVak2gB7I07
ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlveyjfKs_XIXgU5qizRm9mt5
xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

2 If you’re new to the namespace concept in Kubernetes, check appendix J. All the samples in this chapter use
the default namespace.

267Managing secrets in a Kubernetes environment
Here, we talk to the STS running in Kubernetes over TLS. The STS uses TLS certificates
embedded in the prabath/insecure-sts-ch10:v1 Docker image, and the Kuber-
netes load balancer just tunnels all the requests it gets to the corresponding container.3

11.2 Managing secrets in a Kubernetes environment
In section 11.1, we used a Docker image called prabath/insecure-sts-ch10:v1.
We named it insecure-sts for a reason. In chapter 10, we had a detailed discussion
on why this image is insecure. While creating this image, we embedded all the keys
and the credentials to access the keys into the image itself. Because this is in Docker
Hub, anyone having access to the image can figure out all our secrets—and that’s the
end of the world! You can find the source code of this insecure STS in the chapter10/
sample01 directory.

 To make the Docker image secure, the first thing we need to do is to externalize all
the keystores and credentials. In chapter 10, we discussed how to externalize the
application.properties file (where we keep all the credentials) from the Docker image
as well as the two keystore files (one keystore includes the key to secure the TLS
communication, while the other keystore includes the key to sign JWT access tokens
that the STS issues). We published this updated Docker image to Docker Hub as
prabath/secure-sts-ch10:v1. To help you understand how this Docker image is
built, the following listing repeats the Dockerfile from listing 10.4.

FROM openjdk:8-jdk-alpine
ADD target/com.manning.mss.ch10.sample01-1.0.0.jar \
 com.manning.mss.ch10.sample01-1.0.0.jar
ENV SPRING_CONFIG_LOCATION=/opt/application.properties
ENTRYPOINT ["java", "-jar", "com.manning.mss.ch10.sample01-1.0.0.jar"]

We’ve externalized the application.properties file. Spring Boot reads the location of
the application.properties file from the SPRING_CONFIG_LOCATION environment
variable, which is set to /opt/application.properties. So Spring Boot expects
the application.properties file to be present in the /opt directory of the Docker con-
tainer. Because our expectation here is to externalize the application.properties file,
we can’t put it to the container filesystem.

 In chapter 10, we used Docker bind mounts, so Docker loads the application
.properties file from the host machine and maps it to the /opt directory of the con-
tainer filesystem. Following is the command we used in chapter 10 to run the Docker
container with bind mounts (only for your reference; if you want to try it, follow the
instructions in section 10.2.2):

\> export JKS_SOURCE="$(pwd)/keystores/keystore.jks"
\> export JKS_TARGET="/opt/keystore.jks"

3 In addition to TLS tunneling, we can also do TLS termination at the Kubernetes load balancer. Then a new
connection is created between the load balancer and the corresponding microservice.

Listing 11.3 The Dockerfile used to build the secure STS

268 CHAPTER 11 Securing microservices on Kubernetes
\> export JWT_SOURCE="$(pwd)/keystores/jwt.jks"
\> export JWT_TARGET="/opt/jwt.jks"
\> export APP_SOURCE="$(pwd)/config/application.properties"
\> export APP_TARGET="/opt/application.properties"

\> docker run -p 8443:8443 \
--mount type=bind,source="$JKS_SOURCE",target="$JKS_TARGET" \
--mount type=bind,source="$JWT_SOURCE",target="$JWT_TARGET" \
--mount type=bind,source="$APP_SOURCE",target="$APP_TARGET" \
-e KEYSTORE_SECRET=springboot \
-e JWT_KEYSTORE_SECRET=springboot \
prabath/secure-sts-ch10:v1

In the command, we use bind mounts to pass not only the application.properties file,
but also the two keystore files. If you look at the keystore locations mentioned in the
application.properties file (listing 11.4), Spring Boot looks for the keystore.jks and
jwt.jks files inside the /opt directory of the container filesystem. Also, in this listing,
you can see that we’ve externalized the keystore passwords. Now, Spring Boot reads
the password of the keystore.jks file from the KEYSTORE_SECRET environment vari-
able, and the password of the jwt.jks file from the JWT_KEYSTORE_SECRET environ-
ment variable, which we pass in the docker run command.

server.port: 8443
server.ssl.key-store: /opt/keystore.jks
server.ssl.key-store-password: ${KEYSTORE_SECRET}
server.ssl.keyAlias: spring
spring.security.oauth.jwt: true
spring.security.oauth.jwt.keystore.password: ${JWT_KEYSTORE_SECRET}
spring.security.oauth.jwt.keystore.alias: jwtkey
spring.security.oauth.jwt.keystore.name: /opt/jwt.jks

11.2.1 Using ConfigMap to externalize configurations in Kubernetes

When you run a container in a Kubernetes environment, you can’t pass configuration
files from your local filesystem as we did with Docker in section 11.2. Kubernetes
introduces an object called ConfigMap to decouple configuration from containers or
microservices running in a Kubernetes environment. In this section, you’ll learn how
to represent the application.properties file, the keystore.jks file, the jwt.jks file, and
the keystore passwords as ConfigMap objects.

 A ConfigMap is not the ideal object to represent sensitive data like keystore passwords.
In such cases, we use another Kubernetes object called Secret. In section 11.3, we’ll move
keystore passwords from ConfigMap to a Kubernetes Secret. If you’re new to Kubernetes
ConfigMaps, see appendix J for the details and to find out how it works internally.

11.2.2 Defining a ConfigMap for application.properties file

Kubernetes lets you create a ConfigMap object with the complete content of a config-
uration file. Listing 11.5 shows the content of the application.properties file under the
data element with the application.properties as the key. The name of the key

Listing 11.4 The content of the application.properties file

269Managing secrets in a Kubernetes environment
must match the name of the file that we expect to be in the container filesystem. You
can find the complete ConfigMap definition of the application.properties file in the
chapter11/sample01/sts.configuration.yaml file.

apiVersion: v1
kind: ConfigMap
metadata:
 name: sts-application-properties-config-map
data:
 application.properties: |
 [
 server.port: 8443
 server.ssl.key-store: /opt/keystore.jks
 server.ssl.key-store-password: ${KEYSTORE_SECRET}
 server.ssl.keyAlias: spring
 spring.security.oauth.jwt: true
 spring.security.oauth.jwt.keystore.password: ${JWT_KEYSTORE_SECRET}
 spring.security.oauth.jwt.keystore.alias: jwtkey
 spring.security.oauth.jwt.keystore.name: /opt/jwt.jks
]

Once we define the ConfigMap in a YAML file, we can use the kubectl client to create
a ConfigMap object in the Kubernetes environment. We defer that until section
11.2.5, when we complete our discussion on the other three ConfigMap objects as well
(in sections 11.2.3 and 11.2.4).

11.2.3 Defining ConfigMaps for keystore.jks and jwt.jks files

Kubernetes lets you create a ConfigMap object of a file with a text representation (list-
ing 11.5) or with a binary representation. In listing 11.6, we use the binary representa-
tion option to create ConfigMaps for the keystore.jks and jwt.jks files. The base
64-encoded content of the keystore.jks file is listed under the key keystore.jks
under the element binaryData. The name of the key must match the name of the
file we expect to be in the /opt directory of the container filesystem.

 You can find the complete ConfigMap definition of the keystore.jks and jwt.jks files
in the chapter11/sample01/sts.configuration.yaml file. Also, the keystore.jks and
jwt.jks binary files are available in the chapter10/sample01/keystores directory in case
you’d like to do file-to-base64 conversion yourself.4

apiVersion: v1
kind: ConfigMap
metadata:
 name: sts-keystore-config-map

Listing 11.5 The definition of application-properties-config-map

Listing 11.6 The definition of ConfigMap for keystore.jks and jwt.jks

4 To convert a binary file to a base64-encoded text file, you can use an online tool like Browserling (www
.browserling.com/tools/file-to-base64).

Creates a ConfigMap object of
a file with a text representation

The name of the key must match
the name of the file we expect to
be in the container filesystem.

www.browserling.com/tools/file-to-base64
www.browserling.com/tools/file-to-base64

270 CHAPTER 11 Securing microservices on Kubernetes
binaryData:
 keystore.jks: [base64-encoded-text]

apiVersion: v1
kind: ConfigMap
metadata:
 name: sts-jwt-keystore-config-map
binaryData:
 jwt.jks:[base64-encoded-text]

11.2.4 Defining a ConfigMap for keystore credentials

First, don’t do this in a production deployment! Kubernetes stores anything that you store
in a ConfigMap in cleartext. To store credentials in a Kubernetes deployment, we use
a Kubernetes object called Secret instead of a ConfigMap. We talk about Secrets later
in section 11.3. Until then, we’ll define keystore credentials in a ConfigMap.

 Listing 11.7 shows the definition of the sts-keystore-credentials ConfigMap.
There we pass the password to access the keystore.jks file under the KEYSTORE
_PASSWORD key, and the password to access the jwt.jks file under the JWT_KEYSTORE
_PASSWORD key, both under the data element. You can find the complete ConfigMap
definition of keystore credentials in the chapter11/sample01/sts.configuration.yaml
file.

apiVersion: v1
kind: ConfigMap
metadata:
 name: sts-keystore-credentials
data:
 KEYSTORE_PASSWORD: springboot
 JWT_KEYSTORE_PASSWORD: springboot

11.2.5 Creating ConfigMaps by using the kubectl client

In the file chapter11/sample01/sts.configuration.yaml, you’ll find ConfigMap defini-
tions of all four ConfigMaps we’ve discussed in this section thus far. You can use the
following kubectl command from the chapter11/sample01 directory to create
ConfigMap objects in your Kubernetes environment:

\> kubectl apply -f sts.configuration.yaml

configmap/sts-application-properties-config-map created
configmap/sts-keystore-config-map created
configmap/sts-jwt-keystore-config-map created
configmap/sts-keystore-credentials created

The following kubectl command lists all the ConfigMap objects available in your
Kubernetes cluster (under the current namespace):

Listing 11.7 The definition of keystore credentials

Creates a ConfigMap object of a
file with a binary representation

271Managing secrets in a Kubernetes environment

t
re
t

\> kubectl get configmaps

NAME DATA AGE
sts-application-properties-config-map 1 50s
sts-keystore-config-map 0 50s
sts-jwt-keystore-config-map 0 50s
sts-keystore-credentials 2 50s

11.2.6 Consuming ConfigMaps from a Kubernetes Deployment

In this section, we’ll go through the changes we need to introduce to the Kubernetes
Deployment, that we created in listing 11.1, to read the values from the ConfigMaps we
created in section 11.2.5. You’ll find the complete updated definition of the Kubernetes
Deployment in the chapter11/sample01/sts.deployment.with.configmap.yaml file.

 We’ll focus on two types of ConfigMaps. For one, we want to read the content of a
file from a ConfigMap and mount that file into the container filesystem. For the other
one, we want to read a value from a ConfigMap and set that as an environment vari-
able in the container. The following listing shows part of the Deployment object that
carries the configuration related to the containers.

spec:
 containers:
 - name: sts
 image: prabath/secure-sts-ch10:v1
 imagePullPolicy: Always
 ports:
 - containerPort: 8443
 volumeMounts:
 - name: application-properties
 mountPath: "/opt/application.properties"
 subPath: "application.properties"
 - name: keystore
 mountPath: "/opt/keystore.jks"
 subPath: "keystore.jks"
 - name: jwt-keystore
 mountPath: "/opt/jwt.jks"
 subPath: "jwt.jks"
 env:
 - name: KEYSTORE_SECRET
 valueFrom:
 configMapKeyRef:
 name: sts-keystore-credentials
 key: KEYSTORE_PASSWORD
 - name: JWT_KEYSTORE_SECRET
 valueFrom:
 configMapKeyRef:
 name: sts-keystore-credentials
 key: JWT_KEYSTORE_PASSWORD
 volumes:
 - name: application-properties
 configMap:
 name: sts-application-properties-config-map

Listing 11.8 Part of the STS Deployment definition

Defines the volume
mounts used by this
Kubernetes Deployment

The name of the volume,
which refers to the
volumes section

Location of the container
filesystem to mount this volume

Defines the set of
environment variables
read by the Kubernetes
Deployment

The name of the environment
variable. This is the exact
name you find in
application.properties file.

The name of
he ConfigMap to
ad the value for
his environment

variable

The name of the key corresponding
to the value we want to read from
the corresponding ConfigMap

The name of the volume. This is
referred by the name element
under the volumeMounts
section of the Deployment.

The name the ConfigMap,
which carries the data related
to application.properties file

272 CHAPTER 11 Securing microservices on Kubernetes
 - name: keystore
 configMap:
 name: sts-keystore-config-map
 - name: jwt-keystore
 configMap:
 name: sts-jwt-keystore-config-map

You can use the following kubectl command from the chapter11/sample01 direc-
tory to update the Kubernetes Deployment with the changes annotated in listing 11.8:

\> kubectl apply -f sts.deployment.with.configmap.yaml

deployment.apps/sts-deployment configured

The Kubernetes Service we created in section 11.1.4 requires no changes. Make sure
it’s up and running with the correct IP address by using the kubectl get services
command. Now let’s test the STS with the following curl command run from your
local machine:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://34.82.103.6/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works, the STS returns an
OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTIzNz
YsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6I
jRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6ImFwcGxp
Y2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS0Yoc2uBuA
W5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ4uFLAP0NpZ6
BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2jdEhBp1TvMaRKLB
Dk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegBbGgyXHVak2gB7I07
ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlveyjfKs_XIXgU5qizRm9mt5
xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

11.2.7 Loading keystores with an init container

In Kubernetes, we can run more than one container in a Pod, but as a practice, we run
only one application container. Along with an application container, we can also run
one or more init containers. If you’re familiar with Java (or any other programming lan-
guage), an init container in Kubernetes is like a constructor in a Java class. Just as the

273Managing secrets in a Kubernetes environment

Pat
constructor in a Java class runs well before any other methods, an init container in a Pod
must run and complete before any other application containers in the Pod start.

 This is a great way to initialize a Kubernetes Pod. You can pull any files (keystores,
policies, and so forth), configurations, and so on with an init container. Just as with
any other application container, we can have more than one init container in a given
Pod; but unlike an application container, each init container must run to completion
before the next init container starts.

 Listing 11.9 modifies the STS Deployment to load keystore.jks and jwt.jks files from
a Git repository by using an init container instead of loading them from a ConfigMap
object (as in listing 11.8). You can find the complete updated definition of the Kuber-
netes Deployment in the chapter11/sample01/sts.deployment.with.initcontainer.yaml
file. The following listing shows part of the updated STS deployment, corresponding to
the init container.

initContainers:
- name: init-keystores
 image: busybox:1.28
 command:
 - "/bin/sh"
 - "-c"
 - "wget ...sample01/keystores/jwt.jks \
 -O /opt/jwt.jks | wget ...sample01/keystores/keystore.jks \
 -O /opt/keystore.jks"
 volumeMounts:
 - name: keystore
 mountPath: "/opt/keystore.jks"
 subPath: "keystore.jks"
 - name: jwt-keystore
 mountPath: "/opt/jwt.jks"
 subPath: "jwt.jks"

We’ve created the init container with the busybox Docker image. Because the busy-
box container is configured as an init container, it runs before any other container in
the Pod. Under the command element, we specified the program the busybox con-
tainer should run. There we got both keystore.jks and jwt.jks files from a Git repo and
copied both keystore.jks and jwt.jks files to the /opt directory of the busybox con-
tainer filesystem.

 The whole objective of the init container is to get the two keystores into the Docker
container that runs the STS. To do that, we need to have two volume mounts; both
volumes (keystore and jwt-keystore) are mapped to the /opt directory. Because

Listing 11.9 The STS Deployment with an init container

Lists out all the
init containers The name of the Docker image used

as the init container to pull the
keystores from a Git repository

The Docker container executes this command
at startup. The jwt.jks and keystore.jks files are
copied to the opt directory of the container.

Defines a volume mount, so that the
keystores loaded by the init container can
be used by other containers in the Pod

Any container in the Pod that
refers to the same volume
mount must use the same name.

h to the
keystore

The subPath property specifies
a subpath inside the referenced

volume instead of its root.

274 CHAPTER 11 Securing microservices on Kubernetes
we already have volume mounts with these two names (under the secure-sts con-
tainer in the following listing), the two keystores are also visible to the secure-sts
container filesystem.

volumeMounts:
- name: application-properties
 mountPath: "/opt/application.properties"
 subPath: "application.properties"
- name: keystore
 mountPath: "/opt/keystore.jks"
 subPath: "keystore.jks"
- name: jwt-keystore
 mountPath: "/opt/jwt.jks"
 subPath: "jwt.jks"

Finally, to support init containers, we also need to make one more change to the orig-
inal STS Deployment. Earlier, under the volumes element of the STS Deployment,
we pointed to the corresponding ConfigMaps, and now we need to point to a special
volume called emptyDir, as shown here. The emptyDir volume gets created empty
when Kubernetes creates the corresponding Pod, and the keystore files pulled from a
Git repo by the init container populates it. You will lose the content of an emptyDir
volume when you delete the corresponding Pod:

volumes:
- name: application-properties
 configMap:
 name: sts-application-properties-config-map
- name: keystore
 emptyDir: {}
- name: jwt-keystore
 emptyDir: {}

Let’s use the following kubectl command with the chapter11/sample01/sts.deployment
.with.init.containers.yaml file to update the STS deployment to use init containers:

\> kubectl apply -f sts.deployment.with.initcontainer.yaml

deployment.apps/sts-deployment configured

11.3 Using Kubernetes Secrets
As we discussed in section 11.2.4, ConfigMap is not the right way of externalizing sen-
sitive data in Kubernetes. Secret is a Kubernetes object, just like ConfigMap, that car-
ries name/value pairs but is ideal for storing sensitive data. In this section, we discuss
Kubernetes Secrets in detail and see how to update the STS Deployment with Kuber-
netes Secrets, instead of using ConfigMaps, to externalize keystore credentials.

Listing 11.10 Volume mounts in secure-sts container

275Using Kubernetes Secrets
11.3.1 Exploring the default token secret in every container

Kubernetes provisions a Secret to each container of the Pod it creates. This is called
the default token secret. To see the default token secret, run the following kubectl
command:

\> kubectl get secrets

NAME TYPE DATA AGE
default-token-l9fj8 kubernetes.io/service-account-token 3 10d

Listing 11.11 shows the structure of the default token secret returned by kubectl in
YAML format. The name/value pairs under the data element carry the confidential
data in base64-encoded format. The default token secret has three name/value pairs:
ca.crt, namespace, and token. This listing shows only part of the values for ca.crt
and token.

\> kubectl get secret default-token-l9fj8 -o yaml

apiVersion: v1
kind: Secret
metadata:
 annotations:
 kubernetes.io/service-account.name: default
 kubernetes.io/service-account.uid: ff3d13ba-d8ee-11e9-a88f-42010a8a01e4
 name: default-token-l9fj8
 namespace: default
type: kubernetes.io/service-account-token
data:
 ca.crt: LS0tLS1CRUdJTiBDRVJUSUZJQ...
 namespace: ZGVmYXVsdA==
 token: ZXlKaGJHY2lPaUpTVXpJMU5pSX...

The value of ca.crt is, in fact, the root certificate of the Kubernetes cluster. You can
use an online tool like Base64 Decode Online (https://base64.guru/converter/
decode/file) to convert base64-encoded text to a file. You’ll see something similar to
the following, which is the PEM-encoded root certificate of the Kubernetes cluster:

-----BEGIN CERTIFICATE-----
MIIDCzCCAfOgAwIBAgIQdzQ6l91oRfLI141a9hEPoTANBgkqhkiG9w0BAQsFADAv
MS0wKwYDVQQDEyRkMWJjZGU1MC1jNjNkLTQ5MWYtOTZlNi0wNTEwZDliOTI5ZTEw
HhcNMTkwOTE3MDA1ODI2WhcNMjQwOTE1MDE1ODI2WjAvMS0wKwYDVQQDEyRkMWJj
ZGU1MC1jNjNkLTQ5MWYtOTZlNi0wNTEwZDliOTI5ZTEwggEiMA0GCSqGSIb3DQEB
AQUAA4IBDwAwggEKAoIBAQChdg15gweIqZZraHBFH3sB9FKfv2lDZ03/MAq6ek3J
NJj+7huiJUy6PuP9t5rOiGU/JIvRI7iXipqc/JGMRjmMVwCmSv6D+5N8+JmvhZ4i
uzbjUOpiuyozRsmf3hzbwbcLbcA94Y1d+oK0TZ+lYs8XNhX0RCM+gDKryC5MeGnY
zqd+/MLS6zajG3qlGQAWn9XKClPpRDOJh5h/uNQs+r2Y9Uz4oi4shVUvXibwOHrh
0MpAt6BGujDMNDNRGH8/dK1CZ1EYJYoUaOTOeF21RSJ2y82AFS5eA17hSxY4j6x5

Listing 11.11 The default Kubernetes Secret

https://base64.guru/converter/decode/file
https://base64.guru/converter/decode/file

276 CHAPTER 11 Securing microservices on Kubernetes
3ipQt1pe49j5m7QU5s/VoDGsBBge6vYd0AUL9y96xFUvAgMBAAGjIzAhMA4GA1Ud
DwEB/wQEAwICBDAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQB4
33lsGOSU2z6PKLdnZHrnnwZq44AH3CzCQ+M6cQPTU63XHXWcEQtxSDcjDTm1xZqR
qeoUcgCW4mBjdG4dMkQD+MuBUoGLQPkv5XsnlJg+4zRhKTD78PUEI5ZF8HBBX5Vt
+3IbrBelVhREuwDGClPmMR0/081ZlwLZFrbFRwRAZQmkEgCtfcOUGQ3+HLQw1U2P
xKFLx6ISUNSkPfO5pkBW6Tg3rJfQnfuKUPxUFI/3JUjXDzl2XLx7GFF1J4tW812A
T6WfgDvYS2Ld9o/rw3C036NtivdjGrnb2QqEosGeDPQOXs53sgFT8LPNkQ+f/8nn
G0Jk4TNzdxezmyyyvxh2
-----END CERTIFICATE-----

To get something meaningful out of this, you can use an online tool like the Report
URI PEM decoder (https://report-uri.com/home/pem_decoder) to decode the PEM
file, resulting in something similar to the following:

Common Name: d1bcde50-c63d-491f-96e6-0510d9b929e1
Issuing Certificate: d1bcde50-c63d-491f-96e6-0510d9b929e1
Serial Number: 77343A97DD6845F2C8D78D5AF6110FA1
Signature: sha256WithRSAEncryption
Valid From: 00:58:26 17 Sep 2019
Valid To: 01:58:26 15 Sep 2024
Key Usage: Certificate Sign
Basic Constraints: CA:TRUE

The token under the data element in listing 11.11 carries a JSON Web Token (see
appendix B for details on JWT). This JWT is itself base64 encoded. You can use an
online tool like Base64 Encode and Decode (www.base64decode.org) to base64-
decode the token, and an online JWT decoder like JWT.IO (http://jwt.io) to decode
the JWT. The following shows the decoded payload of the JWT:

{
 "iss": "kubernetes/serviceaccount",
 "kubernetes.io/serviceaccount/namespace": "default",
 "kubernetes.io/serviceaccount/secret.name": "default-token-l9fj8",
 "kubernetes.io/serviceaccount/service-account.name": "default",
 "kubernetes.io/serviceaccount/service-account.uid":
 "ff3d13ba-d8ee-11e9-a88f-42010a8a01e4",
 "sub": "system:serviceaccount:default:default"
}

Each container in a Kubernetes Pod has access to this JWT from the /var/run/
secrets/kuberenetes.io/serviceaccount directory, in its own container filesystem. If
you want to access the Kubernetes API server from a container, you can use this JWT
for authentication. In fact, this JWT is bound to a Kubernetes service account. We dis-
cuss service accounts in detail in section 11.6.

11.3.2 Updating the STS to use Secrets

In section 11.2, we updated the STS Deployment to use ConfigMaps to externalize
configuration data. Even for keystore credentials, we used ConfigMaps instead of
Secrets. In this section, we’re going to update the STS Deployment to use Secrets to

https://report-uri.com/home/pem_decoder
http://jwt.io
www.base64decode.org

277Using Kubernetes Secrets
represent keystore credentials. First, we need to define the Secret object as shown in
listing 11.12. The complete definition of the Secret object is in the chapter11/
sample01/sts.secrets.yaml file.

apiVersion: v1
kind: Secret
metadata:
 name: sts-keystore-secrets
stringData:
 KEYSTORE_PASSWORD: springboot
 JWT_KEYSTORE_PASSWORD: springboot

To create the Secret in the Kubernetes environment, run the following command
from the chapter11/sample01 directory:

\> kubectl apply -f sts.secrets.yaml

secret/sts-keystore-secrets created

In listing 11.12, we defined keystore credentials under the stringData element.
Another option is to define credentials under the data element. In listing 11.16 (later
in the chapter), we have an example.

 When you define credentials under the data element, you need to base64-encode
the values. If you mostly use binary credentials like private keys, you need to use the
data element. For text credentials, the stringData element is the preferred option.
Another important thing to notice is that Kubernetes has designed the stringData
element to be write-only. That means, when you try to view a Secret you defined with
stringData, it won’t return as a stringData element; instead, Kubernetes base64-
encodes the values and returns those under the data element. You can use the follow-
ing kubectl command to list the definition of the Secret object we created in listing
11.12 in YAML format:

\> kubectl get secret sts-keystore-secrets -o yaml

apiVersion: v1
kind: Secret
metadata:
 name: sts-keystore-secrets
data:
 KEYSTORE_PASSWORD: c3ByaW5nYm9vdA==
 JWT_KEYSTORE_PASSWORD: c3ByaW5nYm9vdA==

Now let’s see how to update the STS Deployment to use the Secret object we created.
You can find the updated YAML configuration for the STS Deployment in the
chapter11/sample01/sts.deployment.with.secrets.yaml file. The following listing

Listing 11.12 The definition of the Secret object that carries keystore credentials

278 CHAPTER 11 Securing microservices on Kubernetes
shows part of the complete STS Deployment, which reads keystore credentials from
the Secret object and populates the environment variables.

env:
- name: KEYSTORE_SECRET
 valueFrom:
 secretKeyRef:
 name: sts-keystore-secrets
 key: KEYSTORE_PASSWORD
- name: JWT_KEYSTORE_SECRET
 valueFrom:
 secretKeyRef:
 name: sts-keystore-secrets
 key: JWT_KEYSTORE_PASSWORD

Let’s run the following kubectl command from chapter11/sample01 to update the
STS Deployment:

\> kubectl apply -f sts.deployment.with.secrets.yaml

deployment.apps/sts-deployment configured

11.3.3 Understanding how Kubernetes stores Secrets

You have to pick Secrets over ConfigMaps to store sensitive data because of the way
Kubernetes internally handles Secrets. Kubernetes makes sure that the sensitive data
Kubernetes represents as Secrets are accessible only to the Pods that need them, and
even in such cases, none of the Secrets are written to disk, but only kept in memory.
The only place Kubernetes writes Secrets to disk is at the master node, where all the
Secrets are stored in etcd (see appendix J), which is the Kubernetes distributed key-
value store. From the Kubernetes 1.7 release onward, etcd stores Secrets only in an
encrypted format.

11.4 Running the Order Processing microservice
in Kubernetes
In this section, we’re going to deploy the Order Processing microservice in Kuber-
netes. As in figure 11.1, the Order Processing microservice trusts the tokens issued by
the STS, which we now have running in Kubernetes. Once the client application
passes the JWT to the Order Processing microservice, the Order Processing microser-
vice talks to the STS to retrieve its public key to validate the signature of the JWT. This
is the only communication that happens between the Order Processing microservice
and the STS. In fact, to be precise, the Order Processing microservice doesn’t wait
until it gets a request to talk to the STS; it talks to the STS at startup to get its public
key and stores it in memory.

Listing 11.13 Part of the STS Deployment definition using Secrets

279Running the Order Processing microservice in Kubernetes
Figure 11.1 An STS issues a JWT access token to the client application, and the
client application uses it to access the microservice on behalf of the user, Peter.

In chapter 10, we explained how to run the Order Processing microservice as a Docker
container. This is the Docker command we used in section 10.4, which externalized the
application.properties file, the keystore (keystore.jks), the trust store (trust-store.jks),
the keystore credentials, and the trust store credentials. You don’t need to run this com-
mand now; if you want to try it out, follow the instructions in chapter 10:

\> export JKS_SOURCE="$(pwd)/keystores/keystore.jks"
\> export JKS_TARGET="/opt/keystore.jks"
\> export JWT_SOURCE="$(pwd)/keystores/jwt.jks"
\> export JWT_TARGET="/opt/jwt.jks"
\> export APP_SOURCE="$(pwd)/config/application.properties"
\> export APP_TARGET="/opt/application.properties"

\> docker run -p 8443:8443 \
--name sts --net manning-network \
--mount type=bind,source="$JKS_SOURCE",target="$JKS_TARGET" \
--mount type=bind,source="$JWT_SOURCE",target="$JWT_TARGET" \
--mount type=bind,source="$APP_SOURCE",target="$APP_TARGET" \
-e KEYSTORE_SECRET=springboot \
-e JWT_KEYSTORE_SECRET=springboot \
prabath/order-processing:v1

To deploy the Order Processing microservice in Kubernetes, we need to create a
Kubernetes Deployment and a Service. This is similar to what we did before when
deploying the STS in Kubernetes.

STS returns a JWT, which
carries the user context
related to Peter

Client application gets an access
token on behalf of the user Peter

Client application invokes the
microservice by passing the
JWT in an HTTP header

Security Token
Service (STS)

Peter

<Trust>

Order
Processing

Service

JWT

JWT

1

2

3

280 CHAPTER 11 Securing microservices on Kubernetes
11.4.1 Creating ConfigMaps/Secrets for the Order Processing microservice

In this section, we create three ConfigMaps to externalize the application.properties
file and two keystores (keystore.jks and trust-store.jks) and a Secret to externalize the
keystore credentials. Listing 11.14 shows the definition of the ConfigMap for the
application.properties file. The value of security.oauth2.resource.jwt.key-uri in this list-
ing carries the endpoint of the STS. Here the sts-service hostname is the name of
Kubernetes Service we created for the STS.

apiVersion: v1
kind: ConfigMap
metadata:
 name: orders-application-properties-config-map
data:
 application.properties: |
 [
 server.port: 8443
 server.ssl.key-store: /opt/keystore.jks
 server.ssl.key-store-password: ${KEYSTORE_SECRET}
 server.ssl.keyAlias: spring
 server.ssl.trust-store: /opt/trust-store.jks
 server.ssl.trust-store-password: ${TRUSTSTORE_SECRET}
 security.oauth2.resource.jwt.key-uri: https://sts-service/oauth/

token_key
 inventory.service: https://inventory-service/inventory
 logging.level.org.springframework=DEBUG
 logging.level.root=DEBUG
]

Listing 11.15 shows the ConfigMap definition for the keystore.jks and trust-store.jks
files. Each binaryData element in each ConfigMap definition in this listing carries
the base64-encoded text of the corresponding keystore file.

apiVersion: v1
kind: ConfigMap
metadata:
 name: orders-keystore-config-map
binaryData:
 keystore.jks: [base64-encoded-text]

apiVersion: v1
kind: ConfigMap
metadata:
 name: orders-truststore-config-map
binaryData:
 trust-store.jks: [base64-encoded-text]

Listing 11.16 shows the Secret definition of the credentials in the keystore.jks and
trust-store.jks files. The value of each key under the data element in this listing

Listing 11.14 The application.properties ConfigMap

Listing 11.15 The keystore ConfigMaps

281Running the Order Processing microservice in Kubernetes
carries the base64-encoded text of corresponding credentials. You can use the follow-
ing command on a Mac terminal to generate the base64encoded value of a given text:

\> echo -n "springboot" | base64

c3ByaW5nYm9vdA==

apiVersion: v1
kind: Secret
metadata:
 name: orders-key-credentials
type: Opaque
data:
 KEYSTORE_PASSWORD: c3ByaW5nYm9vdA==
 TRUSTSTORE_PASSWORD: c3ByaW5nYm9vdA==

In the chapter11/sample02/order.processing.configuration.yaml file, you’ll find
ConfigMap and Secret definitions of all that we discussed in this section. You can use
the following kubectl command from the chapter11/sample02 directory to create
ConfigMap and Secret objects in your Kubernetes environment:

\> kubectl apply -f order.processing.configuration.yaml

configmap/orders-application-properties-config-map created
configmap/orders-keystore-config-map created
configmap/orders-truststore-config-map created
secret/orders-key-credentials created

The following two kubectl commands list all the ConfigMap and Secret objects avail-
able in your Kubernetes cluster (under the current namespace):

\> kubectl get configmaps

NAME DATA AGE
orders-application-properties-config-map 1 50s
orders-keystore-config-map 0 50s
orders-truststore-config-map 0 50s

\> kubectl get secrets

NAME DATA AGE
orders-key-credentials 2 50s

11.4.2 Creating a Deployment for the Order Processing microservice

In this section, we create a Deployment in Kubernetes for the Order Processing micro-
service that we defined in the order.processing.deployment.with.configmap.yaml file
found in the chapter11/sample02/ directory. You can use the following kubectl com-
mand from the chapter11/sample02 directory to create the Kubernetes Deployment:

\>kubectl apply -f order.processing.deployment.with.configmap.yaml

deployment.apps/orders-deployment created

Listing 11.16 The keystore credentials Secret

282 CHAPTER 11 Securing microservices on Kubernetes
11.4.3 Creating a Service for the Order Processing microservice

To expose the Kubernetes Deployment we created in section 11.4.2 for the Order
Processing microservice, we also need to create a Kubernetes Service. You can find
the definition of this Service in the YAML file in the chapter11/sample02/order
.processing.service.yml file. Use the following kubectl command from the chapter11
/sample02 directory to create the Kubernetes Service:

\> kubectl apply -f order.processing.service.yml

service/orders-service created

Then use the following command to find all the Services in your Kubernetes cluster
(under the current namespace). It takes a few minutes for Kubernetes to assign an
external IP address for the order-service we just created. After a couple of minutes,
you’ll notice the following output with an external IP address assigned to the Service.
That is the IP address you should be using to access the Order Processing microservice:

\> kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.39.240.1 <none> 443/T 5d21h
orders-service LoadBalancer 10.39.249.66 35.247.11.161 443:32401/TCP 72s
sts-service LoadBalancer 10.39.255.168 34.83.188.72 443:31749/TCP 8m39s

Both the Kubernetes Services we created in this chapter for the STS and the Order
Processing microservices are of LoadBalancer type. For a Service of the LoadBalancer
type to work, Kubernetes uses an external load balancer. Since we run our examples
in this chapter on GKE, GKE itself provides this external load balancer.

11.4.4 Testing the end-to-end flow

In this section, we test the end-to-end flow (figure 11.2, which is the same as figure 11.1,
but we repeat here for convenience). We need to first get a token from the STS and
then use it to access the Order Processing microservice. Now we have both micro-
services running on Kubernetes. Let’s use the following curl command, run from your
local machine, to a get a token from the STS. Make sure you use the correct external IP
address of the STS:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://34.83.188.72/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works, the STS returns an
OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTIzNz
YsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6I
jRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6ImFwcGxp

283Running the Order Processing microservice in Kubernetes
Y2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS0Yoc2uBuA
W5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ4uFLAP0NpZ6
BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2jdEhBp1TvMaRKLB
Dk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegBbGgyXHVak2gB7I07
ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlveyjfKs_XIXgU5qizRm9mt5
xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

Figure 11.2 The STS issues a JWT access token to the client application, and the client
application uses it to access the microservice on behalf of the user, Peter.

Now try to invoke the Order Processing microservice with the JWT you got from the
previous curl command. Set the same JWT we got, in the HTTP Authorization
Bearer header, using the following curl command, and invoke the Order Processing
microservice. Because the JWT is a little lengthy, you can use a small trick when using
the curl command in this case. Export the value of the JWT to an environmental vari-
able (TOKEN) and then use that environmental variable in your request to the Order
Processing microservice, as shown here:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
https://35.247.11.161/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{

STS returns a JWT, which
carries the user context
related to Peter

Client application gets an access
token on behalf of the user Peter

Client application
invokes the microservice
by passing the JWT
in an HTTP header

Security Token
Service (STS)

Peter

<Trust>

Order
Processing

Service

JWT

JWT

1

2

3

284 CHAPTER 11 Securing microservices on Kubernetes
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}

11.5 Running the Inventory microservice in Kubernetes
In this section, we introduce another microservice, the Inventory microservice, to our
Kubernetes environment and see how service-to-service communication works (figure
11.3). Here, when you invoke the Order Processing microservice with a JWT obtained
from the STS, the Order Processing microservice internally talks to the Inventory
microservice.

Figure 11.3 STS issues a JWT access token to the client application, and the client application
uses it to access the Order Processing microservice on behalf of the user, Peter. The Order Processing
microservice uses the same JWT it got from the client application to access the Inventory microservice.

STS returns a JWT, which carries
the user context related
to Peter

Client application gets an access
token on behalf of the user Peter

Client application
invokes the microservice
by passing the JWT in
an HTTP header

Security Token
Service (STS)

Peter

<Trust>

Order
Processing

Service

JWT

JWT

<Trust>

Inventory
ServiceOrder Processing microservice

invokes the Inventory microservice
by passing the JWT in an HTTP header

1

2

3

4

285Running the Inventory microservice in Kubernetes
Because the process of deploying the Inventory microservice on Kubernetes is similar
to the process we followed while deploying the Order Processing microservice, we
won’t go into details. The only key difference is that the Kubernetes Service corre-
sponding to the Inventory microservice is of ClusterIP type (or the default Service
type) because we don’t want external client applications to directly access it.

 Let’s run the following kubectl command from the chapter11/sample03 direc-
tory to create a Kubernetes Deployment for the Inventory microservice. This com-
mand creates a set of ConfigMaps, a Secret, a Deployment, and a Service:

\> kubectl apply -f .

configmap/inventory-application-properties-config-map created
configmap/inventory-keystore-config-map created
configmap/inventory-truststore-config-map created
secret/inventory-key-credentials created
deployment.apps/inventory-deployment created
service/inventory-service created

Use the following command to find all the Services in your Kubernetes cluster (under
the current namespace). Because the Inventory microservice is a Service of
ClusterIP type, you won’t find an external IP address for it:

\> kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
inventory-service ClusterIP 10.39.251.182 <none> 443/TCP
orders-service LoadBalancer 10.39.245.40 35.247.11.161 443:32078/TCP
sts-service LoadBalancer 10.39.252.24 34.83.188.72 443:30288/TCP

Let’s test the end-to-end flow (figure 11.3). We need to first get a token from the STS
and then use it to access the Order Processing microservice. Now we have all three
microservices running on Kubernetes. Let’s use the following curl command, run
from your local machine, to a get a token from the STS. Make sure you use the correct
external IP address of the STS:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://34.83.188.72/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works, the STS returns an
OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTIzNz
YsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6I
jRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6ImFwcGxp
Y2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS0Yoc2uBuA
W5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ4uFLAP0NpZ6
BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2jdEhBp1TvMaRKLB

286 CHAPTER 11 Securing microservices on Kubernetes
Dk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegBbGgyXHVak2gB7I07
ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlveyjfKs_XIXgU5qizRm9mt5
xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

Now let’s invoke the Order Processing microservice with the JWT you got from the
previous curl command. Set the same JWT you got, in the HTTP Authorization
Bearer header using the following curl command and invoke the Order Processing
microservice. Because the JWT is a little lengthy, you can use a small trick when using
the curl command. Export the JWT to an environment variable (TOKEN), then use
that environment variable in your request to the Order Processing microservice:

\> export TOKEN=jwt_access_token
\> curl -v -k https://35.247.11.161/orders \
-H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d @- << EOF
{ "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

In the previous command, we do an HTTP POST to the Order Processing microser-
vice so that the Order Processing microservice can talk to the Inventory microservice.
In return, you won’t get any JSON payload, but only an HTTP 201 status code. When
the Order Processing microservice talks to the Inventory microservice, the Inventory
microservice prints the item codes in its logs. You can tail the logs with the following
command that includes the Pod name corresponding to the Inventory microservice:

\> kubectl logs inventory-deployment-f7b8b99c7-4t56b --follow

287Using Kubernetes service accounts
11.6 Using Kubernetes service accounts
Kubernetes uses two types of accounts for authentication and authorization: user
accounts and service accounts. The user accounts aren’t created or managed by
Kubernetes, while the service accounts are. In this section, we discuss how Kubernetes
manages service accounts and associates those with Pods.

 In appendix J, we talked about the high-level Kubernetes architecture and how a
Kubernetes node communicates with the API server. Kubernetes uses service accounts
to authenticate a Pod to the API server. A service account provides an identity to a
Pod, and Kubernetes uses the ServiceAccount object to represent a service account.
Let’s use the following command to list all the service accounts available in our Kuber-
netes cluster (under the default namespace):

\> kubectl get serviceaccounts

NAME SECRETS AGE
default 1 11d

By default, at the time you create a Kubernetes cluster, Kubernetes also creates a ser-
vice account for the default namespace. To find more details about the default service
account, use the following kubectl command. It lists the service account definition
in YAML format. There you can see that the default service account is bound to the
default token secret that we discussed in section 11.3.1:

\> kubectl get serviceaccount default -o yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 creationTimestamp: "2019-09-17T02:01:00Z"
 name: default
 namespace: default
 resourceVersion: "279"
 selfLink: /api/v1/namespaces/default/serviceaccounts/default
 uid: ff3d13ba-d8ee-11e9-a88f-42010a8a01e4
secrets:
- name: default-token-l9fj8

Kubernetes binds each Pod to a service account. You can have multiple Pods bound to
the same service account, but you can’t have multiple service accounts bound to the
same Pod (figure 11.4). For example, when you create a Kubernetes namespace, by
default Kubernetes creates a service account. That service account is assigned to all
the Pods that are created in the same namespace (unless you create a Pod under a
specific service account). Under each namespace, you'll find a service account called
default.

288 CHAPTER 11 Securing microservices on Kubernetes
Figure 11.4 A service account in Kubernetes can be assigned to one or more Pods, while a Pod at any
given time can be bound to only a single service account.

11.6.1 Creating a service account and associating it with a Pod

In this section, we create a service account called ecomm, and update the STS Deploy-
ment to use it. We want all the Pods running under the STS Deployment to run under
the ecomm service account. Let’s use the following kubectl command to create the
ecomm service account:

\> kubectl create serviceaccount ecomm

serviceaccount/ecomm created

At the time of creating the service account, Kubernetes also creates a token secret and
attaches it to the service account. When we update the STS Deployment to run under
the ecomm service account, all the Pods under the STS Deployment can use this token
secret (which is a JWT) to authenticate to the API server. The following command
shows the details of the ecomm service account in YAML format:

\> kubectl get serviceaccount ecomm -o yaml

apiVersion: v1
kind: ServiceAccount
metadata:
 name: ecomm

Pod

Service Account
Pod

Pod

Two or more service
accounts cannot be
assigned to a single Pod.

One service account
can be assigned to
one or more Pods.

Service Account

289Using Kubernetes service accounts
 namespace: default
secrets:
- name: ecomm-token-92p7g

Now let’s set the ecomm service account for the STS Deployment. The complete up-
dated definition of the STS Deployment is in the chapter11/sample01/sts.deployment
.with.service.account.yaml file. We are introducing these new changes on top of the STS
Deployment created in section 11.3.2. As shown in the following listing, the only
change was to add the serviceAccountName element under the spec element (cor-
responding to the Pod) of the Deployment.

spec:
 serviceAccountName: ecomm
 containers:
 - name: sts
 image: prabath/secure-sts-ch10:v1
 imagePullPolicy: Always
 ports:
 - containerPort: 8443

Let’s use the following command from the chapter11/sample01 directory to update
the STS Deployment:

\> kubectl apply -f sts.deployment.with.service.account.yaml

deployment.apps/sts-deployment configured

If you run the kubectl describe pod command against the Pod Kubernetes created
under the STS Deployment now, you’ll find that it uses the token secret Kubernetes
automatically created for the ecomm service account.

11.6.2 Benefits of running a Pod under a custom service account

If you don’t specify a service account under the Pod spec of a Deployment (listing
11.17), Kubernetes runs all the corresponding Pods under the same default service
account, created under the corresponding Kubernetes namespace.5

NOTE Having different service accounts for each Pod or for a group of Pods
helps you isolate what each Pod can do with the Kubernetes API server. Also,
it helps you enforce fine-grained access control for the communications
among Pods.

This is one security best practice we should follow in a Kubernetes Deployment. Then
again, even if you have different service accounts for different Pods, if you don’t

Listing 11.17 Attaching a service account to a Pod

5 The Pod spec in a Kubernetes Deployment object defines the parameters for the corresponding Pod.

290 CHAPTER 11 Securing microservices on Kubernetes
enforce authorization checks at the API server, it adds no value. GKE enables role-
based access control by default.

 If your Kubernetes cluster doesn’t enforce authorization checks, there’s another
option. If you don’t want your Pod to talk to the API server at all, you can ask Kuber-
netes not to provision the default token secret to that corresponding Pod. Without the
token secret, none of the Pods will be able to talk to the API server. To disable the
default token provisioning, you need to set the automountServiceAccountToken
element to false under the Pod spec of the Deployment (listing 11.17).

11.7 Using role-based access control in Kubernetes
Role-based access control (RBAC) in Kubernetes defines the actions a user or a service (a
Pod) can perform in a Kubernetes cluster. A role, in general, defines a set of permis-
sions or capabilities. Kubernetes has two types of objects to represent a role: Role and
ClusterRole. The Role object represents capabilities associated with Kubernetes
resources within a namespace, while ClusterRole represents capabilities at the Kuber-
netes cluster level.

 Kubernetes defines two types of bindings to bind a role to one or more users (or
services): RoleBinding and ClusterRoleBinding. The RoleBinding object represents
a binding of namespaced resources to a set of users (or services) or, in other words, it
binds a Role to a set of users (or services). The ClusterRoleBinding object represents
a binding of cluster-level resources to a set of users (or services) or, in other words, it
binds a ClusterRole to a set of users (or services). Let’s use the following command to
list all the ClusterRoles available in your Kubernetes environment. The truncated out-
put shows the ClusterRoles available in GKE by default:

\> kubectl get clusterroles

NAME AGE
admin 12d
cloud-provider 12d
cluster-admin 12d
edit 12d
gce:beta:kubelet-certificate-bootstrap 12d
gce:beta:kubelet-certificate-rotation 12d
gce:cloud-provider 12d
kubelet-api-admin 12d
system:aggregate-to-admin 12d
system:aggregate-to-edit 12d
system:aggregate-to-view 12d

To view the capabilities of a given ClusterRole, let’s use the following kubectl com-
mand. The output in YAML format shows that under the rules section, the cluster
-admin role can perform any verb (or action) on any resource belongs to any API
group. In fact, this role provides full access to the Kubernetes cluster:

\> kubectl get clusterrole cluster-admin -o yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole

291Using role-based access control in Kubernetes
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: cluster-admin
rules:
- apiGroups:
 - '*'
 resources:
 - '*'
 verbs:
 - '*'
- nonResourceURLs:
 - '*'
 verbs:
 - '*'

Let’s use the following command to list all the ClusterRoleBindings available in your
Kubernetes environment. The truncated output shows the ClusterRoleBindings avail-
able in GKE by default:

\> kubectl get clusterrolebinding

NAME AGE
cluster-admin 12d
event-exporter-rb 12d
gce:beta:kubelet-certificate-bootstrap 12d
gce:beta:kubelet-certificate-rotation 12d
gce:cloud-provider 12d
heapster-binding 12d
kube-apiserver-kubelet-api-admin 12d
kubelet-bootstrap 12d

To view the users and services attached to a given ClusterRoleBinding, let’s use the
following kubectl command. The output of the command, in YAML, shows that
under the roleRef section, cluster-admin refers to the cluster-admin Cluster-
Role, and under the subjects section, the system:masters group is part of the
role binding. Or, in other words, the cluster-admin ClusterRoleBinding binds
the system:masters group to the cluster-admin ClusterRole, so anyone in the
system:masters group has full access to the Kubernetes cluster:

\> kubectl get clusterrolebinding cluster-admin -o yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: cluster-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io

292 CHAPTER 11 Securing microservices on Kubernetes
 kind: ClusterRole
 name: cluster-admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:masters

As we discussed in section 11.5, Kubernetes has two types of accounts: users and ser-
vice accounts, and users aren’t managed by Kubernetes. Also, you can use a construct
called a group to group both the users and service accounts. In this case, we have a
group called system:masters.

 Kubernetes has a plugin architecture to authenticate and authorize requests. Once
an authentication plugin completes authenticating a request, it returns the username
and the group information with respect to the corresponding account (a user or a ser-
vice account) to the authorization plugin chain. How the authentication plugin finds
the user’s group information depends on how the plugin is implemented. Kubernetes
needs to not maintain group information internally; the authentication plugin can
connect to any external source to find the account-to-group mapping. That being
said, Kubernetes also manages a set of predefined groups for service accounts. For
example, the group system:serviceaccounts:default assumes all the service
accounts under the default namespace.

 Let’s go through a practical example to understand how Kubernetes uses groups.
Some time ago, when the developers of Docker Desktop decided to add Kubernetes
support, they wanted to promote all the service accounts in the Kubernetes environ-
ment to cluster admins. To facilitate that, they came up with a ClusterRoleBinding
called docker-for-desktop-binding, which binds the cluster-admin Cluster-
Role to the group system:serviceaccounts. The system:serviceaccounts
group is a built-in Kubernetes group that assumes all the system accounts in the
Kubernetes cluster are members of it. The following shows the definition of the
docker-for-desktop-binding ClusterRoleBinding:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: docker-for-desktop-binding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- apiGroup: rbac.authorization.k8s.io
 kind: Group
 name: system:serviceaccounts

11.7.1 Talking to the Kubernetes API server from the STS

Let’s say, for example, we need the STS to talk to the API server. Ideally, we’ll do that
in the STS code itself. Because this is just an example, we’ll use curl from a container
that runs the STS. Use the following kubectl command to directly access the shell of

293Using role-based access control in Kubernetes
an STS Pod. Because we have only one container in each Pod, we can simply use the
Pod name (sts-deployment-69b99fc78c-j76tl) here:

\> kubectl -it exec sts-deployment-69b99fc78c-j76tl sh
#

After you run the command, you end up with a shell prompt within the correspond-
ing container. Also, we assume that you’ve followed along in section 11.6.1 and
updated the STS Deployment, where now it runs under the ecomm service account.

 Because we want to use curl to talk to the API server, we need to first install it with
the following command in the STS container. And because the containers are immu-
table, if you restart the Pod during this exercise, you’ll need to install curl again:

apk add --update curl && rm -rf /var/cache/apk/*

To invoke an API, we also need to pass the default token secret (which is a JWT) in the
HTTP authorization header. Let’s use the following command to export the token
secret to the TOKEN environment variable. As we’ve previously mentioned, the default
token secret is accessible to every container from the /var/run/secrets/kubernetes.io
/serviceaccount/token file:

export TOKEN=$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)

The following curl command talks to the Kubernetes API server to list all the meta-
data associated with the current Pod. Here, we pass the default token secret, which we
exported to the TOKEN environment variable, in the HTTP authorization header.
Also, inside a Pod, Kubernetes itself populates the value of the HOSTNAME environ-
ment variable with the corresponding Pod name, and the kubernetes.default
.svc hostname is mapped to the IP address of the API server running in the Kuber-
netes control plane:

curl -k -v -H "Authorization: Bearer $TOKEN" \
https://kubernetes.default.svc/api/v1/namespaces/default/pods/$HOSTNAME

In response to this command, the API server returns the HTTP 403 code, which
means the ecomm service account isn’t authorized to access this particular API. In fact,
it’s not only this specific API; the ecomm service account isn’t authorized to access any
of the APIs on the API server! That’s the default behavior of GKE. Neither the default
service account that Kubernetes creates for each namespace nor a custom service
account you create are associated with any roles.

11.7.2 Associating a service account with a ClusterRole

Associating a service account with a ClusterRole gives that particular service account
the permissions to do certain tasks authorized under the corresponding ClusterRole.
There are two ways to associate the ecomm service account with a ClusterRole.

 One way to associate a service account with a ClusterRole is to create a new Cluster-
RoleBinding; the other way is to update an existing ClusterRoleBinding. In this

294 CHAPTER 11 Securing microservices on Kubernetes
section, we follow the first approach and create a new ClusterRoleBinding called
ecomm-cluster-admin in GKE. You can find the definition of the ecomm-
cluster-admin ClusterRoleBinding in the chapter11/sample01/ecomm.cluster-
role.binding.yaml file (and in the following listing).

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 labels:
 addonmanager.kubernetes.io/mode: Reconcile
 kubernetes.io/cluster-service: "true"
 name: ecomm-cluster-admin
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: cluster-admin
subjects:
- kind: ServiceAccount
 namespace: default
 name: ecomm

Let’s use the following command from the chapter11/sample01 directory to update
the Kubernetes environment with the new ClusterRoleBinding:

\> kubectl apply -f ecomm.clusterrole.binding.yaml

clusterrolebinding.rbac.authorization.k8s.io/kube-apiserver-kubelet-api-admin
configured

Now if you redo the exercise in section 11.7.1, you’ll get a successful response from
the API server, as the ecomm service account, which is now associated with a Cluster-
Role, is authorized to list all the metadata associated with the current Pod.

 If you’d like to know more about the authorization model of Kubernetes, refer to the
online documentation at https://kubernetes.io/docs/reference/access-authn-authz/
authorization/.

Summary
 Kubernetes uses ConfigMaps to externalize configurations from the application

code, which runs in a container, but it’s not the correct way of externalizing sen-
sitive data in Kubernetes.

 The ideal way to store sensitive data in a Kubernetes environment is to use
Secrets; Kubernetes stores the value of a Secret in its etcd distributed key-value
store in an encrypted format.

 Kubernetes dispatches Secrets only to the Pods that use them, and even in such
cases, the Secrets are never written to disk, only kept in memory.

Listing 11.18 The definition of ecomm-cluster-admin

https://kubernetes.io/docs/reference/access-authn-authz/authorization/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/

295Summary
 Each Pod, by default, is mounted with a token secret, which is a JWT. A Pod can
use this default token secret to talk to the Kubernetes API server.

 Kubernetes has two types of accounts: users and service accounts. The user
accounts aren’t created or managed by Kubernetes, while the service accounts
are.

 By default, each Pod is associated with a service account (with the name
default), and each service account has its own token secret.

 It’s recommended that you always have different service accounts for different
Pods (or for a group of Pods). This is one of the security best practices we
should always follow in a Kubernetes Deployment.

 If you have a Pod that doesn’t need to access the API server, it’s recommended
that you not provision the token secret to such Pods.

 Kubernetes uses Roles/ClusterRoles and RoleBindings/ClusterRoleBindings to
enforce access control on the API server.

Securing microservices
with Istio service mesh
In chapter 6, we discussed how to secure service-to-service communications with
certificates; and in chapter 7, we extended that discussion to use JWTs to secure ser-
vice-to-service communications. Then in chapters 10 and 11, we discussed how to
deploy a set of microservices as Docker containers in Kubernetes and to secure
service-to-service communications with JWT over mTLS. In all of these cases, each
microservice by itself had to worry about doing security processing. Or in other
words, each microservice embedded a set of Spring Boot libraries to do security
processing. This violates one key aspect of microservices architecture, the single

This chapter covers
 Terminating TLS at the Istio Ingress gateway

 Securing service-to-service communications
with mTLS in an Istio environment

 Securing service-to-service communications
with JWT in an Istio environment

 Enforcing RBAC with Istio

 Managing keys in an Istio deployment
296

297Setting up the Kubernetes deployment
responsibility principle, under which a microservice should be performing only one
particular function.

 A service mesh is a result of the gradual progress in implementing the single respon-
sibility principle in microservices architecture. It is, in fact, an architectural pattern
that brings in best practices in resiliency, security, observability, and routing control to
your microservices deployment, which we discussed in appendix K in detail. Istio is an
out-of-process service mesh implementation that runs apart from your microservice, trans-
parently intercepts all the traffic coming into and going out from your microservice,
and enforces security and other quality of service (QoS) controls.

NOTE If you are new to the Service Mesh pattern and Istio, see appendix K
first. This chapter assumes you understand the Service Mesh pattern and
Istio, and have gone through all the samples in appendix K.

In this chapter, we are going to redo some of the examples we discussed in chapter 6
and chapter 7, following the Service Mesh architecture with Istio.

12.1 Setting up the Kubernetes deployment
In this section, we are going to set up a Kubernetes deployment (figure 12.1) that is
similar to what we had in section 11.5. The only difference is that here we have
removed the JWT verification and mTLS from the Order Processing and Inventory

STS returns a JWT, which carries
the user context related
to Peter

Client application gets an access
token on behalf of the user Peter

Client application
invokes the microservice
by passing the JWT in
an HTTP header

Neither the Order Processing
microservice nor the Inventory
microservice does JWT
verification at the moment.
You can simply call it with any
JWT or even without a JWT.

Security Token
Service (STS)

Peter

Order
Processing

Service

HTTP

Inventory
ServiceThe Order Processing microservice

invokes the Inventory microservice
by passing the JWT in an HTTP header.

HTTP

HTTP

HTTP1

23

4

Figure 12.1 STS issues a JWT access token to the client application, and the client application uses
it to access the Order Processing microservice on behalf of the user, Peter. The Order Processing
microservice uses the same JWT it got from the client application to access the Inventory microservice.

https://istio.io/docs/reference/commands/istioctl/
https://istio.io/docs/reference/commands/istioctl/

298 CHAPTER 12 Securing microservices with Istio service mesh
microservices. Also, we have removed TLS support from all three microservices
(figure 12.1). If you aren’t familiar with Kubernetes, or if it’s been a while since you’ve
worked with it, see appendix J, which is an overview of the Kubernetes basics.

12.1.1 Enabling Istio autoinjection

To add Istio support for the microservices we are about to deploy—or, in other words,
to autoinject Envoy as a sidecar proxy to the microservice deployment—run the fol-
lowing kubectl command. Figure 12.2 gives you a high-level understanding of what
the deployment will look like. Here, we enable autoinjection for the default
namespace (in appendix K, we discuss how to install Istio in Kubernetes and sidecar
autoinjection in detail). If you are using a fresh Kubernetes cluster on Google Kuber-
netes Engine (GKE), make sure that you have enabled the Istio add-on for your clus-
ter (see appendix K for the details):

\> kubectl label namespace default istio-injection=enabled

To try out the samples in this chapter, you can use either the Kubernetes cluster you
created on GKE in appendix K (or chapter 11) or your local Kubernetes cluster run-
ning on Docker Desktop. At the time of this writing, the latest GKE cluster version is
1.14.10-gke.27, and it supports only Istio 1.2.10. Istio 1.2.10 was released in December
2019, and at the time of this writing, the latest Istio release is 1.6.2, which was released

Proxy Proxy

Neither the Order Processing microservice nor the
Inventory microservice does JWT verification at the moment.
You can simply call it with any JWT or even without a JWT.

Client application gets
an access token on
behalf of the end user

Client application invokes the
microservice by passing the JWT
in an HTTP header

The Order Processing
microservice invokes the
Inventory microservice
by passing the JWT in
an HTTP header.

A Kubernetes Pod that
carries the Envoy proxy
along with the microservice

Order
Processing
Microservice

STS
Microservice

Inventory
Microservice

Load Balancer

Proxy

HTTP HTTP HTTP

HTTP HTTP

1

1

2

2

3

Figure 12.2 Istio introduces the Envoy sidecar proxy to each Pod, along with the container that carries the
microservice.

299Setting up the Kubernetes deployment
in June 2020. There is always a time gap in GKE to support the latest version of Istio.
So, if you are using GKE, you won’t be able to test the new features introduced in Istio
1.5.x or later releases. In this chapter, we talk about some of the new security features
Istio introduced in version 1.5.0, and you would need to switch from GKE to your
local Istio installation on Docker Desktop to test them, unless GKE is upgraded to Istio
1.5.x at the time you read the book. You can find the GKE-to-Istio version mapping at
https://cloud.google.com/istio/docs/istio-on-gke/versions.

12.1.2 Clean up any previous work

If you have already run the samples in appendix K or chapter 11, let’s run the follow-
ing command from the chapter12/sample01 directory to clean those Deployments.
(If you have not, it’s not a must to run those samples in appendix K or chapter 11.) If
the script returns any errors saying some resources are not found, you can simply
ignore them. All the source code related to the samples in this chapter is available in
the https://github.com/microservices-security-in-action/samples GitHub repository,
in the chapter12 directory. The clean.sh script deletes all the Kubernetes Services,
Deployments, ConfigMaps, and Secrets we created in appendix K and chapter 11:

\> sh clean.sh

12.1.3 Deploying microservices

To create three Kubernetes Deployments and the corresponding Services with respect
to the STS, Order Processing, and Inventory microservices, run the following com-
mand from the chapter12/sample01 directory:

\> kubectl apply -f .

configmap/inventory-application-properties-config-map created
deployment.apps/inventory-deployment created
service/inventory-service created
configmap/orders-application-properties-config-map created
deployment.apps/orders-deployment created
service/orders-service created
configmap/sts-application-properties-config-map created
configmap/sts-jwt-keystore-config-map created
secret/sts-keystore-secrets created
deployment.apps/sts-deployment created
service/sts-service created

Let’s run the following command to verify the environment. This shows three Pods,
each one corresponding to a microservice. In each Pod, we see two containers, one
for the microservice and the other for the Envoy proxy:

\> kubectl get pods

NAME READY STATUS RESTARTS
inventory-deployment-7848664f49-x9z7h 2/2 Running 0
orders-deployment-7f5564c8d4-ttgb2 2/2 Running 0
sts-deployment-85cdd8c7cd-qk2c5 2/2 Running 0

https://cloud.google.com/istio/docs/istio-on-gke/versions
https://github.com/microservices-security-in-action/samples

300 CHAPTER 12 Securing microservices with Istio service mesh
Next, you can run the following command to list the available Services. Here, we have
orders-service and sts-service of the LoadBalancer type.1 That means these
two Services are publicly accessible. When we use Istio, we do not need to make these
Services of LoadBalancer type, because we are going to use the Istio Ingress gateway
anyway—and all the traffic should flow through it. If we have a Service of Load-
Balancer type, and expose that via the Istio Ingress gateway, we create two entry points
for that microservice. You can access the microservice with the external IP address of
the Service, as well as with the IP address of the Istio Ingress gateway, which does not
sound good:

\> kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
inventory-service ClusterIP 10.39.243.179 <none> 80/TCP
orders-service LoadBalancer 10.39.242.8 35.247.11.161 80:32515/TCP
sts-service LoadBalancer 10.39.243.231 35.199.169.214 80:31569/TCP

If you look at the PORT column in the preceding output, you’ll notice that all three
Services are running on HTTP on port 80 (not over TLS), which is not good in terms
of security. In section 12.2, we discuss how to use the Istio Ingress gateway to protect
these Services with TLS. Also in section 12.2, we are going to redeploy both the
orders-service and sts-service Services as ClusterIP Services, so they won’t
be directly accessible outside the Kubernetes cluster.

12.1.4 Redeploying Order Processing and STS as NodePort Services

You need to follow this section only if you are using a local Kubernetes cluster on
Docker Desktop or Minikube, where the Services of LoadBalancer type won’t still let
you access them outside the cluster, as you do not have an external load balancer in
your environment. In that case, you can change the Service type of the Order Process-
ing and STS microservices to NodePort type. Then you can access both the microser-
vices with the port of the node and the corresponding node IP address (which is
localhost or 127.0.0.1).

 To do that, run the following command from chapter12/sample01/docker-desktop
directory. This will delete the orders-service and sts-service Services (if already
there) and redeploy both as NodePort type Services. As per the output of the com-
mand, the node port of the orders-service is 32485, and the node port of the sts-
service is 31310:

\> sh deploy-locally.sh

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
inventory-service ClusterIP 10.97.213.70 <none> 80/TCP
orders-service NodePort 10.96.187.28 <none> 80:32485/TCP
sts-service NodePort 10.97.191.229 <none> 80:31310/TCP

1 If you are not familiar with the various Kubernetes service types, see appendix J.

301Setting up the Kubernetes deployment
12.1.5 Testing end-to-end flow

In this section, we are going to test the end-to-end flow, as shown in figure 12.1.
Because the Order Processing microservice is secured with JWT, first we need to get a
JWT from the STS, which the Order Processing microservice trusts. Let’s run the fol-
lowing curl command to talk to the STS and get a JWT. Here, we use curl to represent
your client application; in the command, make sure to use the external IP address cor-
responding to your STS. If you followed section 12.1.4, you need to use the corre-
sponding node port and localhost as the hostname:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
http://35.199.169.214/oauth/token

The following command does an HTTP GET to the Order Processing microservice.
We do not need to pass the JWT we obtained from the previous command, because we
are not doing JWT verification at the service level. Later in the chapter, we discuss
how to do JWT verification with Istio. In the following command, make sure to use the
external IP address corresponding to your Order Processing microservice. If you fol-
lowed section 12.1.4, you need to use the corresponding node port and localhost as
the hostname:

\> curl -k http://35.247.11.161/orders/11

Finally, let’s run the following command to POST to the Order Processing microser-
vice, which internally calls the Inventory microservice. Again, in the curl command,
make sure to use the external IP address corresponding to your Order Processing
microservice; or if you followed section 12.1.4, you need to use the corresponding
node port and localhost as the hostname:

\> curl -k -v http://35.247.11.161/orders \
-H 'Content-Type: application/json' \
-d @- << EOF
{
 "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }

https://istio.io/docs/reference/config/security/authorization-policy/

302 CHAPTER 12 Securing microservices with Istio service mesh
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

All these communications happen over HTTP. This is an incomplete setup to verify
that our Kubernetes environment works fine; in an ideal production setup, we should
not expose any of the microservices just over HTTP. As we move forward in this chap-
ter, we discuss how to make this incomplete setup more complete and secure.

12.2 Enabling TLS termination at the Istio Ingress gateway
In this section, we are going to expose the three microservices we deployed in Kuber-
netes in section 12.1 via the Istio Ingress gateway over TLS. The Istio Ingress gateway
runs at the edge of the Kubernetes cluster; all the traffic coming to your service mesh
ideally should go through the Ingress gateway (figure 12.3). Here, we enable TLS only
at the Ingress gateway (each microservice will still run on HTTP). The Ingress gateway
terminates TLS at the edge and then routes traffic over HTTP to the corresponding

Proxy Proxy

Neither the Order Processing microservice nor the
Inventory microservice does JWT verification at the moment.
You can simply call it with any JWT or even without a JWT.

Client application gets
an access token on
behalf of the end user

Client application invokes the
microservice by passing the JWT
in an HTTP header

The Order Processing
microservice invokes the
Inventory microservice
by passing the JWT in
an HTTP header.Order

Processing
Microservice

STS
Microservice

Inventory
Microservice

Istio Ingress Gateway

Proxy

Load Balancer

HTTPS HTTPS1
2

HTTP HTTP HTTP1 2 3

HTTPS HTTPS1 2

Figure 12.3 The Istio Ingress gateway intercepts all the requests coming to the microservice and
terminates the TLS connection.

303Enabling TLS termination at the Istio Ingress gateway
microservices. In section 12.3, we discuss how to enable mTLS between the Ingress
gateway and the microservices—and also among microservices.

12.2.1 Deploying TLS certificates to the Istio Ingress gateway

In this section, we teach you how to enable TLS at the Istio Ingress gateway. To enable
TLS, first we need to create a public/private key pair. Here, we use OpenSSL to gener-
ate the keys. OpenSSL is a commercial-grade toolkit and cryptographic library for
TLS that’s available for multiple platforms. Appendix G covers how to generate keys
with OpenSSL in detail.

 The following command uses an OpenSSL Docker image, which we can use to
generate keys, so you don’t need to worry about installing OpenSSL locally. Run the
following command from the chapter12/sample02 directory, and when the OpenSSL
container spins up, it provides a prompt to execute the OpenSSL commands:

\> docker run -it -v $(pwd):/export prabath/openssl
#

Run the following OpenSSL command to generate a public/private key pair; you can
find the generated keys inside the chapter12/sample02/gateway-keys directory. When
you pull the samples from the GitHub repository, the keys are already in the
chapter12/sample02/gateway-keys directory—so before executing the following com-
mand, make sure to delete them. Alternatively, you can skip the key generation and
use the keys from the GitHub repository. To exit from the OpenSSL Docker container,
type exit:

openssl req -nodes -new -x509 -keyout /export/gateway-keys/server.key \
-out /export/gateway-keys/server.cert -subj "/CN=gateway.ecomm.com"

Istio introduced a feature called Secret Discovery Service (SDS) with Istio 1.1.0 under
the sds profile for key provisioning and rotation (we discuss this in detail in section
12.6.3). So, if you are using Istio 1.1.0 or any release after that, but prior to 1.5.0, with
the default profile, you will not see SDS support. If you check the Istio feature status
available at the Istio website (https://istio.io/about/feature-stages/#security-and
-policy-enforcement), you can find the status of the SDS feature. It was in the alpha
phase prior to 1.5.0 and became stable since that. In the following sections, we discuss
how to deploy the keys we generated in this section at the Ingress gateway, with and
without the SDS support.

INGRESS GATEWAY WITH NO SDS
In this section, we discuss how to set up TLS keys for the Istio Ingress gateway with no
SDS support. If you are using Istio 1.5.0 or later, you can move to the next section,
which explains how to do the same with SDS support.

 The Istio Ingress gateway (with no SDS support) reads the public/private key pair
for the TLS communication from a well-defined Kubernetes Secret called istio-
ingressgateway-certs. In fact, the Istio Ingress gateway is an Envoy proxy, run-
ning within a Pod, under the istio-system namespace, in the Kubernetes cluster.

https://report-uri.com/home/pem_decoder
https://istio.io/about/feature-stages/#security-and-policy-enforcement
https://istio.io/about/feature-stages/#security-and-policy-enforcement

304 CHAPTER 12 Securing microservices with Istio service mesh
You can run the following command to list all the Pods available in the istio-
system namespace and find the name of the Istio Ingress gateway Pod. The output of
the command is truncated to show only the Istio Ingress gateway Pod:

\> kubectl get pods -n istio-system

NAME READY STATUS RESTARTS
istio-ingressgateway-6d8f9d87f8-sc2ch 1/1 Running 0

To learn more about the Istio Ingress gateway Pod, let’s use the following command in
listing 12.1 with the correct Pod name. This listing shows only a truncated output with
the volume mounts (which we discussed in appendix J and chapter 11), and the code
annotations explain some important elements.

\> kubectl get pod -n istio-system \
istio-ingressgateway-6d8f9d87f8-sc2ch -o yaml

volumeMounts:
- mountPath: /etc/certs
 name: istio-certs
 readOnly: true
- mountPath: /etc/istio/ingressgateway-certs
 name: ingressgateway-certs
 readOnly: true
- mountPath: /etc/istio/ingressgateway-ca-certs
 name: ingressgateway-ca-certs
 readOnly: true
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: istio-ingressgateway-service-account-token-qpmwf
 readOnly: true

To create the istio-ingressgateway-certs from the private/public keys we cre-
ated at the beginning of the section 12.2.1, let’s run the following command from the
chapter12/sample02 directory:

\> kubectl create secret tls istio-ingressgateway-certs \
--key gateway-keys/server.key --cert gateway-keys/server.cert \
-n istio-system

secret/istio-ingressgateway-certs created

Finally, to enable TLS at the Ingress gateway, we need to define a Gateway resource.
This resource, introduced by Istio, instructs the load balancer on how to route traffic to
the Istio Ingress gateway. You can find more details on the Gateway resource in appen-
dix K. Since the Ingress gateway is running in the istio-system namespace, we also
create the Gateway resource in the same namespace. Ideally, you need to have only one
Gateway resource for your Kubernetes cluster. That is only a common practice. Another

Listing 12.1 The volume mounts of the Istio Ingress gateway Pod

Mount path from the Envoy local
filesystem for the keys used by Envoy
when talking to upstream services
protected with mTLS, identified by
the volume name istio-certs

Mount path from the Envoy local
filesystem for the private/public
key pair to enable TLS for the
downstream clients

The public certificates of trusted certificate
authorities corresponding to downstream clients
authenticate to Ingress gateway using mTLS

The mount path to the default token secret
(JWT) associated with the corresponding
service account, which is provisioned by

Kubernetes—not specific to Istio

305Enabling TLS termination at the Istio Ingress gateway

h
practice is to have a Gateway resource in every namespace, but all of them pointing to
the same Istio Ingress gateway Pod running in the istio-system namespace.

 Listing 12.2 shows the definition of the Gateway resource. The ecomm-gateway
Gateway resource instructs the load balancer to route traffic on HTTPS port 443 and
HTTP port 80 to the Istio Ingress gateway Pod, which is an Envoy proxy.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ecomm-gateway
 namespace: istio-system
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 tls:
 mode: SIMPLE
 serverCertificate: /etc/istio/ingressgateway-certs/tls.crt
 privateKey: /etc/istio/ingressgateway-certs/tls.key
 hosts:
 - "*"
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"
 tls:
 httpsRedirect: true

Here, we use SIMPLE as the tls/mode. In addition, Istio supports four more modes,
as table 12.1 describes.

 To deploy the Gateway resource shown in listing 12.2 under the istio-system
namespace, run the following command from the chapter12/sample02 directory:

\> kubectl apply -f istio.public.gateway.yaml

gateway.networking.istio.io/ecomm-gateway created

Once we enable TLS at the Ingress gateway, all the traffic that comes to the service
mesh is protected for confidentiality. Next, to expose the Order Processing microser-
vice and the STS via the Ingress gateway, we need to create two VirtualServices. Before
that in the next section, we discuss how to set up TLS at the Istio Ingress gateway with
SDS support. The way you set up VirtualServices for two microservices does not
change, whether you use Istio with SDS support or not.

Listing 12.2 The definition of the Gateway resource with no SDS

The Gateway resource is created
in the istio-system namespace.

Associates the Istio Ingress gateway
Pod with the Gateway resource

Instructs the load balancer to route traffic on
port 443 on HTTPS to the Ingress gateway

Enables TLS

The volume mount
of the public certificate
for TLS communication

with downstream clients

The volume mount of
the private key for the
TLS communication wit
downstream clients

Instructs the load balancer to route
traffic on port 443 on HTTPS to the
Ingress gateway for any hostname

Instructs the load balancer to route
traffic on port 80 on HTTP to the
Ingress gateway for any hostname

Redirects any HTTP traffic
to the HTTPS endpoint

306 CHAPTER 12 Securing microservices with Istio service mesh

INGRESS GATEWAY WITH SDS
In this section, we discuss how to set up TLS keys (which we created at the beginning
of section 12.2.1) for the Istio Ingress gateway with SDS support. If you already fol-
lowed the instructions in the previous section on how to set up TLS keys for an Ingress
gateway with no SDS, you can skip this section and proceed to section 12.2.2.

 In this section, we assume you are using Istio 1.5.0 or later. At the time of this writ-
ing, the Istio default installation on GKE does not support Istio 1.5.0, so in that case
you would need to have your own local Kubernetes cluster with Istio 1.5.0 or later on
Docker Desktop. In appendix K, section K.5.1, we discuss how to set up Istio on
Docker Desktop.

Table 12.1 TLS modes enforced by Istio Ingress gateway

Mode Description

SIMPLE Enables one-way TLS communication between the client applications and the
Ingress gateway. You need to have a public/private key pair for the gateway.

PASSTHROUGH Just passes through the traffic to the corresponding Pod, based on the Server
Name Indication (SNI).a In appendix K, listing K.7, we discuss a sample that
uses PASSTHROUGH mode. With this mode, you do not need to configure any
public/private key pair for the gateway.

MUTUAL Enables mTLS communication between the client applications (downstream
applications) and the Ingress gateway. You need to have a public/private key
pair for the gateway along with a set of trusted CA certificates. Only client
applications carrying a valid certificate signed by any of the trusted CAs can
access the Ingress gateway. To enable mTLS, we need to create a Secret
with the name istio-ingressgateway-ca-certs that carries the
trusted CA certificates, and define a new element called caCertificates
under the tls element of the Gateway resource, which carries the value
/etc/istio/ingressgateway-ca-certs/ca-chain.cert.pem.

AUTO_PASSTHROUGH Under PASSTHROUGH mode, the Ingress gateway expects an Istio
VirtualService to present and read the configuration data from the corre-
sponding VirtualService to route the traffic to the upstream Pod. Under
AUTO_PASSTHROUGH mode, we do not need to have a VirtualService,
and the Ingress gateway expects all the required routing information to be
encoded into the SNI value.

ISTIO_MUTUAL Just like MUTUAL mode, this too enables mTLS communication between the
client applications (downstream applications) and the Ingress gateway. Unlike
in MUTUAL mode, this mode uses the certificates provisioned by Istio itself,
which are available under the /etc/certs location of the Envoy filesystem.

a Server Name Indication (SNI) is a TLS extension that a client application can use before the start of the TLS handshake
to indicate to the server which hostname it intends to talk to. The Istio gateway can route traffic by looking at this SNI
parameter.

307Enabling TLS termination at the Istio Ingress gateway
 To set up TLS keys with SDS at the Istio Ingress gateway, first we need to enable
SDS at the Ingress gateway with the following command.2 This command uses
the istioctl command-line utility (https://istio.io/docs/reference/commands/
istioctl/), which comes with the Istio distribution. Here we generate an Istio install
manifest by setting the values.gateways.istio-ingressgateway.sds.enabled
property to true, and save the updated manifest in our local filesystem in the file
istio-ingressgateway.yaml:

\> istioctl manifest generate \
--set values.gateways.istio-ingressgateway.sds.enabled=true > \
istio-ingressgateway.yaml

From the same location you ran the previous command, run the following to apply
the updated Istio configuration:

\> kubectl apply -f istio-ingressgateway.yaml

Now we can create a Kubernetes Secret from the keys we created at the beginning of
section 12.2.1. You should be able to find those keys in the chapter12/sample02/
gateway-keys directory: the server.cert file is the public key, and server.key is the pri-
vate key. Run the following command from the chapter12/sample02/gateway-keys
directory to create the Kubernetes Secret. We create this Secret under the same
namespace, where the Istio Ingress gateway is running (istio-system) and name it
ecomm-credentials:

\> kubectl create -n istio-system secret generic ecomm-credential \
--from-file=key=server.key --from-file=cert=server.cert

Finally, to enable TLS at the Ingress gateway (with the SDS support), we need to
define a Gateway resource. This resource, introduced by Istio, instructs the load bal-
ancer on how to route traffic to the Istio Ingress gateway. You can find more details on
the Gateway resource in appendix K. Since the Ingress gateway is running in the
istio-system namespace, we also create the Gateway resource in the same
namespace. Ideally, you need to have only one Gateway resource for your Kubernetes
cluster. That is only a common practice. Another practice is to have a Gateway
resource in every namespace, but all of them pointing to the same Istio Ingress gate-
way Pod running in the istio-system namespace.

 Listing 12.3 shows the definition of the Gateway resource. The ecomm-gateway
Gateway resource instructs the load balancer to route traffic on HTTPS port 443 and
HTTP port 80 to the Istio Ingress gateway Pod, which is an Envoy proxy. The Gateway
definition in the following listing is very similar to what we had in listing 12.2 (with no
SDS). The only difference is in the way we refer to TLS keys. Here, we use the name of
the Kubernetes Secret we created before (ecomm-credential) to identify TLS keys.

2 Even though SDS is enabled by default since Istio 1.5.0, the Istio Ingress gateway still does not use SDS by
default.

https://istio.io/docs/reference/commands/istioctl/
https://istio.io/docs/reference/commands/istioctl/

308 CHAPTER 12 Securing microservices with Istio service mesh

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ecomm-gateway
 namespace: istio-system
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 443
 name: https
 protocol: HTTPS
 tls:
 mode: SIMPLE
 credentialName: ecomm-credential
 hosts:
 - "*"
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"
 tls:
 httpsRedirect: true

To deploy the Gateway resource shown in listing 12.3 under the istio-system
namespace, run the following command from the chapter12/sample02 directory:

\> kubectl apply -f istio.public.gateway.sds.yaml

gateway.networking.istio.io/ecomm-gateway created

Once we enable TLS at the Ingress gateway, all the traffic that comes to the service
mesh is protected for confidentiality. Next, to expose the Order Processing microser-
vice and the STS via the Ingress gateway, we need to create two VirtualServices. The
way you set up VirtualServices for two microservices does not change, whether you use
Istio with SDS support or not.

12.2.2 Deploying VirtualServices

In this section, we are going to define and deploy two Istio VirtualServices for the STS
and Order Processing microservices. These are two microservices we want the client
applications to access through the Istio Ingress gateway. Since the Inventory microser-
vice is invoked by only the Order Processing microservice within the cluster, we do not
need to create a VirtualService for it.

 Before creating the VirtualServices, we need to update the Kubernetes Service def-
inition of the STS and the Order Processing microservices, which we created in sec-
tion 12.1. There we used the LoadBalancer Service type (and in the Docker Desktop,

Listing 12.3 The definition of the Gateway resource with SDS

The Gateway resource is created
in the istio-system namespace.

Associates the Istio Ingress gateway
Pod with the Gateway resource

Instructs the load balancer to route traffic on
port 443 on HTTPS to the Ingress gateway

Enables TLS
Points to a Kubernetes Secret,
which carries TLS keys

Instructs the load balancer to route
traffic on port 443 on HTTPS to the
Ingress gateway for any hostname

Instructs the load balancer to route
traffic on port 80 on HTTP to the
Ingress gateway for any hostname Redirects any HTTP traffic

to the HTTPS endpoint

309Enabling TLS termination at the Istio Ingress gateway
we used the NodePort Service type), because we wanted to test the end-to-end flow
from the curl client outside the Kubernetes cluster. When we expose these microser-
vices through the Ingress gateway, we don’t want the client applications to access them
also via the Kubernetes Service directly. We want the Istio Ingress gateway to be the
single entry point to our microservices from clients outside the Kubernetes cluster.

 Run the commands in listing 12.4 from the chapter12/sample02 directory to
update the two microservices to run as a ClusterIP Service (this is the default Ser-
vice type in Kubernetes, when you have no type defined). First, we delete the two
Services and then create them.

\> kubectl delete service sts-service

service "sts-service" deleted

\> kubectl delete service orders-service

service "orders-service" deleted

\> kubectl apply -f order.processing.yaml

configmap/orders-application-properties-config-map unchanged
deployment.apps/orders-deployment unchanged
service/orders-service created

\> kubectl apply -f sts.yaml

configmap/sts-application-properties-config-map unchanged
configmap/sts-jwt-keystore-config-map unchanged
secret/sts-keystore-secrets configured
deployment.apps/sts-deployment unchanged
service/sts-service created

Now we can create two VirtualServices, one for the STS and the other for the Order
Processing microservice. These two VirtualServices read the routing information from
the corresponding Kubernetes Services. The following listing shows the VirtualService
definition corresponding to the Order Processing microservice.

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: orders-virtual-service
spec:
 hosts:
 - orders.ecomm.com
 gateways:
 - ecomm-gateway.istio-system.svc.cluster.local
 http:

Listing 12.4 Updating the Service definition of STS and Order Processing microservice

Listing 12.5 The VirtualService definition of the Order Processing microservice

This VirtualService is
applicable only for
requests coming to the
orders.ecomm.com
hostname.

The fully qualified name
of the Gateway resource
created in the istio-system
namespace

310 CHAPTER 12 Securing microservices with Istio service mesh
 - route:
 - destination:
 host: orders-service
 port:
 number: 80

The VirtualService definition corresponding to the STS looks similar to the Order
Processing microservice’s definition, which you can find in the chapter12/sample02/
virtualservices.yaml file. It’s important to highlight that for Istio traffic rules to work,
we must use named ports (listing 12.6) in the Kubernetes Service definition corre-
sponding to the destination routes in the VirtualService. Also, these named ports
should carry predefined values, as explained at https://istio.io/docs/setup/additional-
setup/requirements/.

apiVersion: v1
kind: Service
metadata:
 name: orders-service
spec:
 selector:
 app: orders
 ports:
 - name: http
 protocol: TCP
 port: 80
 targetPort: 8443

To deploy the VirtualServices under the default namespace, run the following com-
mand from the chapter12/sample02 directory:

\> kubectl apply -f virtualservices.yaml

virtualservice.networking.istio.io/sts-virtual-service created
virtualservice.networking.istio.io/orders-virtual-service created

Once we have created the two VirtualServices for the Order Processing microservice
and the STS, the Istio Ingress gateway can route the traffic it gets from client applica-
tions over TLS to the corresponding microservice. Since our plan in this section is to
terminate TLS at the Ingress gateway, next we need to instruct Istio to not enforce
mTLS between the Ingress gateway and the upstream microservices, or among
microservices.

12.2.3 Defining a permissive authentication policy

In this section, we are going to define a policy to instruct Istio not to enforce mTLS
among microservices, or between the Istio Ingress gateway and the microservices. We
want the Ingress gateway to terminate the TLS connection. The policy in the following
listing uses PERMISSIVE as the mtls/mode, so Istio won’t enforce mTLS or TLS for

Listing 12.6 The Service definition of the Order Processing microservice

Routes the traffic to the orders-service
Service on port 80. Istio finds the
Cluster IP of the orders-service Service
and routes the traffic there.

This must be a named port for
Istio routing rules to work.

https://istio.io/docs/setup/additional-setup/requirements/
https://istio.io/docs/setup/additional-setup/requirements/

311Enabling TLS termination at the Istio Ingress gateway
any requests to the Services defined under the spec/target element in the follow-
ing listing.

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: ecomm-authn-policy
spec:
 targets:
 - name: orders-service
 - name: inventory-service
 peers:
 - mtls:
 mode: PERMISSIVE

When we define mTLS mode to be PERMISSIVE as in listing 12.7, Istio lets the
microservices that are deployed in the service mesh accept requests both over plain
HTTP and over HTTPS protected with mTLS. That means your microservices in the
service mesh can still communicate with each other over a channel protected with
mTLS; at the same time, when those microservices want to talk to legacy microservices
(or the microservices with no Envoy proxy fronting), then they can use plain HTTP.

 Istio 1.5.0 by default enables mTLS among Istio-controlled microservices. Even
though you set the mTLS mode to be PERMISSIVE, you will still see communications
among microservices happen over mTLS. Prior to Istio 1.5.0, to enable mTLS, you
need to define a DestinationRule, which we discuss in section 12.3.

 Run the following command from the chapter12/sample02 directory to apply the
authentication policy defined in listing 12.7:

\> kubectl apply -f authentication.policy.yaml

policy.authentication.istio.io/ecomm-authn-policy created

NOTE Istio 1.5.0 introduced a new custom resource definition (CRD) called
PeerAuthentication, which you can use to define policies to protect service-to-
service communications over mTLS. In a future Istio release, this new CRD
will replace the policy we discussed in listing 12.7. You will learn more about
the PeerAuthentication CRD in section 12.4.3.

12.2.4 Testing end-to-end flow

In this section, we are going to test the end-to-end flow, as shown in figure 12.4, with
the Istio Ingress gateway secured with TLS. Here we use curl as the client application,
which first talks to the STS microservice and gets a JWT. Then the client application
talks to the Order Processing microservice via the Istio Ingress gateway, passing the
JWT it got from the STS.

 All the communications between the curl client and the microservices now happen
via the Ingress gateway. Let’s run the following two commands to find the external IP

Listing 12.7 The permissive authentication policy

This policy is applicable
to only these targets.

Must match the name of a
Kubernetes Service name

Instructs Istio to accept plaintext traffic as
well as mutual TLS traffic at the same time

312 CHAPTER 12 Securing microservices with Istio service mesh
address and the HTTPS port of the Istio Ingress gateway, which runs under the
istio-system namespace. The first command finds the external IP address of the
istio-ingressgateway Service and exports it to the INGRESS_HOST environment
variable, and the second command finds the HTTPS port of the istio-ingress-
gateway Service and exports it to the INGRESS_HTTPS_PORT environment variable.
If you use a local Kubernetes deployment on Docker Desktop with no load balancer,
then instead of the external IP, you need to use the node IP address (probably
127.0.0.1) along with the corresponding port (probably 443):

\> export INGRESS_HOST=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

Proxy Proxy

Neither the Order Processing microservice nor the
Inventory microservice does JWT verification at the moment.
You can simply call it with any JWT or even without a JWT.

Client application gets
an access token on
behalf of the end user

Client application invokes the
microservice by passing the JWT
in an HTTP header

The Order Processing
microservice invokes the
Inventory microservice
by passing the JWT in
an HTTP header.

Order
Processing
Microservice

STS
Microservice

Inventory
Microservice

Istio Ingress Gateway

Proxy

Load Balancer

HTTPS HTTPS1
2

HTTP HTTP HTTP1 2 3

HTTPS HTTPS1 2

Figure 12.4 STS issues a JWT access token to the client application, and the client application uses
it to access the Order Processing microservice on behalf of the user, Peter. The Order Processing
microservice uses the same JWT it got from the client application to access the Inventory microservice.
The Istio Ingress gateway intercepts all the requests coming to the microservice and terminates the TLS
connection.

313Enabling TLS termination at the Istio Ingress gateway
\> export INGRESS_HTTPS_PORT=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.spec.ports[?(@.name=="https")].port}')

You can use the following echo command to make sure that we captured the right val-
ues for the two environment variables:

\> echo $INGRESS_HOST
34.83.117.171
\> echo $INGRESS_HTTPS_PORT
443

Let’s use the following curl command to talk to the STS and get a JWT. We use the
environment variables that we defined before for the hostname and the port of the
istio-ingressgateway Service. Because we are using hostname-based routing at
the Istio gateway and there is no DNS mapping to the hostnames sts.ecomm.com or
orders.ecomm.com, we are using the --resolve parameter in curl to define the
hostname-to-IP mapping:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
--resolve sts.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://sts.ecomm.com:$INGRESS_HTTPS_PORT/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works fine, the STS returns an
OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIs… ",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

The following command does an HTTP GET to the Order Processing microservice.
Before talking to the microservice, let’s export the JWT we got from the previous com-
mand (under the value of the access_token parameter) to an environmental vari-
able (TOKEN). Then use that environmental variable in your request to the Order
Processing microservice to carry the JWT along with the HTTP request. Even though
we pass the JWT, we are still not doing any JWT verification at the service level. Later
in the chapter, we discuss how to do JWT verification with Istio. Here is the command:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
--resolve orders.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://orders.ecomm.com:$INGRESS_HTTPS_PORT/orders/11

314 CHAPTER 12 Securing microservices with Istio service mesh
Finally, let’s do an HTTP POST to the Order Processing microservice, which internally
calls the Inventory microservice:

\> curl -k -v https://orders.ecomm.com:$INGRESS_HTTPS_PORT/orders \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $TOKEN" \
--resolve orders.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
-d @- << EOF
{
 "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

TROUBLEHOOTING If you get any errors for the preceding commands, see
appendix K, section K.10.5, for troubleshooting tips.

12.3 Securing service-to-service communications
with mTLS
This section helps you understand how mTLS works with Istio prior to version 1.5.0.
We’ll extend the use case in section 12.2 by enforcing mTLS between the Istio Ingress
gateway and the microservices, as well as among microservices (figure 12.5). We
assume you have successfully completed all the samples in section 12.2.

NOTE If you are on Istio 1.5.0 or later, mTLS is enabled for all your microser-
vices in the service mesh by default, and you do not need to do anything.

To enforce mTLS among microservices in an Istio deployment, we need to worry
about two ends: the client and the server. A given microservice can play the role of an
mTLS client as well as an mTLS server under different contexts. In our case, the Istio
Ingress gateway is a client to the Order Processing microservice, and the Order Pro-
cessing microservice is a client to the Inventory microservice. In the same way, the
Order Processing microservice is a server to the Ingress gateway, and the Inventory
microservice is a server to the Order Processing microservice.

315Securing service-to-service communications with mTLS
To enforce mTLS at the server end, we will first update the authentication policy in
listing 12.7 (which used PERMISSIVE) to use STRICT as the tls/mode, as shown in
the following listing. Now, no client application can communicate with the Order Pro-
cessing and Inventory microservices bypassing mTLS.

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: ecomm-authn-policy
spec:
 targets:
 - name: orders-service
 - name: inventory-service

Listing 12.8 The strict mTLS authentication policy

Proxy Proxy

Neither the Order Processing microservice nor the
Inventory microservice does JWT verification at the moment.
You can simply call it with any JWT or even without a JWT.

Client application gets
an access token on
behalf of the end user

Client application invokes the
microservice by passing the JWT
in an HTTP header

The Order Processing
microservice invokes the
Inventory microservice
by passing the JWT in
an HTTP header.

Order
Processing
Microservice

STS
Microservice

Inventory
Microservice

Istio Ingress Gateway

Proxy

Load Balancer

HTTPS HTTPS1
2

mTLS mTLS mTLS1 2 3

HTTPS HTTPS1 2

Figure 12.5 The Istio Ingress gateway intercepts all the requests coming to the microservice and
terminates the TLS connection. The communications between the Ingress gateway and microservices,
as well as among microservices, are protected with mTLS.

316 CHAPTER 12 Securing microservices with Istio service mesh

peers:
 - mtls:
 mode: STRICT

To use mTLS at the client side when one microservice talks to another microservice,
Istio introduces a new resource type called DestinationRule.3 The DestinationRule we
have in the following listing enables mTLS for all the communications with all the
hosts (indicated by the Kubernetes Service name) in the default namespace. We run
the Order Processing and Inventory microservices in the default namespace, and this
DestinationRule will enable mTLS between those two. As we highlighted at the begin-
ning of this section, if you are using Istio 1.5.0 or later, you do not need to do any of
these things to enable mTLS among microservices; it’s enabled by default.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ecomm-authn-service-mtls
spec:
 host: "*.default.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

To use mTLS at the client side when the Istio Ingress gateway talks to a microservice in
the default Kubernetes namespace, we use the DestinationRule defined in the follow-
ing listing. We deploy this DestinationRule in the istio-system namespace.

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
 name: ecomm-authn-istio-gateway-mtls
 namespace: istio-system
spec:
 host: "*.default.svc.cluster.local"
 trafficPolicy:
 tls:
 mode: ISTIO_MUTUAL

3 A DestinationRule is used not only to configure mTLS for any outbound traffic from a microservice, but also
to define policies for load balancing, connection pooling, and so on. More information on DestinationRules
is available at https://istio.io/docs/reference/config/networking/destination-rule.

Listing 12.9 The DestinationRule enforces mTLS among all the services

Listing 12.10 The DestinationRule enforces mTLS between the gateway and services.

Instructs Istio to enforce mTLS for any
traffic that comes to the Kubernetes
Services defined under the targets element

Specifies the hosts, using
Kubernetes Service names

Enables mTLS by using the certificates provisioned to
each Envoy proxy by Istio itself, which are available
under the /etc/certs location of the Envoy filesystem

This DestinationRule is deployed
under the istio-system namespace.

Specifies the hosts, using
Kubernetes Service names

Enables mTLS using the certificates provisioned to
each Envoy proxy by Istio itself, which are available
under the /etc/certs location of the Envoy filesystem

https://istio.io/docs/reference/config/networking/destination-rule

317Securing service-to-service communications with JWT
Let’s run the following command from the chapter12/sample03 directory to apply
the DestinationRules defined in listings 12.9 and 12.10 as well as the authentication
policy defined in listing 12.8:

\> kubectl apply -f authentication.policy.yaml

policy.authentication.istio.io/ecomm-authn-policy configured
destinationrule.networking.istio.io/ecomm-authn-istio-gateway-mtls created
destinationrule.networking.istio.io/ecomm-authn-service-mtls created

To test the end-to-end flow after enforcing mTLS, follow the steps defined in section
12.2.4.

12.4 Securing service-to-service communications with JWT
This section extends the use case we discussed in section 12.3 by enforcing JWT verifi-
cation at each microservice. We assume you have successfully completed all the sam-
ples we discussed in that section. Here, we use JWT to carry the end-user context,
while using mTLS for service-to-service authentication.

NOTE Istio 1.5.0 introduced two new CRDs for authentication: PeerAuthentica-
tion and RequestAuthentication. As you will learn in section 12.4.1, prior to Istio
1.5.0, you had to use the same policy to define both mTLS and JWT authenti-
cation methods. With the introduction of two new CRDs, Istio 1.5.0 provides a
much cleaner way of defining authentication policies based on mTLS and
JWT. You can use the PeerAuthentication CRD to define mTLS-based poli-
cies, and the RequestAuthentication CRD to define JWT-based policies. If
you are on Istio 1.5.0 or later, this method is more recommended than the
approach we discuss in section 12.4.1. In section 12.4.3, we discuss Peer-
Authentication and RequestAuthentication in detail.

12.4.1 Enforcing JWT authentication

The authentication policy in listing 12.8 enforces only mTLS for the Order Processing
and Inventory microservices, so we need to update it to enforce JWT authentication.
The following listing shows the updated authentication policy, which is applicable for
any requests coming to the Order Processing and Inventory microservices.

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: ecomm-authn-policy
spec:
 targets:
 - name: orders-service
 - name: inventory-service
 peers:
 - mtls:

Listing 12.11 The JWT plus mTLS authentication policy

This policy is applicable only to
these targets, which are identified
by Kubernetes Service names.

318 CHAPTER 12 Securing microservices with Istio service mesh
 mode: STRICT
 origins:
 - jwt:
 issuer: "sts.ecomm.com"
 audiences:
 - "*.ecomm.com"
 jwksUri: .../chapter12/sample04/jwtkey.jwk
 principalBinding: USE_ORIGIN

Let’s run the following command from the chapter12/sample04 directory to update
the authentication policy as defined in listing 12.11:

\> kubectl apply -f authentication.policy.yaml

policy.authentication.istio.io/ecomm-authn-policy configured

To test the end-to-end flow after enforcing JWT authentication, follow the steps
defined in the next section.

12.4.2 Testing end-to-end flow with JWT authentication

In this section, we are going to test the end-to-end flow, as shown in figure 12.6. The
steps you follow here are exactly the same as those you followed in section 12.2.4—
except if you send an invalid JWT, Istio will reject the request.

 We use curl as the client application, which first talks to the STS microservice and
gets a JWT. Then the client application talks to the Order Processing microservice via
the Istio Ingress gateway, passing the JWT it got from the STS.

 Let’s run the following two commands to find the external IP address and the
HTTPS port of the Istio Ingress gateway, which runs under the istio-system
namespace. The first command finds the external IP address of the istio-ingress-
gateway Service and exports it to the INGRESS_HOST environment variable, and the
second command finds the HTTPS port of the istio-ingressgateway Service and
exports it to the INGRESS_HTTPS_PORT environment variable. If you use a local
Kubernetes deployment on Docker Desktop with no load balancer, then instead of the
external IP, you need to use the node IP address (probably 127.0.0.1) along with the
corresponding port (probably 443):

\> export INGRESS_HOST=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

\> export INGRESS_HTTPS_PORT=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.spec.ports[?(@.name=="https")].port}')

The value of the iss attribute in the
JWT in the request (or the issuer of the
JWT) must exactly match this value.

The value of the aud attribute
in the JWT in the request must
exactly match this value.

The URL to fetch the JSON
Web Key, corresponding
to the signature of the
JWT in the requestSets the authenticated

principle from origin
authentication or the subject

of the JWT in the request

319Securing service-to-service communications with JWT
Figure 12.6 The Istio Ingress gateway intercepts all the requests coming to the microservice and
terminates the TLS connection. The communications between the Ingress gateway and microservices,
as well as among microservices, are protected with mTLS. The Envoy proxy does JWT verification for the
Order Processing and Inventory microservices.

You can use the following echo command to make sure that we captured the right val-
ues for the two environment variables:

\> echo $INGRESS_HOST
34.83.117.171
\> echo $INGRESS_HTTPS_PORT
443

Let’s use the following curl command to talk to the STS and get a JWT. We use the
environment variables, which we defined before for the hostname and the port of the
istio-ingressgateway Service. Since we are using hostname-based routing at the
Istio gateway and there is no DNS mapping to the hostnames sts.ecomm.com or
orders.ecomm.com, we are using the --resolve parameter in curl to define the
hostname-to-IP mapping:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
--resolve sts.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://sts.ecomm.com:$INGRESS_HTTPS_PORT/oauth/token

Proxy Proxy

Client application gets
an access token on
behalf of the end user

Client application invokes the
microservice by passing the JWT
in an HTTP header

The Order Processing
microservice invokes the
Inventory microservice
by passing the JWT in
an HTTP header.

Order
Processing
Microservice

STS
Microservice

Inventory
Microservice

Istio Ingress Gateway

Proxy

Load Balancer

HTTPS HTTPS1
2

mTLS mTLS mTLS1 2 3

HTTPS HTTPS1 2

Both the Order Processing
microservice and the
Inventory microservice
perform JWT verification
at the Envoy proxy.

320 CHAPTER 12 Securing microservices with Istio service mesh
In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works fine, the security token
service returns an OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIs… ",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

The following command does an HTTP GET to the Order Processing microservice.
Before talking to the microservice, let’s export the JWT we got from the previous com-
mand (under the value of the access_token parameter) to an environmental vari-
able (TOKEN). Then use that environmental variable in our request to the Order
Processing microservice to carry the JWT along with the HTTP request:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
--resolve orders.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://orders.ecomm.com:$INGRESS_HTTPS_PORT/orders/11

Finally, let’s do an HTTP POST to the Order Processing microservice, which internally
calls the Inventory microservice:

\> curl -k -v https://orders.ecomm.com:$INGRESS_HTTPS_PORT/orders \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $TOKEN" \
--resolve orders.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
-d @- << EOF
{
 "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

321Securing service-to-service communications with JWT
12.4.3 Peer authentication and request authentication

As we mentioned before in this chapter, PeerAuthentication and RequestAuthentica-
tion are two new CRDs introduced by Istio 1.5.0. You can use the PeerAuthentication
CRD to define mTLS-based policies to authenticate one microservice to another,
while the RequestAuthentication CRD to define JWT-based policies to authenticate
end users.

PEERAUTHENTICATION CRD
In section 12.3, we mentioned that if you are on Istio 1.5.0 or later, mTLS is enabled for
all your microservices in the service mesh by default, and you do not need to do any-
thing. What does this really mean? Istio 1.5.0 does not enforce mTLS by default for all
the microservices, but only enables those microservices to communicate with each
other over mTLS, with no additional configuration. This also means that if a client
application or a legacy microservice (with no Istio) wants to access those microservices
over plain HTTP (or with no mTLS, but with HTTPS), you still can do it. But yet, the com-
munications among Istio-controlled microservices happen over HTTPS with mTLS.

 Prior to Istio 1.5, if you want to strictly enforce mTLS among all the microservices,
you can do it at the service mesh level, using the MeshPolicy CRD (appendix K, listing
K.6), by setting mtls/mode as STRICT. The MeshPolicy CRD is now deprecated and
will be removed from a future Istio release. Also, if you want to strictly enforce mTLS
at the service level (not at the service mesh level), you can do it as in listing 12.8. But,
if you are using Istio 1.5 or later, the recommended approach is to use the Peer-
Authentication CRD to define mTLS policies. The following listing shows the Peer-
Authentication policy equivalent to what you find in listing 12.8.

apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
 name: default
 namespace: default
spec:
 selector:
 matchLabels:
 app: orders
 app: inventory
 mtls:
 mode: STRICT

Let’s run the following command from the chapter12/sample04 directory to set
up the authentication policy as defined in listing 12.12, under an Istio 1.5 or later
deployment:

\> kubectl apply -f peer.authentication.policy.yaml

peerauthentication.security.istio.io/default created

Listing 12.12 PeerAuthentication policy to strictly enforce mTLS

This policy is deployed in
the default namespace.

This policy is applicable to a Deployment
that carries the label orders: the Order
Processing microservice.

This policy is applicable to a
Deployment that carries the label
inventory: the Inventory microservice.

322 CHAPTER 12 Securing microservices with Istio service mesh
You can read more variations of how you can apply PeerAuthentication policies at
https://istio.io/docs/reference/config/security/peer_authentication.

REQUESTAUTHENTICATION CRD
As discussed at the beginning of this section, you can use the RequestAuthentication
CRD to define JWT-based policies to authenticate end users. In section 12.4.1, we dis-
cussed how to enable access control based on the attributes a JWT carries, using the
authentication policy in listing 12.11. If you revisit that policy, you’ll notice that it’s a
bit bloated, and carries both JWT and mTLS settings. That’s the way you did things
prior to Istio 1.5.0.

 As Istio 1.5.0 decouples peer authentication (mTLS) from request authentication
(JWT), here we use RequestAuthentication CRD to define an access-control policy
against the JWT in the request. Listing 12.13 defines the RequestAuthentication policy
equivalent to that in listing 12.11, except for one change. The policy in listing 12.11 is
applicable to both the Order Processing and Inventory microservices, but the policy in
the following listing is applicable to only the Order Processing microservice. You can
define a similar policy for the Inventory microservice with the label app:inventory.

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
 name: orders-req-authn-policy
spec:
 selector:
 matchLabels:
 app: orders
 jwtRules:
 - issuer: "sts.ecomm.com"
 audiences:
 - "*.ecomm.com"
 jwksUri: .../chapter12/sample04/jwtkey.jwk

It is important to understand the behavior of the RequestAuthentication CRD. If the
request carries an invalid JWT, which does not match the criteria defined in the policy,
then Istio rejects the request. But if the request does not carry any JWT at all, Istio will
not reject the request. That’s bit strange, but that’s the behavior at the time of this writing.

 Since this behavior of the RequestAuthentication CRD can introduce some secu-
rity risks, we must use another authorization policy, defined using the Authorization-
Policy CRD along with it. The AuthorizationPolicy CRD was introduced in Istio 1.4.0,
and in section 12.5.4 we discuss it in detail. The policy in the following listing rejects
any request that does not have a valid subject associated with it. In other words, if a

Listing 12.13 RequestAuthentication policy to enforce JWT verification

This policy is applicable to a Deployment,
which carries the label orders: the Order
Processing microservice.

The value of the iss attribute in the JWT in the request
(or the issuer of the JWT) must exactly match this value.

The value of the aud attribute
in the JWT in the request must
exactly match this value.

The URL to fetch the JSON Web
Key, corresponding to the
signature of the JWT in request

https://istio.io/docs/reference/config/security/peer_authentication

323Securing service-to-service communications with JWT
request does not carry a JWT, even if it passes through the RequestAuthentication pol-
icy, it will fail here, since there is no subject associated with the request.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: orders-services-policy
spec:
 selector:
 matchLabels:
 app: orders
 rules:
 - from:
 - source:
 requestPrincipals: ["*"]

Let’s run the following command from the chapter12/sample04 directory to set up
the authorization policy based on JWT in the request, as defined in listings 12.13 and
12.14, under an Istio 1.5 or later deployment:

\> kubectl apply -f request.authentication.policy.yaml

requestauthentication.security.istio.io/orders-req-authn-policy created
authorizationpolicy.security.istio.io/orders-services-policy configured
requestauthentication.security.istio.io/inventory-req-authn-policy created
authorizationpolicy.security.istio.io/inventory-services-policy created

To test the end-to-end flow after enforcing JWT authentication, follow the steps
defined in section 12.4.2.

 You can read more variations of how you can apply RequestAuthentication policies
at https://istio.io/docs/reference/config/security/request_authentication/.

12.4.4 How to use JWT in service-to-service communications

In sections 12.4.1 and 12.4.3, we protected both the Order Processing and the Inven-
tory microservices with JWT. For the Order Processing microservice, the client appli-
cation has to send the JWT along with the HTTP request, and then, when the Order
Processing microservice talks to the Inventory microservice, it passes the same JWT it
got from the client application. (This is one of the use cases for securing microser-
vices with JWT, which we discussed in detail in section 7.1.1. You can also find the lim-
itations of this approach in section 7.1.2.)

 However, Istio does not support this use case at the time of this writing; Istio does
not support propagating a JWT that one microservice gets to another upstream
microservice. So, while implementing this in our sample in sections 12.4.1 and 12.4.3,
we did that at the code level. We modified the Order Processing microservice to read
the incoming JWT from the HTTP header (which Envoy passes through to the
microservice behind, after verification) and attached it to the HTTP request, when

Listing 12.14 AuthorizationPolicy CRD

https://istio.io/docs/reference/config/security/request_authentication/

324 CHAPTER 12 Securing microservices with Istio service mesh
the Order Processing microservice talks to the Inventory microservice. You can find
the code with respect to this in the chapter12/services/order/src/main/java/com/
manning/mss/ch12/order/client/InventoryClient.java class file.

12.4.5 A closer look at JSON Web Key

In listing 12.11, the Envoy proxy uses a JSON Web Key Set endpoint to fetch a docu-
ment, which carries a set of JSON Web Keys. A JSON Web Key (JWK) is a JSON repre-
sentation of a cryptographic key, and a JSON Web Key Set (JWKS) is a representation of
multiple JWKs. RFC 7517 (https://tools.ietf.org/html/rfc7517) provides the structure
and the definition of a JWK. As per listing 12.13, the Envoy proxy gets the JWKS from
https://raw.githubusercontent.com/microservices-security-in-action/samples/master
/chapter12/sample04/jwtkey.jwk.

 The JWKS in listing 12.15 carries the information related to the public key of an
issuer of a JWT. The recipient of a JWT can use the information in this listing to find
the corresponding public key and validate the signature of the JWT. If you’d like to
delve more deeply into the details of JWK, see RFC 7517. If you have a PEM-encoded
X.509 certificate, you can use an online tool like JWK to PEM Converter Online
(https://8gwifi.org/jwkconvertfunctions.jsp) to convert it to a JWK. Let’s have a look
at the content of the jwtkey.jwk file in the following listing; the code annotations
explain each element.

{ "keys":[
 {"e":"AQAB",
 "kid":"d7d87567-1840-4f45-9614-49071fca4d21",
 "kty":"RSA",
 "n":"-WcBjPsrFvGOwqVJd8vpV "
 }
]
}

12.5 Enforcing authorization
This section extends the use case in section 12.4 by enforcing authorization at each
microservice. To follow this section, first you need to successfully complete all the sam-
ples in the preceding section. Here, we use JWT to carry the end-user attributes, while
using mTLS for service-to-service authentication—and enforce access-control policies
based on the attributes in the JWT.

12.5.1 A closer look at the JWT

Let’s have a closer look at the JWT you got from the STS while running the end-to-end
sample in section 12.4.2. What you get from the STS is a base64url-encoded string;
you can use an online tool like JWT.IO (https://jwt.io) to decode it. Listing 12.16

Listing 12.15 JSON Web Key Set

The parent element, which
represents an array of JWKs A cryptographic parameter

corresponding to the RSA algorithm

The key identifier. This
should match the kid
value in the JWT header.

Defines the key type. The RFC 7518
defines the possible values.

A cryptographic parameter
corresponding to the RSA algorithm

https://tools.ietf.org/html/rfc7517
https://raw.githubusercontent.com/microservices-security-in-action/samples/master/chapter12/sample04/jwtkey.jwk
https://raw.githubusercontent.com/microservices-security-in-action/samples/master/chapter12/sample04/jwtkey.jwk
https://8gwifi.org/jwkconvertfunctions.jsp
https://jwt.io

325Enforcing authorization
shows the decoded JWT payload. Once you decode the token, the content of the
token becomes readable. In appendix B, we discuss in detail the structure of a JWT. In
Istio, we can define access-control policies against any of these attributes.

{
 "sub": "peter",
 "aud": "*.ecomm.com",
 "user_name": "peter",
 "scope": [
 "foo"
],
 "iss": "sts.ecomm.com",
 "exp": 1572480488,
 "iat": 1572474488,
 "authorities": [
 "ROLE_USER"
],
 "jti": "88a5215f-7d7a-45f8-9632-ca78cbe05fde",
 "client_id": "applicationid"
}

12.5.2 Enforcing role-based access control

In this section, we define role-based access control (RBAC) policies for the Order Pro-
cessing and Inventory microservices. In general terms, a role is a collection of permis-
sions. A permission is a combination of a resource and an action. For example, the
ability to do an HTTP GET on the Order Processing microservice is a permission. The
HTTP GET is the action, and the Order Processing microservice is the resource.

 Similarly, the ability to do an HTTP POST to the Order Processing microservice is
another permission. Now we can combine these two permissions and call it a role, and
anyone in this role can do an HTTP GET or POST to the Order Processing microservice.

NOTE Istio introduced major changes to role-based access control in its 1.4.0
release, which we discuss in section 12.5.4. The ServiceRole, ServiceRole-
Binding, ClusterRoleBinding CRDs we discuss in this section are now depre-
cated, and are removed from Istio 1.6.0. But still we thought of having them
in this chapter, as at the time of this writing many people are still using Istio
releases prior to 1.4.0. The latest GKE cluster version at the time of this writ-
ing is 1.14.10-gke.27, and it supports only Istio 1.2.10 by default. If your Istio
version is 1.4 or later, you can move to section 12.5.4 directly.

Istio introduces a resource type (a CRD) called ServiceRole, which defines a set of
rules. For example, take a look at the ServiceRole definition in listing 12.17. The
services element represents a set of resources, and the methods element repre-
sents the allowed actions against those resources. In plain English, this says, if

Listing 12.16 The base64url-decoded JWT payload

The user or the principal
associated with this JWT—
or the authenticated user Identifies the recipient(s)

of the JWT

Scopes associated with the JWT
or what you can do with this JWT

Identifies the
issuer of the JWT

The roles associated with
the subject of the JWT

Identifies the client
application, which sends
this JWT to the microservice

326 CHAPTER 12 Securing microservices with Istio service mesh
someone has the order-viewer role, they can do an HTTP GET to the orders-
service microservice running in the Kubernetes default namespace.

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: order-viewer
spec:
 rules:
 - services: ["orders-service.default.svc.cluster.local"]
 methods: ["GET"]

Let’s take a look at another example in the following listing. It says, if someone has the
order-admin role, they can do an HTTP POST to the orders-service microser-
vice running in the Kubernetes default namespace.

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRole
metadata:
 name: order-admin
spec:
 rules:
 - services: ["orders-service.default.svc.cluster.local"]
 methods: ["POST"]

To attach or bind a ServiceRole to a user, Istio introduces a resource type called
ServiceRoleBinding (figure 12.7). Listing 12.19 shows an example. There we bind (or
map) a user having a role called ROLE_USER to the order-viewer ServiceRole. The
way Istio finds the role of the user is by looking at the authorities attribute (which
is a JSON array) from the JWT (listing 12.16). The issuer of the JWT or the STS finds
the roles of the user from an enterprise identity store (an LDAP, a database) con-
nected to it and embeds those to the JWT under the attribute name authorities.

apiVersion: "rbac.istio.io/v1alpha1"
kind: ServiceRoleBinding
metadata:
 name: order-viewer-binding
spec:
 subjects:
 - properties:
 request.auth.claims[authorities]: "ROLE_USER"
 roleRef:
 kind: ServiceRole
 name: order-viewer

Listing 12.17 The order-viewer ServiceRole

Listing 12.18 The order-admin ServiceRole

Listing 12.19 The order-viewer-binding ServiceRoleBinding

An array of Services, with the
fully qualified name, where

this rule is applicable

An array of HTTP verbs, where
this rule is applicable

327Enforcing authorization
Figure 12.7 A ServiceRole binds a set of actions to a set of resources, and a ServiceRoleBinding binds a set of
ServiceRoles to one or more subjects based on certain properties.

Once we have ServiceRoles and ServiceRoleBindings, to enable RBAC in Istio, we
need to define a ClusterRbacConfig. The ClusterRbacConfig in the following listing
enables RBAC for all the Services under the Kubernetes default namespace.

apiVersion: "rbac.istio.io/v1alpha1"
kind: ClusterRbacConfig
metadata:
 name: default
spec:
 mode: ON_WITH_INCLUSION
 inclusion:
 namespaces: ["default"]

Listing 12.20 Defining the ClusterRbacConfig resource

Rules define which
actions are allowed on
which resources.

A ServiceRoleBindng
binds one or more
ServiceRoles to one or
more subjects based on
certain properties.

Rules

ServiceRole

Rules

ServiceRole ServiceRoleBinding

Users (Subjects)

Enables RBAC only for the Services
in the Kubernetes default namespace

328 CHAPTER 12 Securing microservices with Istio service mesh
Istio defines four possible values for the mode element in listing 12.20, as shown in
table 12.2.

Let’s run the following command from the chapter12/sample05 directory to create
the ServiceRoles, ServiceRoleBinding, and the ClusterRbacConfig, as defined in list-
ings 12.17, 12.18, 12.19, and 12.20, respectively:

\> kubectl apply -f .

clusterrbacconfig.rbac.istio.io/default created
servicerole.rbac.istio.io/order-viewer created
servicerole.rbac.istio.io/order-admin created
servicerolebinding.rbac.istio.io/order-viewer-binding created

To test the end-to-end flow after enforcing RBAC, follow the steps defined in the next
section.

12.5.3 Testing end-to-end flow with RBAC

In this section, we are going to test the end-to-end flow, as shown in figure 12.8. The
steps you follow here are exactly the same as those you followed in section 12.2.4.
Here, you will be able to do an HTTP GET to the Order Processing microservice, but
will fail when doing an HTTP POST. The HTTP POST fails because the subject of the
JWT that comes along with the request carries only the role ROLE_USER, and only a
member of the order-viewer ServiceRole, not the order-admin ServiceRole. Only
a member of order-admin ServiceRole can do an HTTP POST to the Order Process-
ing microservice.

 Here we use curl as the client application, which first talks to the STS microservice
and gets a JWT. Then the client application talks to the Order Processing microservice
via the Istio Ingress gateway, passing the JWT it got from the STS.

 Let’s run the following two commands to find the external IP address and the
HTTPS port of the Istio Ingress gateway, which runs under the istio-system
namespace. The first command finds the external IP address of the istio-ingress-
gateway Service and exports it to the INGRESS_HOST environment variable, and the
second command finds the HTTPS port of the istio-ingressgateway Service and

Table 12.2 RBAC config modes

Value Description

OFF RBAC is completely disabled.

ON Enables RBAC for all the Services in all the Kubernetes namespaces.

ON_WITH_INCLUSION Enables RBAC only for the Services in the Kubernetes namespaces men-
tioned under the inclusion element.

ON_WITH_EXCLUSION Enables RBAC for the Services in all the Kubernetes namespaces, except
those mentioned under the exclusion element.

329Enforcing authorization
exports it to the INGRESS_HTTPS_PORT environment variable. In case you use a local
Kubernetes deployment on Docker Desktop with no load balancer, then instead of the
external IP, you need to use the node IP address (probably 127.0.0.1) along with the
corresponding port (probably 443):

\> export INGRESS_HOST=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

\> export INGRESS_HTTPS_PORT=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.spec.ports[?(@.name=="https")].port}')

You can use the following echo commands to make sure that we captured the right
values for the two environment variables:

\> echo $INGRESS_HOST
34.83.117.171
\> echo $INGRESS_HTTPS_PORT
443

Proxy Proxy

Client application gets
an access token on
behalf of the end user

Client application invokes the
microservice by passing the JWT
in an HTTP header

The Order Processing
microservice invokes the
Inventory microservice
by passing the JWT in
an HTTP header.

Order
Processing
Microservice

STS
Microservice

Inventory
Microservice

Istio Ingress Gateway

Proxy

Load Balancer

HTTPS HTTPS1
2

mTLS mTLS mTLS1 2 3

HTTPS HTTPS1 2

Both the Order Processing
microservice and the
Inventory microservice
perform JWT verification
at the Envoy proxy.

Figure 12.8 The Istio Ingress gateway intercepts all the requests coming to the microservice and
terminates the TLS connection. The communications between the Ingress gateway and microservices,
as well as among microservices, are protected with mTLS. The Envoy proxy does JWT verification for the
Order Processing and Inventory microservices.

330 CHAPTER 12 Securing microservices with Istio service mesh
Let’s use the following curl command to talk to the STS and get a JWT. We use the
environment variables, which we defined before for the hostname and the port of the
istio-ingressgateway Service. Since we are using hostname-based routing at
the Istio gateway and there is no DNS mapping to the hostnames sts.ecomm.com or
orders.ecomm.com, we are using the --resolve parameter in curl to define the
hostname-to-IP mapping:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
--resolve sts.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://sts.ecomm.com:$INGRESS_HTTPS_PORT/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works fine, the security token
service returns an OAuth 2.0 access token, which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIs… ",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

The following command does an HTTP GET to the Order Processing microservice.
Before talking to the microservice, let’s export the JWT we got from the previous com-
mand (under the value of the access_token parameter) to an environmental vari-
able (TOKEN). Then use that environmental variable in our request to the Order
Processing microservice to carry the JWT along with the HTTP request:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
--resolve orders.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://orders.ecomm.com:$INGRESS_HTTPS_PORT/orders/11

Finally, let’s do an HTTP POST to the Order Processing microservice, which internally
calls the Inventory microservice. This request will result in an HTTP 403 status code.
Only a member of the order-admin ServiceRole can do an HTTP POST to the Order
Processing microservice, so Istio will reject the request because the subject of the JWT,
which comes along with the request, does not belong to that ServiceRole:

\> curl -k -v https://orders.ecomm.com:$INGRESS_HTTPS_PORT/orders \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $TOKEN" \
--resolve orders.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
-d @- << EOF
{
 "customer_id":"101021",
 "payment_method":{
 "card_type":"VISA",

331Enforcing authorization
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}
EOF

12.5.4 Improvements to role-based access control since Istio 1.4.0

Istio has deprecated the ServiceRole, ServiceRoleBinding, and ClusterRoleBinding
CRDs, which we discussed in section 12.5.2, since Istio version 1.4.0 and introduced a
new CRD called AuthorizationPolicy as a replacement. Listing 12.21 defines an autho-
rization policy for the Order Processing microservice, using the AuthorizationPolicy
CRD. Here, it says, allow (action) to (to) do an HTTP GET or a POST (operation/
method), on the Oder Processing microservice (matchLabel) when (when) the value
of the user_name attribute is peter and the scope value is foo and the value of
authorities attribute is ROLE_USER. The values of the attributes are picked from
the claims set of the JWT that comes along with the request.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: orders-services-policy
 namespace: default
spec:
 selector:
 matchLabels:
 app: orders
 action: ALLOW
 rules:
 - to:
 - operation:
 methods: ["GET", "POST"]
 when:
 - key: request.auth.claims[user_name]
 values: ["peter"]

Listing 12.21 Defining an authorization policy with the AuthorizationPolicy CRD

This policy is applicable to a Deployment,
which carries the label orders: the Order
Processing microservice.

If the criteria defined by this
policy is satisfied, the policy
allows the request to proceed.

Defines the HTTP methods
allowed on the Order
Processing microservice

The value of the user_name attribute
picked from the JWT that comes
with the request must be peter.

332 CHAPTER 12 Securing microservices with Istio service mesh
 - key: request.auth.claims[scope]
 values: ["foo"]
 - key: request.auth.claims[authorities]
 values: ["ROLE_USER"]

When Istio introduced AuthorizationPolicy CRD in the 1.4.0 release, it supported only
ALLOW actions. But from version 1.5.0 onward, Istio supports both ALLOW and DENY
actions. In an environment where you have multiple policies defined against the same
microservice, with both ALLOW and DENY actions, Istio first evaluates the policies with
DENY actions. If any one of those policies matches the request, Istio denies the action
of the requester.

 AuthorizationPolicy is not only based on request authentication with JWT, but you
can also use it with peer authentication. Listing 12.22 shows a sample Authorization-
Policy, which restricts access to the Inventory microservice, only for the requests com-
ing from the Order Processing microservice. This check is done using the service
account name associated with the Pod that carries the Order Processing microservice.
Istio provisions certificates to each Pod in the service mesh, under the corresponding
service account name. So, when we enforce peer authentication with mTLS for the
Inventory microservice, looking at the certificate of the requester, Istio can identify
the corresponding service account.

apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
 name: inventory-services-policy
 namespace: default
spec:
 selector:
 matchLabels:
 app: inventory
 action: ALLOW
 rules:
 - from:
 - source:
 principals: ["cluster.local/ns/default/sa/ecomm"]
 to:
 - operation:
 methods: ["PUT"]

Let’s run the following commands from the chapter12/sample05/1.4.0 directory to
set up the authorization policies we discussed in listings 12.21 and 12.22, under an
Istio 1.5 or later deployment:

\> kubectl apply -f request.authz.policy.yaml

authorizationpolicy.security.istio.io/orders-services-policy configured

Listing 12.22 Defining an AuthorizationPolicy with peer authentication

The value of the scope attribute
picked from the JWT that comes
with the request must be foo.

The value of the authorities attribute picked from the
JWT that comes with the request must be ROLE_USER.

333Managing keys in Istio
\> kubectl apply -f peer.authz.policy.yaml

serviceaccount/ecomm configured
deployment.apps/orders-deployment configured
authorizationpolicy.security.istio.io/inventory-services-policy configured

When you apply peer.authz.policy.yaml, which corresponds to listing 12.22, it also cre-
ates a service account called ecomm, and redeploys the Order Processing microser-
vice under that. To test the end-to-end flow after enforcing authorization policies,
follow the steps defined in section 12.4.2.

 You can read more details about the AuthorizationPolicy at https://istio.io/docs/
reference/config/security/authorization-policy/.

TROUBLEHOOTING After applying peer.authz.policy.yaml in your Istio distribu-
tion, if the Pod corresponding to the Order Processing microservice does not
start properly, please see the troubleshooting tips at https://github.com/
microservices-security-in-action/samples/blob/master/chapter12/trouble-
shooting.md.

12.6 Managing keys in Istio
In an Istio deployment, Citadel—the Istio control plane component—provisions keys/
certificates to each workload it manages. A Pod in a Kubernetes environment is a
workload for Istio. Istio attaches an Envoy proxy for each Pod. So, when we say Citadel
provisions keys/certificates to each workload it manages, what internally happens is
that Citadel provisions keys/certificates to each Envoy proxy running in the corre-
sponding Pod.

 By provisioning keys/certificates, Citadel helps each workload that runs under
Istio to maintain an identity and also facilitates secure communications among work-
loads. Further, Citadel rotates the keys/certificates it provisions to each Envoy proxy.

 When you enable mTLS in an Istio deployment, Envoy uses the keys provisioned to
it to authenticate to other Envoy proxies (or workloads). However, since Istio version
1.1, the way this works has changed significantly. In the following sections, we discuss
various approaches Istio uses to provision and rotate keys/certificates.

12.6.1 Key provisioning and rotation via volume mounts

Prior to Istio 1.1.0, provisioning of keys/certificates to Envoy proxies happen via Cita-
del, with volume mounts. Even after Istio 1.1.0, prior to 1.5.0, if you don’t have the
sds Istio profile enabled, the provisioning of keys/certificates to Envoy proxies will
still happen via Citadel, with volume mounts.4 Listing 12.23 shows the volume mounts
associated with Envoy (or the Istio proxy), which runs in the Order Processing Pod.

4 Installation configuration profiles for Istio 1.4.0, includes sds as an independent profile: https://archive
.istio.io/v1.4/docs/setup/additional-setup/config-profiles/.

https://archive.istio.io/v1.4/docs/setup/additional-setup/config-profiles/
https://archive.istio.io/v1.4/docs/setup/additional-setup/config-profiles/
https://github.com/microservices-security-in-action/samples/blob/master/chapter12/troubleshooting.md
https://github.com/microservices-security-in-action/samples/blob/master/chapter12/troubleshooting.md
https://github.com/microservices-security-in-action/samples/blob/master/chapter12/troubleshooting.md
https://istio.io/docs/reference/config/security/authorization-policy/
https://istio.io/docs/reference/config/security/authorization-policy/

334 CHAPTER 12 Securing microservices with Istio service mesh
 If you run the command in the listing, you need to replace the Pod name (orders-
deployment-f7bc58fbc-bbhwd) with the one that runs in your Kubernetes cluster.
The Envoy proxy can access the certificates/keys provisioned to it by Citadel from the
/etc/certs location of its local filesystem. Citadel keeps track of the expiration time
of each key/certificate it provisions and then rotates them before expiration.

\> kubectl get pod orders-deployment-f7bc58fbc-bbhwd -o yaml

volumeMounts:
- mountPath: /etc/istio/proxy
 name: istio-envoy
- mountPath: /etc/certs/
 name: istio-certs
 readOnly: true
- mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 name: default-token-9h45q
 readOnly: true

Let’s use the following command to print the PEM-encoded certificate provisioned to
the Envoy proxy associated with the Order Processing microservice. Make sure to have
the correct Pod name corresponding to your environment in the command:

\> kubectl exec -it orders-deployment-f7bc58fbc-bbhwd \
-c istio-proxy cat /etc/certs/cert-chain.pem

You can decode the output from the preceding command by using an online tool
like the Report URI Decode PEM Data tool (https://report-uri.com/home/pem
_decoder). The decoded output is shown in the following listing. You can see the life-
time of the certificate is 90 days, and it is issued for a service account (see the Subject
Alternative Names attribute).

Issued By: cluster.local
Serial Number: 3BF3584E3780C0C46B9731D561A42032
Signature: sha256WithRSAEncryption
Valid From: 23:29:16 10 May 2020
Valid To: 23:29:16 08 Aug 2020
Key Usage: Digital Signature, Key Encipherment
Extended Key Usage: TLS Web Server Authentication,
 TLS Web Client Authentication

Listing 12.23 The volume mounts of the Istio ingress gateway Pod

Listing 12.24 The certificate provisioned to Envoy by Citadel

Mount path from the Envoy
local filesystem for the keys
used by Envoy proxy

The default token secret (a JWT),
which is provisioned by
Kubernetes—not specific to Istio

The issuer of
the certificate A unique number associated

with this certificate

The CA signs the public key
associated with this certificate,
following this signature algorithm.

This certificate can be used to sign
a message or encrypt a key, but
cannot be used to encrypt data.

This certificate can be used
for mTLS authentication.

https://report-uri.com/home/pem_decoder
https://report-uri.com/home/pem_decoder

335Managing keys in Istio
Basic Constraints: CA:FALSE
Subject Alternative Names:
 URI:spiffe://cluster.local/ns/default/sa/default

When you create a Pod in a Kubernetes environment, you can associate a Pod with a ser-
vice account. Multiple Pods can be associated with the same service account. If you do
not specify which service account you want to associate with a Pod, Kubernetes uses the
default service account. In section 11.6, we discuss service accounts in detail. Citadel
adds the service account name to the certificate under the Subject Alternative
Names field following the SPIFFE standard (for more information, see appendix H).

12.6.2 Limitations in key provisioning and rotation via volume mounts

If you use Istio add-ons within GKE to run the samples in this chapter, the key provi-
sioning and rotation works in the way explained in section 12.6.1.5 But this approach
has limitations or risks, including the following:

 Whenever Citadel provisions/rotates keys/certificates by updating the corre-
sponding Kubernetes Secret, the corresponding Envoy proxies have to restart
to load the new key/certificate.

 The private keys are generated by Citadel outside the Kubernetes node, where
the Envoy proxy that uses those keys runs. One potential security issue is that
these keys can be compromised when they are transferred from Citadel to the
Kubernetes node, which hosts the corresponding Pod.

To overcome these limitations, since version 1.1.0, Istio introduced the Secret Discov-
ery Service, which we discuss next.

12.6.3 Key provisioning and rotation with SDS

In this section, we discuss how key provisioning and rotation in Istio works with the
Secret Discovery Service (SDS). Istio introduced the SDS feature with Istio 1.1.0 under the
sds profile. So, if you are using Istio 1.1.0 or a later release prior to 1.5.0, but still with
the default profile, you will not see SDS support. With Istio 1.5.0 onward, SDS is
enabled by default. If you check the Istio feature status available at the Istio website
(https://istio.io/about/feature-stages/#security-and-policy-enforcement), you can
find the status of the SDS feature. Since the Istio 1.5.0 release, it is in the stable phase.

 When you enable the sds profile prior to Istio 1.5.0 release, you can find an SDS
node agent running in every Kubernetes node under the istio-system namespace.
Figure 12.9 explains how the Istio node agent (also known as the SDS server) facilitates
key provisioning. However, since Istio 1.5.0 onward, this node agent is removed, and
its functionality has been moved to the Envoy proxy itself.

5 At the time of this writing, the latest GKE cluster version is 1.14.10-gke.27, and it supports only Istio 1.2.10.

The SPIFFE identifier corresponding to the
service account associated with this istio proxy

https://istio.io/about/feature-stages/#security-and-policy-enforcement

336 CHAPTER 12 Securing microservices with Istio service mesh
Let’s have a look at how each step works:

1 The Pilot, which runs on the Istio control plane, keeps track of all the Pods
Kubernetes spins up. When it finds a new Pod, the Pilot talks to the correspond-
ing Envoy proxy and passes the SDS configuration along with other configura-
tions. For example, this includes how the Envoy proxy could talk to the node
agent via UNIX domain sockets (https://en.wikipedia.org/wiki/Unix_domain
_socket).

2 The Envoy proxy talks to the node agent via UNIX domain sockets to request a
key pair. Along with this request, Envoy also passes the JWT provisioned to its
Pod by Kubernetes. This JWT is attached to the service account associated with
the corresponding Pod.

3 The node generates a key pair—and then a CSR—and sends the CSR along
with the JWT it got from the proxy to Citadel. When generating the certificate,
the node agent uses the service account name associated with the provided JWT

Pilot CitadelMixer
Kubernetes
API Server

Istio Node
Agent

Istio Node
Agent

Envoy

Micro-
service

Envoy Envoy

Micro-
service

Micro-
service

Kubernetes cluster

Pilot pushes SDS
configuration to
the Envoy proxy

Request to get a key
pair. The request is
authenticated with
the JWT provisioned
to each Pod by
Kubernetes.

The communication
between the Envoy
proxy and the node
agent happens via
UNIX domain sockets.

A Kubernetes node

Node agent sends a
certificate signing request
and the JWT from the proxy Signed certificate

Kubernetes
control plane

Citadel validates
the provided
JWT with the
API server

SDS introduces a
Node agent,
which generates
private keys for
workloads, and
the private keys
never leave the
node

Signed certificate, private key,
and root certificate

Istio control
plane

Citadel acts as the
certificate authority
(CA)—but we can also
plug in custom CAs

1

2
6

3

5 4

Figure 12.9 SDS introduces a node agent (prior to version 1.5.0), which runs on each Kubernetes node. This node
agent generates a key pair for each workload (proxy) in the corresponding node and gets those signed by Citadel.

https://en.wikipedia.org/wiki/Unix_domain_socket
https://en.wikipedia.org/wiki/Unix_domain_socket

337Summary
to derive the Subject Alternative Name (listing 12.24) and embeds that to the
certificate. This generated certificate is compliant with the SPIFFE standard,
which we discuss in appendix H.

4 Citadel talks to the API server to validate the provided JWT and confirms that
this workload carries the correct JWT and is running on the correct Kubernetes
node.

5 Citadel returns the signed certificate to the node agent.
6 The node agent returns the signed certificate, the private key, and the root cer-

tificate to the Envoy proxy (or the workload).

After the keys are provisioned to workloads, the node agent keeps track of their expi-
ration. It runs a timer job, which iterates over all the cached keys to find the keys
closer to expiry. If a key is close to expiring, the node agent sends a message to the
corresponding Envoy proxy, and the proxy will start the same process as in figure 12.7
to get the new keys. One main advantage of using SDS to provision and rotate keys is
that we do not need to restart the Envoy proxy to reload new keys.

Summary
 Service Mesh is an architectural pattern that highlights the need for decoupling

security, observability, routing control, and resiliency from the microservices
implementation to another level of abstraction.

 Istio uses the Envoy service proxy, which is deployed alongside the microservice
at the data plane to intercept ingress and egress traffic to and from a microser-
vice and enforce security policies.

 Istio Citadel is a control plane component that provisions certificates to each ser-
vice proxy in a microservices deployment and takes care of certificate rotation.

 The Istio Ingress gateway runs at the edge of the Kubernetes cluster and ter-
minates TLS and can also establish an mTLS connection with upstream
microservices.

 Istio introduced a new resource type called DestinationRule. This is used to
instruct Envoy proxies at the client side to use mTLS for all the communica-
tions with the corresponding hosts. However, from Istio 1.5.0 onward you do
not need to do anything to enable mTLS among microservices; it’s enabled by
default.

 Istio 1.5.0 introduced two new resource types for authentication: PeerAuthenti-
cation and RequestAuthentication. You can use PeerAuthentication resource
type to define mTLS-based policies, and RequestAuthentication resource type
to define JWT-based policies.

 Istio introduces two custom resource types: ServiceRole and ServiceRoleBind-
ing to perform authorization, and ServiceRoleBinding is used to map a role/
authority to a ServiceRole. However, if you are using Istio 1.4.0 or later, you
should use the AuthorizationPolicy resource type.

338 CHAPTER 12 Securing microservices with Istio service mesh
 Since Istio 1.1.0 onward with the sds profile, Istio does key provisioning and
rotation with the SDS. From Istio 1.5.0 onward, SDS is supported by default.

 When you use SDS, the private keys associated with workloads never leave the
corresponding Kubernetes nodes. And during key rotation, we do not need to
restart Envoy proxies to reload keys.

Part 5

Secure development

Speed to production is one of the key motivations behind the microservices
architecture. Automating security testing in the development process helps you
catch bugs as early as possible in the development cycle, and minimizes the
effort in fixing them. This part of the book teaches you how to automate security
testing of your microservices with SonarQube, Jenkins, and OWASP ZAP.

340 CHAPTER

Secure coding practices
and automation
The complexity of the source code or the system design is a well-known vector of
security vulnerabilities. According to published research, after some point, the
number of defects in an application increases as the number of code lines
increases. The defect increase is exponential and not linear, meaning that the rate
of defects increases much faster compared to the rate of code being added. Unless
you have good test coverage for both functionality and security, you won’t be able
to deploy changes into production frequently with confidence.

 Two main kinds of security tests are integrated into the development life cycle:
static code analysis and dynamic testing. You can integrate both tests to run

This chapter covers
 OWASP top 10 API security vulnerabilities

 Performing static analysis of code by using
SonarQube

 Automating code analysis by integrating with
Jenkins

 Performing dynamic analysis of code by using
OWASP ZAP
341

342 CHAPTER 13 Secure coding practices and automation
automatically after each daily build. In the rest of this chapter, we look at the top 10
API security vulnerabilities as categorized by the Open Web Application Security Proj-
ect (OWASP) and then take a look at tools we can use to perform static and dynamic
analysis of our code.1 If you’d like to learn more about security best practices, we rec-
ommend Agile Application Security: Enabling Security in a Continuous Delivery Pipeline
(O'Reilly Media, 2017) by Laura Bell et al.

13.1 OWASP API security top 10
OWASP API Security (www.owasp.org/index.php/OWASP_API_Security_Project) is an
open source project that’s aimed at preventing organizations from deploying poten-
tially vulnerable APIs. As we’ve discussed throughout this book, APIs expose microser-
vices to consumers. It’s therefore important to focus on how to make these APIs safer
and avoid known security pitfalls. Let’s take a look at the OWASP top 10 list of API
security vulnerabilities:

1 Broken object-level authorization
2 Broken authentication
3 Excessive data exposure
4 Lack of resources and rate limiting
5 Broken function-level authorization
6 Mass assignment
7 Security misconfiguration
8 Injection
9 Improper asset management

10 Insufficient logging and monitoring

13.1.1 Broken object-level authorization

Broken object-level authorization is a vulnerability that’s present when using identifiers
(IDs) to retrieve information from APIs. Users authenticate to APIs via applications
using protocols like OAuth 2.0.2 An application can use object IDs to fetch data from
an API. Let’s take a look at an example API from Facebook, where we get user details
by using an ID:

\> curl -i -X GET "https://graph.facebook.com/{user-id} \
?fields=id,name&access_token={your-user-access-token}"

This example shows an API that’s used to retrieve details of a user identified by an ID.
We pass the user-id in the request as a path parameter to get details of the corre-
sponding user. We also pass in the access token of the user who’s authenticated to the

1 The Open Web Application Security Project (OWASP) is a nonprofit foundation that works to improve the
security of software, https://owasp.org/.

2 OAuth 2.0 is an authorization framework, but it also helps authenticating users at the resource end—or at the
API gateway, which intercepts all the traffic coming to an API.

www.owasp.org/index.php/OWASP_API_Security_Project
https://owasp.org/

343OWASP API security top 10
API in a query parameter. Unless Facebook checks whether the consumer of the API
(the owner of the access token) has permissions to access details of the user to whom
the ID belongs, an attacker can gain access to details of any user they prefer; for exam-
ple, getting details of a user who’s not in your Friends list (figure 13.1). This authori-
zation check needs to happen for every API request.

Figure 13.1 A client application under an attack could exploit the broken object-level authorization vulnerability
in an API to retrieve one user’s details with an access token that belongs to another user.

To reduce this type of attack, you should either avoid passing the user-id in the
request or use a random (nonguessable) ID for your objects. If your intention is to
expose only the details of the user who’s authenticating to the API with the access
token, you can remove the user-id from the API and use an alternative ID such as
/me. For example:

\> curl -i -X GET "https://graph.facebook.com/me?fields=id,name&\
access_token={your-user-access-token}"

In case you can’t omit passing in the user-id and need to allow getting details of dif-
ferent users, use a random nonguessable ID for your users. Assume that your user iden-
tifiers were an autoincrementing integer in your database. In certain cases, you’ll pass
in something like the value 5 as the user ID and, in another case, something like 976.
This provides hints to the consumers of your API that you have user IDs ranging from
5 to maybe something like a 1000 in your system, and they can therefore randomly

Clent Application API Gateway API/Microservices

GET https://graph.facebook.com/1000

GET https://graph.facebook.com/2000

The user with the ID
1000 authenticates to
the client application.

The client application does an
HTTP GET with the user ID 1000
along with the access token that
belongs to the user ID 1000.

The client application does an
HTTP GET with the user ID 2000
along with the access token that
belongs to the user ID 1000.

Ideally, this request should
not be authorized to go
through the API gateway.

344 CHAPTER 13 Secure coding practices and automation
request user details. It’s therefore best to use a nonguessable ID. If your system is
already built, and you can’t change IDs, use a random identifier in your API layer and
an internal mapping system to map externally exposed random strings to the internal
IDs. This way, the actual ID of the object (user) remains hidden from the consumers of
the API.

13.1.2 Broken authentication

Broken authentication is a vulnerability that occurs when the authentication scheme of
your APIs isn’t strong enough or isn’t implemented properly. Throughout this book,
you’ve learned that OAuth 2.0 is the de facto standard for securing APIs. However,
OAuth 2.0 as a framework provides multiple options for developers to secure their
APIs. You need to pick the right grant type for your application, along with the right
expiration times for the tokens. The expiration time you pick for the access token, for
example, can depend on the risk associated with token leakage, duration of the
underlying access grant (SAML grant or JWT grant), the time required for an attacker
to guess or produce a valid token.

 OAuth 2.0 works on opaque (reference) access tokens or self-contained JWT-
formatted tokens. As we discussed in chapter 3, when we use a reference access token
to access an API deployed on an API gateway, the gateway validates the token against the
token issuer (or the STS). The token issuer of a reference access token has to make sure
that the length of the token is greater than or equal to 128 bits and constructed from
a cryptographically strong random or pseudorandom number sequence. In chapter 7,
we talked about JWT and its attributes. If a JWT is used as an access token, the gateway
can validate the token by itself. In either case, the gateway needs to make sure the val-
idation of the token is done properly. For example, in the case of a JWT, the gateway
needs to validate the token and check for the following:

 The token is signed properly with a strong signing algorithm and a key.
 The issuer of the token is trusted.
 The audience of the token is correct.
 The token isn’t expired.
 The scopes bound to the token permit it to access the requested resource.

Failure to implement the security scheme properly can lead to APIs being left vulnera-
ble to attacks that can exploit them. The OAuth 2.0 Security Best Current Practice
document (https://tools.ietf.org/html/draft-ietf-oauth-security-topics-14), developed
by the OAuth working group under IETF, shares security best practices related to
OAuth 2.0 and extends the best practices defined in the OAuth 2.0 Threat Model and
Security Considerations document (https://tools.ietf.org/html/rfc6819). The JSON
Web Token Best Current Practices (https://tools.ietf.org/html/rfc8725) document
from the same OAuth working group defines the best practices in issuing and verify-
ing a JWT. All these are recommended readings, if you are keen on understanding
OAuth 2.0 security in depth.

https://tools.ietf.org/html/draft-ietf-oauth-security-topics-14
https://tools.ietf.org/html/rfc6819
https://tools.ietf.org/html/rfc8725

345OWASP API security top 10
13.1.3 Excessive data exposure

APIs should return only the data that’s relevant and required for its consumers. For
example, if an application (consumer) requires to know whether a particular user is
older than the age of 18, instead of exposing the user’s date of birth or age, the API
should return only true or false, that indicates whether the user is older than 18. This
is also true for other software systems and websites, not just for APIs.

 Software systems or websites shouldn’t expose the technology or versions of the
technologies they run on. It’s quite common to find technologies used in websites by
viewing the HTML page source. If the website runs on a particular platform, often the
JavaScript libraries or CSS that appear in the HTML source contain the names and
versions of the technology platform. This isn’t a good practice because it allows attack-
ers to mine for vulnerabilities of the mentioned technologies and attack the system by
using that information.

 It was not so long ago that an excessive data exposure vulnerability was uncovered
in a mobile application called 3Fun, a location-based, online dating application.3

Using location data that its API exposed unnecessarily, attackers could find dating
preferences of the app’s users in the White House, Supreme Court, and major cities in
the world. By using the birthdate it exposed, attackers could pinpoint the exact users
and hack into their personal photos!

 We mostly see excessive data exposure happen in error handling, which provides a
complete stack-trace in the API response of an internal error occurring in the API
implementation. The exception shielding is one common pattern used to handle
errors in a secure way. Rather than sharing an error as it is with the client application,
the exception-shielding pattern shields the error with an error code, and shares the
error code only with the client application, via the API response.

13.1.4 Lack of resources and rate limiting

APIs often don’t impose limits on the number of requests they serve within a given
time nor limit the amount of data returned. This can lead to attackers performing
DDoS attacks that make the system unavailable to legitimate users. Imagine an API
like the following that allows retrieving details of users:

https://findusers.com/api/v2?limit=10000000

If the API doesn’t impose a limit on the maximum number of users that can be que-
ried in a single API request, consumers could set a very large value on the limit. This
would make the system fetch details of so many users that it would run the risk of con-
suming all resources it has and become unable to serve requests from legitimate users.
A setting for the maximum number of records to be retrieved can be implemented at
the application layer itself or by using an API gateway.

3 Group dating app 3Fun exposed sensitive data of 1.5 million users; see https://techcrunch.com/2019/08/
08/group-dating-app-3fun-security-flaws/ for more details.

https://techcrunch.com/2019/08/08/group-dating-app-3fun-security-flaws/
https://techcrunch.com/2019/08/08/group-dating-app-3fun-security-flaws/

346 CHAPTER 13 Secure coding practices and automation
 Similarly, attackers could perform DDoS attacks by sending a large number of
requests within a very short time; for example, sending a million requests per second
using distributed attack clients. This too would make the system unavailable for legiti-
mate users. Preventing such attacks is typically done at the network perimeter by using
WAF solutions.

13.1.5 Broken function-level authorization

The broken function-level authorization vulnerability is about the lack of fine-grained
authorization at an API. An API can consist of multiple operations (resources); for
example, GET /users/{user-id} for retrieving user information and DELETE
/users/{user-id} for removing a particular user. Both operations are part of a sin-
gle API called /users. Authorization for this API should be done by operation, not
only at an API level.

 Performing authorization at the API level results in anyone with permissions to
retrieve user information (GET) to also implicitly have permissions to remove user
information (DELETE), which isn’t correct. You could use OAuth 2.0 scopes for this, as
we discussed in chapter 2. Different scopes could be bound to the different resources,
and only users with the relevant permissions should be granted the scope when
requesting OAuth 2.0 access tokens.

 In some cases, the permissions are delegated to the consuming application of an
API, such as with SPAs, as we discussed in chapter 4. The SPA can use OIDC to obtain
the roles of the user and hide the relevant actions (DELETE, for example) from the UI
if the user doesn’t have the proper role. This isn’t a proper design because the func-
tionality is still exposed at the API level and therefore remains vulnerable.

 As mentioned before, authorization checks should be enforced at the resource
by using OAuth 2.0 scopes or something similar. There are also recommendations
to make such operations that require fine-grained authorizations nonguessable;
for example, using GET /users/{user-id}?action=delete instead of DELETE
/users/{user-id}. This again isn’t good design. It not only messes up your API
design, but also doesn’t solve the actual problem. This is called security by obscurity,
which is not a good practice.

13.1.6 Mass assignment

Mass assignment is a vulnerability that’s exposed when APIs blindly bind to JSON
objects received via clients without being selective about the attributes they bind to.
Let’s assume we have some JSON that represents user attributes, including roles. A
possible GET /users/{user-id} operation returns the following:

{"user":
 {
 "id": "18u-7uy-9j3",
 "username": "robert",
 "fullname": "Robert Smith",
 "roles": ["admin", "employee"]
 }
}

347OWASP API security top 10
As you can observe, this operation returns the details of the user, including their roles.
Now imagine using the same JSON to create or modify a user in the system. This is typ-
ically done by a POST /users or PUT /users/{user-id} to the /users API and by
passing in the JSON message. If the API assigns user roles by reading them from the
JSON message that’s passed in, anyone having permissions to add or modify users can
assign roles to users or even themselves. Imagine a sign-up form to a particular system
being powered by such an API. This would enable anyone to assign themselves to the
admin role of the system. To avoid such errors, the API should be selective about what
fields it picks from the input message to assign to its entities. Ideally, you can define
different JSON objects by the corresponding operation.

13.1.7 Security misconfiguration

Security misconfigurations on APIs can occur for various reasons. These misconfigura-
tions mainly occur because of insecure default configurations. The following are some
examples of these misconfigurations:

 Not disabling HTTP when allowing only HTTPS on your APIs
 Allowing unnecessary HTTP methods on API resources (for example, allowing

POST on a resource when only a GET is required)
 Including stack traces on error messages that reveal the internals of a system
 Permissive CORS that allows access to APIs from unnecessary domains

Preventing these types of errors requires attention to both the design time of APIs and
the runtime. We need to use tools that check our API specifications to make sure they
adhere to API design best practices. This prevents design-time errors such as allowing
unnecessary HTTP methods on APIs. Tools like the API contract security auditor
(https://apisecurity.io/tools/audit/) provided by APISecurity.io let you check your
API definitions (open API files) for vulnerabilities and malpractices in API design.

 Runtime strengthening of the system needs to happen by automated mechanisms
as much as possible. For example, when deploying an API, we’d typically expose the
API on HTTPS only (disabling HTTP). Instead of expecting an administrator to dis-
able HTTP, the deployer scripts of the APIs themselves should be automated to disable
HTTP. In addition to this, the software should always be run on servers that have been
hardened for security, and where all the security patches have been applied. You
should also build strong verifications (tests), which verify that all necessary runtime
configurations are applied. Netflix’s Security Monkey (https://github.com/Netflix/
security_monkey) is one such tool to make sure their AWS and GCP accounts always
run on secure configurations, though it is now in maintenance mode.

13.1.8 Injection

Injection flaws such as Structured Query Language (SQL) injections and command
injections can occur when APIs accept data and pass it on to interpreters to execute as
a part of a query or a command. For example, imagine that a search operation on the

https://apisecurity.io/tools/audit/
https://github.com/Netflix/security_monkey
https://github.com/Netflix/security_monkey

348 CHAPTER 13 Secure coding practices and automation
user’s API accepts a name to search and passes it to a SQL statement. The API would
look like the following:

GET /search/users?name=robert

The name extracted from the query parameter would then be passed on to a SQL
query that looks like this:

SELECT * FROM USERS WHERE NAME = robert;

Now if the name passed in is changed from robert; to robert; DELETE FROM
USERS WHERE ID = 1;, the resulting SQL statement would be as follows and would
remove a user from the system:

SELECT * FROM USERS WHERE NAME = robert; DELETE FROM USERS WHERE ID = 1;

To mitigate these types of attacks, user inputs should always be sanitized. Static code
analysis tools are also capable of detecting whether input parameters have been directly
used in SQL statements. WAF solutions are also capable of detecting and preventing
such attacks at runtime. Programming languages too have their own mechanisms for
preventing such attacks. For example, Java provides the PreparedStatement con-
struct that can be used to execute SQL statements. It takes care of such vulnerabilities
and prevents injection attacks.

13.1.9 Improper asset management

Platforms such as Kubernetes and containers have made it easy for developers to
deploy APIs into various environments. But this has brought a new challenge—a lot of
APIs tend to get deployed easily and forgotten over time. When APIs are forgotten
and newer versions of APIs deployed, the older versions get less attention.

 Organizations can miss applying security patches and other fixes to old APIs that
may still be in operation under the radar. Unless they’re properly documented and
maintained, people may forget the details of these APIs and therefore be unwilling to
make changes to them. Older APIs could remain unpatched and vulnerable. It’s
therefore important to document and maintain these APIs by using a proper API
management system.

 Red Hat’s 3scale (www.redhat.com/en/technologies/jboss-middleware/3scale)
and WSO2’s API Manager (https://wso2.com/api-management/) are two examples of
open source API management solutions. These systems enforce best practices on APIs
when deployed and give an indication of which APIs are being used and which are old
enough to retire. These systems also maintain the test scripts of APIs and help you
with testing APIs when necessary.

13.1.10 Insufficient logging and monitoring

All actions performed in systems need to be logged, monitored, and analyzed for
abnormalities. The lack of logs and monitoring results in not knowing what’s going on
in a system.

www.redhat.com/en/technologies/jboss-middleware/3scale
https://wso2.com/api-management/

349Running static code analysis
 Assume, for example, that a user is accessing an API by using a token from an IP
address from the United Kingdom. Now, if the same token is being used by a user
from the United States a few minutes later, the token is likely to have been hacked by
an intruder. Our authentication and authorization layers won’t detect anything wrong
with these requests because they contain valid credentials to access APIs.

 We therefore need other mechanisms to detect such abnormalities. This is another
instance where a proper API management system can help. A system that analyzes
user behavior and processes behavioral data to find abnormalities and suspicious pat-
terns is the only way of detecting and preventing such vulnerabilities.

13.2 Running static code analysis
In this section, we look at a practical example of running static code analysis by using
SonarQube (www.sonarqube.org). SonarQube is an open source tool that helps you
scan your code to check for security vulnerabilities, code smells, and bugs. It can be
integrated with your build process so that it scans your code continuously (on each
build). It can also be integrated with automated build tools such as Jenkins, which is
something we’ll look at later in this chapter.

 Static code analysis is a method of code debugging without executing the code itself
(without running the program). Static analysis helps to check whether the code
adheres to industry best practices and prevents bad practices. Static analysis of code is
important because it can reveal errors in code (by running the code) before an inci-
dent occurs. Automated tools such as SonarQube can assist developers in performing
static analysis on their code.

 Static analysis is, however, only the first step in software quality analysis. Dynamic
analysis is also typically performed to ensure comprehensive coverage of the code. This
section focuses on static code analysis. We’ll discuss dynamic code analysis in section
13.4. You can find the examples of this chapter at https://github.com/microservices-
security-in-action/samples/tree/master/chapter13. Download the code from this loca-
tion to a directory of your choice. You’ll need Docker (www.docker.com) installed on
your machine to run these samples. We run SonarQube on a Docker container locally.

 Execute the following steps to run the first example of this section. Make sure you
have your Docker process up and running. Running the following command from the
command line in a terminal window prints the version of Docker that’s running:

\> docker --version

If Docker is running, execute the following command in your command-line tool to
download (pull) the Docker image of SonarQube to your local workstation:

\> docker pull owasp/sonarqube

Once this command completes, you have the SonarQube Docker image on your local
Docker repository. The next step is to run the Docker container by executing the fol-
lowing command from your command-line terminal:

\> docker run -d -p 9000:9000 -p 9092:9092 owasp/sonarqube

www.docker.com
www.sonarqube.org
https://github.com/microservices-security-in-action/samples/tree/master/chapter13
https://github.com/microservices-security-in-action/samples/tree/master/chapter13

350 CHAPTER 13 Secure coding practices and automation
When this command completes, you should see a random ID printed to your console
that indicates that SonarQube is now running on your machine. Run the following
command to get a list of the running Docker processes on your machine:

\> docker ps

You should see a Docker image with the name owasp/sonarqube. You can now open
a web browser and navigate to http://localhost:9000 to open the SonarQube dash-
board. If you haven’t run any code scans yet, you should see a message at the top right
that says 0 projects scanned.

 The next step is to enable SonarQube scanning on our Maven installation and run
a scan of our code. To enable SonarQube scanning on our Maven projects, we need to
add the following section to the settings.xml file located in your $MAVEN_HOME/
conf directory (for example, /usr/local/apache-maven-3.5.2/conf). You can find a
sample settings.xml file inside the chapter13 directory:

<settings>
 <pluginGroups>
 <pluginGroup>org.sonarsource.scanner.maven</pluginGroup>
 </pluginGroups>
 <profiles>
 <profile>
 <id>sonar</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <sonar.host.url>
 http://localhost:9000
 </sonar.host.url>
 </properties>
 </profile>
 </profiles>
</settings>

Once this section is added to settings.xml, save and close the file, and use your com-
mand-line terminal to navigate to the chapter13/sample01 directory. This directory
contains source code from our Order Processing microservice example from chapter
3. We’ll scan this code to find potential security vulnerabilities. To do that, execute the
following command at the prompt:

\> mvn clean verify sonar:sonar

Once the build succeeds, use your web browser to navigate to http://localhost:9000
(or refresh the page you visited previously). You should now see at the top right of the
page that you have one project scanned. Click the number 1 to view details of the
scanned project. A page appears that gives you the project name, com.manning
.mss.ch13.sample01, which was scanned. This project doesn’t have any security
vulnerabilities as of this writing. It reports six code smells, however (figure 13.2).

351Running static code analysis
Figure 13.2 The SonarQube page shows the scan results of a project.

As newer versions of SonarQube are released with the capacity to uncover newer vul-
nerabilities and malpractices, it’s possible for SonarQube to report vulnerabilities in
this code as well. Click the name of the project to view the details of the code smells.
By navigating through these links, you can view the details of each code smell and fig-
ure out the causes. SonarQube explains the details of these nicely and provides rec-
ommendations for fixes as well.

 Because the code doesn’t have any interesting security vulnerabilities, let’s now try
out an example that does. In the chapter13/sample02 directory, we have a new
microservice that accepts credit card payments from users. This microservice has one
method named pay. You can find the code of this service in the sample02/src/main/
java/com/manning/mss/ch13/sample02/service/PaymentsService.java file. You’ll
notice that this method is annotated with @RequestMapping("/payment"). This
annotation indicates that this operation is exposed over a path named /payment. Use
your command-line terminal tool and navigate to the chapter13/sample02 directory
and execute the same command as before:

\> mvn clean verify sonar:sonar

Once the build completes, refresh the SonarQube dashboard in your web browser.
You’ll notice that the number of projects scanned has now increased to two. Click num-
ber 2 (or the number of projects shown on the UI) to view the details of the scanned
projects. You should see the second project with the name com.manning.mss
.ch13.sample02 appearing in the project list.

 The project in sample02 has one security vulnerability. Click the project name and
then click the vulnerability to view more-detailed information. You should see the fol-
lowing message:

Add a "method" parameter to this "@RequestMapping" annotation.

352 CHAPTER 13 Secure coding practices and automation
Clicking this message takes you to the exact point in the code where this vulnerability
is detected. What SonarQube is reporting here is that our pay method declares only
the path of the operation (/payment) but it doesn’t explicitly declare the HTTP
methods on which this operation is exposed.

 Although our intention originally was to make the payments method available on
HTTP POST only, the failure to declare this explicitly is now exposing this method
over other unintended methods such as GET, DELETE, and so on. This could expose
our system to users being able to perform things like removing payment information
from the system, for example. This vulnerability falls under the security misconfigura-
tion (vulnerability 7) category of the OWASP API Security top 10 vulnerabilities, as
does any API that exposes unnecessary HTTP methods. It’s therefore recommended
to explicitly mention the method(s) on which this operation is exposed. You can do
that by changing the previous annotation as follows:

@RequestMapping(value = "/payment", method = RequestMethod.POST)

By using this annotation, we explicitly declare that the HTTP method (POST) be
bound to the resource. Note that you need to import the RequestMethod class by
adding the following import statement to the top of the class, along with the other
import statements:

import org.springframework.web.bind.annotation.RequestMethod;

Next, rerun the mvn clean verify sonar:sonar command from your command-line
prompt and observe the SonarQube dashboard. You’ll need to refresh the web page. You
should now notice that the earlier reported vulnerability is no longer being reported.

13.3 Integrating security testing with Jenkins
Jenkins is an open source automation server. It provides plugins to support many
build, deployment, and automation processes. At this point, we need to integrate
security testing of our code with our build pipelines. A build pipeline is a sequence of
steps that happens in your build process (figure 13.3). The primary idea here is that
we scan our code for vulnerabilities before the actual build happens.

 You learned how to scan your code for vulnerabilities by using SonarQube, and
now you’ll learn how to automate this process by using Jenkins and why it’s important

Figure 13.3 In this Jenkins build pipeline, the first step is to perform a code scan by using SonarQube and then
to start the build process.

353Integrating security testing with Jenkins
to do so. This is part of CI/CD: we scan our code before each build step to ensure that
our code is free from vulnerabilities.

 In most situations, we work as teams and collaboratively work on projects in which
several people contribute code to a shared repository. In such situations, it’s not prac-
tical for us to depend on each individual to contribute bug- and vulnerability-free
code. We need mechanisms to verify the code being contributed and to alert us when
someone checks in code with vulnerabilities. Identifying and preventing vulnerabili-
ties as early as possible in our development life cycle helps us more easily fix them.

 Let’s take a look at how to set up Jenkins and configure a build pipeline to per-
form code scanning using SonarQube. Be sure to have your SonarQube server run-
ning as instructed in section 13.2.

13.3.1 Setting up and running Jenkins

In this section, we set up Jenkins on a Docker container and in section 13.3.2 configure
a simple build pipeline that compiles the source code of a microservice. You’ll need
Docker to run the examples. The code for these examples is at https://github.com/
microservices-security-in-action/chapter13. Note that this repository isn’t the same
repository where we had code for other examples. We need a separate repository
because Jenkins requires a configuration file (Jenkinsfile) to be present in the root of
the repository. Having this code in a repository that’s separate from the rest of the sam-
ples in this book makes it easier to teach and for you to try out the examples. The fol-
lowing command shows how to clone the new repository into your local machine:

\> git clone \
https://github.com/microservices-security-in-action/chapter13.git

Check out (pull) the code from the repository and use the following instructions to set
up Jenkins. Make sure to have Docker running on your machine. Open your command-
line tool and execute this command to run the Docker image of Jenkins in a container:

\> docker run --rm -u root -p 7070:8080 \
-v jenkins-data:/var/jenkins_home \
-v /var/run/docker.sock:/var/run/docker.sock \
-v "$HOME":/home jenkinsci/blueocean

With the argument -p 7070:8080, we map port 7070 on our host (our machine) to
the Jenkins port of 8080 that runs inside the container. The -v "$HOME":/home
option mounts the home directory of our host machine to path /home of the image
within the container. If you’re on Windows, the command should be as follows. Note
that the home path mount argument ($HOME) has changed:

\> docker run --rm -u root -p 7070:8080 \
-v jenkins-data:/var/jenkins_home \
-v /var/run/docker.sock:/var/run/docker.sock \
-v "%HOMEDRIVE%%HOMEPATH%":/home jenkinsci/blueocean

https://github.com/microservices-security-in-action/chapter13
https://github.com/microservices-security-in-action/chapter13

354 CHAPTER 13 Secure coding practices and automation
This command starts the Jenkins process on the terminal session you ran it on. You
should see an ID printed between two sets of asterisks in your command-line output,
as shown next. This ID (2ud7j28ojr9jhaa8wljhue8skiuq8nm) is required for get-
ting started with Jenkins. You can save the ID for future use; alternatively, on your first
login to Jenkins, you can create an admin user with your own credentials:

**
**
**

Jenkins install setup is required. An admin user has been created and a
password generated. Please use the following password to proceed to
installation:

2ud7j28ojr9jhaa8wljhue8skiuq8nm

**
**
**

Once the process is started, open your browser and navigate to http://localhost:7070,
where you’ll see the Unlock Jenkins page and will be prompted to enter the adminis-
trator password. Copy the ID (2ud7j28ojr9jhaa8wljhue8skiuq8nm) printed
between the two sets of asterisks on your command line and paste it in the field that
prompts for the admin password. Then proceed by clicking Continue.

 Next, you’ll see the Customize Jenkins page. Click the Install Suggested Plugins
option to install the default set of plugins recommended by Jenkins. The installation
may take a few minutes. Once the process is complete, you’ll be prompted to create a
new admin user. Provide the account details you’d like to create and complete the ini-
tial setup process.

 You’ll now be directed to the home page of Jenkins. To install the SonarQube
plugin, click the Manage Jenkins link in the lefthand menu and then click Manage
Plugins, as shown in figure 13.4.

 On the page that appears, click the Available tab and filter all the plugins related
to SonarQube by typing SonarQube in the Filter input box at the top right. Select the
plugin named SonarQube Scanner and then select Install Without Restart.

 Once completed, go back to the Manage Jenkins page and click Configure System
to configure SonarQube for our build processes. You should now see a section named
SonarQube servers. Click the Add SonarQube button, and then fill in the details on
the presented form. Use SonarScanner as the name and http://host.docker
.internal:9000 as the Server URL, as shown in figure 13.5. Make sure that you
have no blank spaces before or after the value of the Server URL. Note that the reason
we provide host.docker.internal as the host is that Jenkins is running within a Docker
container, and for it to connect to a port on the host machine (where SonarQube is
running), localhost doesn’t work. Also make sure to tick the check box, Enable

355Integrating security testing with Jenkins
Injection of SonarQube Server Configuration as Build Environment Variables (figure
13.5). Once completed, click the Save button to save your configurations.

Figure 13.5 To set up the SonarQube plugin on Jenkins for the examples in this section, use host.docker.internal
as the SonarQube host URL to connect to a port on the host machine where the Jenkins Docker container is running.

The next step is to create our Jenkins build pipeline, which we discuss in the next
section.

13.3.2 Setting up a build pipeline with Jenkins

A pipeline in Jenkins is the configuration that instructs Jenkins on the steps to per-
form when executing an automation process. To do that, go to the Jenkins home page
(http://localhost:7070/) and click New Item at the top left. Specify a name for your

Figure 13.4 The Manage Jenkins page lets you install plugins for Jenkins.

356 CHAPTER 13 Secure coding practices and automation
pipeline and select the Pipeline option, as shown in figure 13.6; then click the OK but-
ton at the bottom left.

 Once this pipeline is created, we can navigate to the page where we can configure
the newly created pipeline. Access the Pipeline tab, shown in figure 13.7. Pick the
Pipeline Script from SCM option from the Definition drop-down box, and select Git
as the SCM.

Figure 13.7 In the Jenkins pipeline configuration, note that the path to the repository URL has been
provided. Provide details as shown here and proceed by clicking the Save button at the bottom left.

Figure 13.6 To create a Jenkins pipeline for our project, provide a name for the pipeline and then click
the Pipeline option. Proceed by clicking the OK button at the bottom left.

357Integrating security testing with Jenkins
Note that the path to the Repository URL has been provided. This should be the
directory path where you cloned the repository containing the examples for this
section, where /home maps to the $HOME path on your host machine. For example, if
you cloned the repository to the /Users/roger/code/ms-security-inaction/chapter13
directory, and /Users/roger is your $HOME path, the Repository URL should be pro-
vided as /home/code/ms-security-inaction/chapter13.

 Also notice the Script Path option that specifies Jenkinsfile as its value. This is the
most important configuration file in this pipeline. This file should reside in the root of
the aforementioned repository URL. It contains the steps to execute in the pipeline.
When you cloned the repository for this section, you would have received a copy of this
file as well. Let’s take a look at the content of the Jenkinsfile in the following listing.

pipeline {
 agent {
 docker {
 image 'maven:3-alpine'
 args '-v /root/.m2:/root/.m2'
 }
 }
 stages {
 stage('SonarQube analysis') {
 steps {
 withSonarQubeEnv(installationName: 'SonarScanner') {
 sh 'mvn clean verify sonar:sonar'
 }
 }
 }
 stage('Build') {
 steps {
 sh 'mvn -B clean package'
 }
 }
 }
}

The stages define various phases in our Jenkins pipeline (figure 13.8). In our case, we
have two stages: the first stage runs the SonarQube analysis, and the next stage per-
forms the build of our code. You can provide any name for the stage (SonarQube
analysis, for example). However, the installationName parameter should be the
same as what you provided when configuring the SonarQube plugin for Jenkins
(SonarScanner, in this case). The script provided within a step should be the same
script we’d execute when performing the relevant action manually. You can see that
we execute the same instruction from section 13.2 to scan our code for vulnerabilities
here (listing 13.1) as well: sh 'mvn clean verify sonar:sonar'.

 Once the preceding details have been provided, you can proceed to save the pipe-
line configuration. You should see your pipeline appearing on the home page of

Listing 13.1 The Jenkinsfile

The agent is typically a machine or container
that executes tasks when instructed by
Jenkins. In this case, we use a Docker image
of Maven to execute our build. This means
that when you run your Jenkins pipeline, a
Docker image of Maven will be executed.The stages of the

build pipeline

SonarQube
analysis

stage

The Build
stage

Execute a Maven build.
The -B argument is used to run
the build in a noninteractive mode.

358 CHAPTER 13 Secure coding practices and automation
Jenkins. Click the pipeline and then click the Open Blue Ocean link on the left. On
the page that appears, click the Run button to run your pipeline, but make sure to
have SonarQube running before running the pipeline. You can click the relevant item
to view the progress of your build.

 The first execution of the pipeline can take a few minutes to complete, depending
on the speed of your internet connection. This is because the Maven container that
executes your build is brand new. Maven downloads all of the dependencies of your
project to its local repository before it can execute the build. Builds after the first exe-
cution would be faster because the dependencies exist on the local Maven repo of the
container. However, because Jenkins too is running on a container, once the Jenkins
container restarts, the first build that executes after that will be equal to our first build
as well.

 You can view the progress of each stage. Clicking a particular stage displays the logs
relevant to the action (script) being performed. Once the build completes, you
should see the progress bar shown in figure 13.8.

Figure 13.8 After the build is successful, this progress bar shows the result of your SonarQube scan.

You should now be able to visit the SonarQube application by pointing your browser
to http://localhost:9000. The code we just scanned is the same as that inside the
samples/chapter13/sample02 directory. We have, however, modified that code by fix-
ing the vulnerability that was present in that example.

 We just completed setting up our first Jenkins pipeline that scans our code using
SonarQube and then builds it. We executed the pipeline manually by clicking the Run
button on the Jenkins pipeline. In ideal situations, this pipeline will be run through
automated processes. You can find the options for running this pipeline automatically
by visiting the Build Trigger section under the Configure option of your pipeline.

 Jenkins allows us to run these pipelines by using GitHub hooks (https://developer
.github.com/webhooks/) on periodic intervals. We could also get our build job to fail
if the relevant quality gates on SonarQube don’t pass. This can be done by slightly
advanced configurations on our Jenkinsfile as described in the SonarQube docs
(http://mng.bz/WP2l). Jenkins could also be configured to trigger email and other
notifications when builds fail. This way, we could configure a fully automated build
process for our projects that would also send out notifications upon failures.

https://shortener.manning.com/WP2l
https://developer.github.com/webhooks/
https://developer.github.com/webhooks/

359Running dynamic analysis with OWASP ZAP
13.4 Running dynamic analysis with OWASP ZAP
Dynamic analysis of code checks your code through automated and manual processes
while it’s executing. You can perform dynamic analysis on your applications by using
OWASP ZAP (www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project). ZAP,
short for Zed Attack Proxy, is an open source tool that helps find security vulnerabilities
in web applications.

 Dynamic code analysis is a software testing mechanism that evaluates a program
during real-time execution. Unlike static code analysis, the software needs to be run
(and used) either by a human or by automated scripts for tools. This process tests var-
ious execution paths of a program by automatically generating various types of input
parameters that would trigger different execution flows. Dynamic analysis is of great
use to software developers and testers because it can greatly increase the efficiency of
the software testing process.

 ZAP, a tool that acts as a proxy between the client application (web browser) and
server, analyzes the requests and responses to identify potential vulnerabilities in the
application. Figure 13.9 illustrates the pattern.

Figure 13.9 OWASP ZAP acts as a proxy between the web browser and the web application. It
intercepts all request and response exchanges between the two.

13.4.1 Passive scanning vs. active scanning

Penetration testing is the process of testing a computer system, network, or web applica-
tion for vulnerabilities that could be exploited. If you are new to penetration testing,
we recommend The Art of Network Penetration Testing (Manning, 2020) by Royce Davis.

 When it comes to penetration testing, a passive scan is a harmless scan that looks
only for responses and checks them against known vulnerabilities. It doesn’t modify
the website’s data, so it’s safe to use against sites where you don’t have permission. Pas-
sive scanning, however, isn’t effective. Because it looks only at existing traffic and tries
to identify threats and vulnerabilities by looking at passing data, the chances of detect-
ing vulnerabilities are less. Some examples of passive scans are looking for software
and patch versions of software against public databases that report known vulnerabili-
ties in software, inspecting the messages being passed between communicating parties
to identify malpractices in data patterns, and so on.

Web Browser Web Application

OWASP ZAP

www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

360 CHAPTER 13 Secure coding practices and automation
 Active scanning, on the other hand, is much more effective because it deliberately
tries to penetrate the system by using known techniques to find vulnerabilities. For
example, you can exploit an SQL injection vulnerability that can be used to modify
the system’s database by executing a malicious SQL statement. It not only updates the
application’s data, but also can insert malicious scripts into the system. It’s therefore
important to perform active scanning tests only on systems where you’re permitted.
These tests should be performed in dedicated environments (QA, Production, for
example) so that they don’t affect users of other environments.

13.4.2 Performing penetration tests with ZAP

In this section, we’ll use ZAP to perform a penetration test against an intentionally
vulnerable website. You’ll need Java version 11+ to run the exercises in this section.
Download OWASP ZAP for your operating system from www.zaproxy.org/download/
and install it. Then run the software. We use ZAP 2.9.0 for the examples in this sec-
tion. You’ll see a screen that asks to persist the ZAP session, as shown in figure 13.10.
Select the option to not persist the session and click the Start button.

Figure 13.10 The ZAP start screen asks whether to persist the ZAP session.
The exercises in this section don’t require you to persist the session.

Next, we need a web application to scan for. We’ll use the WebGoat application from
OWASP. This open source web application is purposely designed to contain vulnera-
bilities, so it’s useful for learning about the various types of vulnerabilities in web
applications. You can download the latest available version of the application from
https://github.com/WebGoat/WebGoat/releases. At the time of this writing, the lat-
est version is v.8.0.0.M26, and that’s what we’ll run the exercises against. This applica-
tion requires Java 11+. You can check the Java version installed by running the
command java -version in your command-line tool.

www.zaproxy.org/download/
https://github.com/WebGoat/WebGoat/releases
https://github.com/WebGoat/WebGoat/releases
https://github.com/WebGoat/WebGoat/releases
https://github.com/WebGoat/WebGoat/releases

361Running dynamic analysis with OWASP ZAP
WARNING The WebGoat application contains many vulnerabilities; it’s there-
fore recommended that you disconnect from the internet when running it.
This is to prevent any chance of an attacker making you execute malicious
scripts that could steal information or harm the system in any way.

Once you’ve downloaded the webgoat-server-<version>.jar file, copy it to a preferred
location and navigate to that location by using your command-line tool. Then execute
the following command to run the WebGoat web application. Make sure to have the
correct file name of the JAR file in the command:

\> java -jar webgoat-server-8.0.0.M26.jar --server.port=9090 \
--server.address=localhost

You should see a message that looks like the following text after the WebGoat applica-
tion has started successfully:

Started StartWebGoat in 14.386 seconds

Once the application has started, open a web browser and navigate to http://local-
host:9090/WebGoat. You should see a login screen and a link to register a new user.
Click the link to create an account to use WebGoat and log in. You could browse
through the various links provided on the website. This is a website primarily designed
by the OWASP community for learning purposes and, therefore, it contains lots of
valuable information and teaching material about various types of attacks and reme-
dies. Let’s now look at how we can attack this site by using ZAP.

 We’ll first perform an automated scan on the website to look for any obvious mis-
configurations or vulnerabilities. Go back to the ZAP UI, and on the Welcome page,
click the Automated Scan option shown in figure 13.11.

Figure 13.11 On the ZAP Welcome page, click the Automated Scan option to perform an automated scan on the
WebGoat application.

362 CHAPTER 13 Secure coding practices and automation
On the next screen that appears, provide http://localhost:9090/WebGoat as the
URL of the application to attack. For the Use Ajax Spider option, select Firefox (or
pick a browser of your choice, but you’d need the corresponding driver installed), as
shown in figure 13.12.

Figure 13.12 Use the Automated Scan screen in ZAP to obtain details of the WebGoat application and attack
using Firefox.

Once the required information is provided, click the Attack button to start attacking
the website. This temporarily opens a web browser and runs a series of attacks on the
pages of the website. You can observe the progress of the attacks by selecting the Active
Scan tab. Once the attack is complete (progress is shown as 100%), check the Alerts tab
to view details of the discovered vulnerabilities and warnings.

 The Alerts section should display a few yellow flags. You can click each of the alerts
to discover the details reported. Because the WebGoat application requires a login to
work, the automated scan can’t proceed beyond the login and user registration pages.
This is true for many of the sensitive web applications in use.

 You can verify the details of the pages that were scanned by selecting the AJAX Spi-
der tab and observing the URLs of the scanned pages. You’ll notice that it consists
mainly of links to CSS files, JavaScript files, images, and paths of the login page and
the user registration page. The automated scan isn’t effective when it comes to appli-
cations that require user logins to perform its actions. For your penetration tests to be
more effective, you need to manually navigate the application in a way that covers as
many features and combinations as possible.

 Let’s navigate back to the Welcome page of ZAP by clicking the < button and then
select the Manual Explore option. Provide the URL of the WebGoat application to
attack as http://localhost:9090/WebGoat and select Firefox as the browser to launch
the application. Then click the Launch Browser button, shown in figure 13.13.

363Running dynamic analysis with OWASP ZAP
Figure 13.13 On the Manual Explore screen in ZAP, provide the details as shown here and then click the Launch
Browser button.

This launches a Firefox browser, and you’ll be presented with an option to either go
through the tutorials or continue to the target. Select the option to continue to the
target. You’ll then see the screen to log in to WebGoat. Log in with the account you
created previously on WebGoat. Next, you’ll be presented with the WebGoat home
page, shown in figure 13.14.

 We are now going to visit a vulnerable web page on this website and perform actions
on it to see how ZAP identifies the vulnerabilities. Click the Cross Site Scripting link

Figure 13.14 On the WebGoat home page, various tutorials are navigable from the lefthand menu.

364 CHAPTER 13 Secure coding practices and automation
from the left menu and then click the first link that appears beneath. You’ll see the
screen shown in figure 13.15. Click the number 7 that appears on the menu at the top
of the screen.

Figure 13.15 On the Cross Site Scripting page, you can learn all about XSS attacks and how to prevent
them.

Step 7 in this tutorial lets you try out a reflected cross-site scripting (XSS) attack on a
form. A reflected XSS attack is a type of cross-site scripting attack in which a malicious
script sent via a link to a user executes on a web page of an application that’s being
attacked. This tutorial has a form that allows you to check out a few items from a shop-
ping cart. Figure 13.16 shows what this form looks like.

Figure 13.16 On the shopping cart form that’s vulnerable to reflected XSS attacks,
click the Purchase button to make ZAP detect the vulnerability.

365Running dynamic analysis with OWASP ZAP
Click the Purchase button. You’ll see a warning appearing on the page that informs
you about an XSS attack. This is because ZAP detected that this page is vulnerable to
reflected XSS after you submitted the form.

 To see the details of the vulnerability and see which field in the form is vulnerable,
let’s go back to the ZAP UI and select the Alerts section. You should see a red flag on
the Alerts section that mentions an XSS vulnerability. If you click the relevant vulnera-
bility, you can view the details and figure out which field in the form is vulnerable. Fig-
ure 13.17 illustrates what the ZAP UI should look like now.

Figure 13.17 ZAP reports an XSS vulnerability on the page: the area that prints out the credit card number is
vulnerable.

The highlighted text box in figure 13.17 shows that an area on the page is vulnerable
to XSS; this area seems to print the credit card number when the Purchase button is
clicked. We can verify that by manually entering JavaScript code into the field that
accepts the credit card number. Go back to the Firefox browser from which you sub-
mitted the form and enter the following text in the credit card number field and then
click the Purchase button:

<script>alert("Attacked");</script>

You should see a pop up that displays a JavaScript alert, which says Attacked, as shown
in figure 13.18.

 ZAP can similarly be used to detect various kinds of dynamic attacks on web appli-
cations that can’t be identified by static code analysis tools. It also provides recommen-
dations for remedies in the tool itself.

366 CHAPTER 13 Secure coding practices and automation
One challenge with tools that perform dynamic and static scans is that they produce
lots of false positives: most of the issues reported by these tools are invalid, but it takes
many developer hours to go through the code to validate those issues. This problem is
common in both open source and commercial tools. One way to minimize the effect
is to build a vulnerability management system that intelligently knows to reject any
reported issues based on earlier experiences. If one issue is marked as invalid by one
of your developers, the vulnerability management system learns from it. When the
same issue or a similar issue is reported later, the system automatically closes the issue
as being invalid.

Summary
 The OWASP top 10 API security vulnerabilities describe the most common vul-

nerabilities discovered in APIs and recommended mitigation mechanisms for
each identified vulnerability.

 You can use static analysis to debug code without execution to identify potential
bugs and security vulnerabilities. SonarQube is an open source tool that you
can use to scan and debug code without execution.

 It’s important to integrate your code-scanning processes with automation tools
such as Jenkins. These tools provide automated mechanisms for running code
analysis through build pipelines and triggering notifications when failures occur,
either due to code build failures or code not passing software’s quality gates.

 Dynamic analysis checks your code through automated and manual processes
while it’s executing. Dynamic analysis generates different combinations of arti-
ficial inputs that can test various execution paths of code to identify bugs and
vulnerabilities.

 OWASP ZAP is an open source tool that you can use to perform dynamic analy-
sis of code.

Figure 13.18 The JavaScript
pop up that appears when
attempting the purchase. It’s
clear that the page tries to print
the user input entered in the
Credit Card Number field.

appendix A
OAuth 2.0 and

OpenID Connect

OAuth 2.0 is an authorization framework developed by the Internet Engineering
Task Force (IETF) OAuth working group. It’s defined in RFC 6749. The fundamen-
tal focus of OAuth 2.0 is to fix the access delegation problem. OpenID Connect
(OIDC) is an identity layer built on top of OAuth 2.0, and the OpenID Foundation
developed the OpenID Connect specification.

 In chapter 2, we briefly discussed OAuth 2.0 and how to use it to protect a
microservice and to do service-level authorization with OAuth 2.0 scopes. Then in
chapter 3, we discussed how to use the Zuul API gateway for OAuth 2.0 token vali-
dation. In chapter 4, we discussed how to log in to a SPA with OpenID Connect and
then access the Order Processing microservice, which is protected with OAuth 2.0.
In this appendix, we delve into the OAuth 2.0 and OpenID Connect fundamentals
that you’ll need to understand as a microservices developer.

 If you’re interested in understanding OAuth 2.0 and API security in detail, we
recommend Advanced API Security: OAuth 2.0 and Beyond (Apress, 2019) by Prabath
Siriwardena (a coauthor of this book). OAuth 2 in Action (Manning, 2017) by Justin
Richer and Antonio Sanso is also a good reference.

A.1 The access delegation problem
If you want someone else to access a resource (a microservice, an API, and so on)
on your behalf and do something with the resource, you need to delegate the cor-
responding access rights to that person (or thing). For example, if you want a third-
party application to read your Facebook status messages, you need to give that
third-party application the corresponding rights to access the Facebook API. There
are two models of access delegation:

 Access delegation via credential sharing
 Access delegation with no credential sharing
367

368 APPENDIX A OAuth 2.0 and OpenID Connect
If we follow the first model, we need to share our Facebook credentials with the third-
party application so it can use the Facebook API, authenticate with our credentials,
and read our Facebook status messages. This is quite a dangerous model (we are using
Facebook just as an example; however, it does not support this model).

 Once you share your credentials with a third-party application, it can do anything,
not just read your Facebook status messages. It can read your friends list, view your
photos, and chat with your friends via Messenger. This is the model many applications
used before OAuth. FlickrAuth, Google AuthSub, and Yahoo BBAuth all tried to fix
this problem in their own proprietary way: to undertake access delegation with no cre-
dential sharing. OAuth 1.0, released in 2007, was the first effort to crack this problem
in a standard way. OAuth 2.0 followed the direction set by OAuth 1.0, and in October,
2012, became RFC 6749.

A.2 How does OAuth 2.0 fix the access delegation problem?
OAuth 1.0 and OAuth 2.0 both fix the access delegation problem in the same way,
conceptually. The main difference is that OAuth 2.0 is more extensible than OAuth
1.0. OAuth 1.0 is a concrete protocol, whereas OAuth 2.0 is an authorization frame-
work. In the rest of the appendix, when we say OAuth, we mean OAuth 2.0.

 Figure A.1 illustrates a request/response flow in which a third-party web applica-
tion follows the access delegation with the no credential-sharing model to get access to the
Facebook API.

 With OAuth 2.0, the third-party web application first redirects the user to Facebook
(where the user belongs). Facebook authenticates and gets the user’s consent to share
a temporary token with a third-party web application, which is only good enough to
read the user’s Facebook status messages for a limited time. Once the web application
gets the token from Facebook, it uses the token along with the API calls to Facebook.

 The temporary token Facebook issues has a limited lifetime and is bound to the
Facebook user, the third-party web application, and the purpose. The purpose of the
token here is to read the user’s Facebook status messages, and the token should be only
good enough to do just that and no more. The OAuth 2.0 terminology is as follows:

 The Facebook user is called the resource owner. The resource owner decides who
should have which level of access to the resources owned by that resource owner.

 Facebook, which issues the token, is called the authorization server. The authori-
zation server knows how to authenticate (or identify) the resource owner, and
grants access to third-party applications to access resources owned by the
resource owner, with their consent.

 The Facebook API is called the resource server. The resource server guards the
resources owned by the resource owner, and lets someone access a resource
only if the access request comes along with a valid token issued by the authoriza-
tion server.

 The third-party web application is called the client. The client consumes a
resource on behalf of the resource owner.

369Actors of an OAuth 2.0 flow
 The token Facebook issues to the third-party web application is called the access
token. The authorization server issues access tokens, and the resource server val-
idates those. To validate an access token, the resource server may talk to the
authorization server.

 The purpose of the token is called the scope. The resource server makes sure a
given token can be used only for the scope attached to it. If the third-party
application tries to write to the user’s Facebook wall with the access token it got
to read the status messages, that request will fail.

 The flow of events that happens while the third-party web application gets the
token is called a grant flow, which is defined by a grant type. OAuth 2.0 defines a
set of grant types, which we discuss in section A.4.

In the rest of the appendix, we discuss OAuth 2.0 concepts in detail.

A.3 Actors of an OAuth 2.0 flow
In OAuth 2.0, we mainly talk about four actors, based on the role each plays in an
access delegation flow (see figure A.2). We talked briefly about them in section A.2:

 The resource server
 The client

Third-Party
Web Application

Facebook

Facebook API

Redirects the
user to Facebook

Attempts to access Facebook
API to read user’s friends
list with the token from
step 4, which fails

Accesses Facebook API to read user’s Facebook
status messages with the token from step 4

Gets a token to read
the Facebook status
messages on behalf
of the Facebook user

Authenticates and grants access
to the web application to read
user’s Facebook status messages

Prompts for user authentication
and consent by redirecting the
user’s browser to the Facebook
login page

Facebook
User

1
2

3

5

4

Figure A.1 A third-party application follows the model of access delegation with no credential sharing in order
to get a temporary token from Facebook, which is only good enough to read a user’s status messages.

370 APPENDIX A OAuth 2.0 and OpenID Connect
 The end user (also known as the resource owner)
 The authorization server

In a typical access delegation flow, a client accesses a resource that’s hosted on a
resource server on behalf of an end user (or a resource owner) with a token provided
by an authorization server. This token grants access rights to the client to access a
resource on behalf of the end user.

Figure A.2 In a typical OAuth 2.0 access delegation flow, a client accesses a resource that’s hosted on
a resource server, on behalf of the end user, with a token provided by the authorization server.

A.3.1 The role of the resource server

The resource server hosts the resources and decides who can access which resources
based on certain conditions. If we take Flickr, the famous image- and video-hosting
service, all the images and videos that you upload to Flickr are resources. Because
Flickr hosts them all, Flickr is the resource server. In the Facebook example we
discussed in section A.2, the server that hosts the Facebook API is the resource server.
The Facebook wall, the friends list, videos, and photos are the resources exposed by
the Facebook API.

 In a microservices deployment, we can consider a microservice (for example, the
Order Processing microservice that you developed and tested earlier in the book) as a
resource server, and the orders as the resources. The Order Processing microservice is

OAuth Client
Application

Authorization
Server

Resource
Server

Prompts for user authentication
and consent by redirecting the
user’s browser to the authorization
server’s login page

Resource
Owner

Redirects the resource owner
to authorization server

Accesses a resource with
the token from step 4

Gets an access token
to access the resource
on behalf of the
resource owner

Authenticates and grants access
to the client to access resources
under the requested scope

Validates the
access token

1
2

6

3

5

4

371Grant types
the entity that’s responsible for managing orders. Also, you can consider the API gate-
way that exposes all your microservices to the external client applications as a
resource server. As we discussed in chapter 5, the API gateway enforces throttling and
access-control policies centrally, against all the APIs it hosts.

A.3.2 The role of the client application

The client is the consumer of the resources. If we extend the same Flickr example that
we discussed in section A.3.1, a web application that wants to access your Flickr photos
is a client. It can be any kind of an application: a mobile, web, or even a desktop appli-
cation. In the Facebook example we discussed in section A.2, the third-party applica-
tion that wanted to read Facebook status messages is also a client application.

 In a microservices deployment, the application from which you’d consume the
Order Processing microservice is the client application. The client application is the
entity in an OAuth flow that seeks the end user’s approval to access a resource on
their behalf.

A.3.3 The role of the resource owner

The resource owner (or the end user) is the one who owns the resources. In our Flickr
example, you’re the resource owner (or the end user) who owns your Flickr photos.
In the Facebook example we discussed in section A.2, the Facebook user is the
resource owner.

 In a microservices deployment, the person who places orders via the client applica-
tion (which internally talks to the Order Processing microservice) is the end user. In
some cases, the client application itself can be the end user, which simply accesses the
microservice, just as itself with no other party involved.

A.3.4 The role of the authorization server

In an OAuth 2.0 environment, the authorization server issues tokens (commonly known
as access tokens). An OAuth 2.0 token is a key issued by an authorization server to a client
application to access a resource (for example, a microservice or an API) on behalf of
an end user. The resource server talks to the authorization server to validate the
tokens that come along with the access requests. The authorization server should
know how to authenticate the end user, as well as how to validate the identity of the cli-
ent application, before issuing an access token.

A.4 Grant types
In this section, we talk about OAuth 2.0 grant types and show you how to pick the
correct one for your applications. Because this book is about microservices, we focus
our discussion on those, but please keep in mind that OAuth 2.0 isn’t just about
microservices.

 Different types of applications bearing different characteristics can consume your
microservices. The way an application gets an access token to access a resource on

372 APPENDIX A OAuth 2.0 and OpenID Connect
behalf of a user depends on these application characteristics. The client application
picks a request/response flow to get an access token from the authorization server,
which is known as a grant type in OAuth 2.0.

 The standard OAuth 2.0 specification identifies five main grant types. Each grant
type outlines the steps for obtaining an access token. The result of executing a partic-
ular grant type is an access token that can be used to access resources on your
microservices. The following are the five main grant types highlighted in the OAuth
2.0 specification:

 Client credentials—Suitable for authentication between two systems with no end
user (we discuss this in section A.4.1)

 Resource owner password —Suitable for trusted applications (we discuss this in sec-
tion A.4.2)

 Authorization code —Suitable for almost all the applications with an end user (we
discuss this in section A.4.4)

 Implicit —Don’t use it! (we discuss this in section A.4.5)
 Refresh token —Used for renewing expired access tokens (we discuss this in sec-

tion A.4.3)

The OAuth 2.0 framework isn’t restricted to these five grant types. It’s an extensible
framework that allows you to add grant types as needed. The following are two other
popular grant types that aren’t defined in the core specification but are in related
profiles:

 SAML Profile for OAuth 2.0 Client Authentication and Authorization Grants —
Suitable for applications having single sign-on using SAML 2.0 (defined in RFC
7522)

 JWT Profile for OAuth 2.0 Client Authentication and Authorization Grants —Suitable
for applications having single sign-on using OpenID Connect (defined in RFC
7523)

A.4.1 Client credentials grant type

With a client credentials grant type, we have only two participants in the grant flow: the
client application and the authorization server. There’s no separate resource owner;
the client application itself is the resource owner.

 Each client carries its own credentials, known as the client ID and the client secret,
issued to it by the authorization server. The client ID is the identifier of the client appli-
cation; the client secret is the client’s password. The client application should securely
store and use the client secret. For example, you should never store a client secret in
cleartext; instead, encrypt it and store it in persistent storage (such as a database).

 As shown in figure A.3, in the client credentials grant type, the client application
has to send its client ID and client secret to the authorization server over HTTPS to
get an access token. The authorization server validates the combination of the ID and
secret and responds with an access token.

373Grant types

Figure A.3 The client credentials grant type lets an application obtain an access
token with no end user; the application itself is the end user.

Here’s a sample curl command for a client credentials grant request (this is just a
sample, so don’t try it out as-is):

\> curl \
-u application_id:application_secret \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "grant_type=client_credentials" https://localhost:8085/oauth/token

The value application_id is the client ID, and the value application_secret is
the client secret of the client application in this case. The -u parameter instructs curl
to perform a base64-encoded operation on the string application_id:applica-
tion _secret. The resulting string that’s sent as the HTTP Authorization header to
the authorization server would be YXBwbGljYXRpb25faWQ6YXBwbGljYXRpb25fc2
VjcmV0. The authorization server validates this request and issues an access token in
the following HTTP response:

{
 "access_token":"de09bec4-a821-40c8-863a-104dddb30204",
 "token_type":"bearer",
 "expires_in":3599
}

Even though we use a client secret (application_secret) in the curl command to
authenticate the client application to the token endpoint of the authorization server,
the client application can use mTLS instead if stronger authentication is required. In
that case, we need to have a public/private key pair at the client application end, and
the authorization server must trust the issuer of the public key or the certificate.

 The client credentials grant type is suitable for applications that access APIs and
that don’t need to worry about an end user. Simply put, it’s good when you need not
be concerned about access delegation, or in other words, the client application

Client sends client_id and
client_secret to the
authorization server

Authorization server validates the
client_secret against the client_id
and issues a token

Client
Application

Authorization
Server

1

2

374 APPENDIX A OAuth 2.0 and OpenID Connect
accesses an API just by being itself, not on behalf of anyone else. Because of this, the
client credentials grant type is mostly used for system-to-system authentication when
an application, a periodic task, or any kind of a system directly wants to access your
microservice over OAuth 2.0.

 Let’s take a weather microservice, for example. It provides weather predictions for
the next five days. If you build a web application to access the weather microservice,
you can simply use the client credentials grant type because the weather microservice
isn’t interested in knowing who uses your application. It is concerned with only the
application that accesses it, not the end user.

A.4.2 Resource owner password grant type

The resource owner password grant type is an extension of the client credentials grant type,
but it adds support for resource owner authentication with the user’s username and
password. This grant type involves all four parties in the OAuth 2.0 flow—resource
owner (end user), client application, resource server, and authorization server.

 The resource owner provides the client application their username and password.
The client application uses this information to make a token request to the authoriza-
tion server, along with the client ID and client secret embedded within itself. Figure
A.4 illustrates the resource owner password grant type.

Figure A.4 The password grant type allows an application to obtain an access token.

The following is a sample curl command for a password grant request made to the
authorization server (this is just a sample, so don’t try it out as-is):

\> curl \
-u application_id:application_secret \

Client
Application

Authorization
Server

Client application uses the user input and
the embedded client_id and client_secret
to generate a token request to the
authorization server

Authorization server validates the user credentials
and app credentials (client_id and secret) and issues
an access token and a refresh token

User provides username
and password to the
client application

1

2

3

375Grant types
-H "Content-Type: application/x-www-form-urlencoded" \
-d "grant_type=password&username=user&password=pass" \
https://localhost:8085/oauth/token

As with the client credentials grant, the application_id and application
_secret are sent in base64-encoded form in the HTTP Authorization header. The
request body contains the grant type string, the user’s username, and the user’s pass-
word. Note that because you’re passing sensitive information in plaintext format in the
request header and body, the communication must happen over TLS (HTTPS). Other-
wise, any intruder into the network would be able to see the values being passed.

 In this case, the authorization server validates not only the client ID and secret
(application_id and application_secret) to authenticate the client applica-
tion, but also the user’s credentials. The issuance of the token happens only if all four
fields are valid. As with the client credentials grant type, upon successful authentica-
tion, the authorization server responds with a valid access token as shown here:

{
 "access_token":"de09bec4-a821-40c8-863a-104dddb30204",
 "refresh_token":" heasdcu8-as3t-hdf67-vadt5-asdgahr7j3ty3",
 "token_type":"bearer",
 "expires_in":3599
}

The value of the refresh_token parameter you find in the response can be used to
renew the current access token before it expires. (We discuss refresh tokens in section
A.6.) You might have noticed that we didn’t get a refresh_token in the client cre-
dentials grant type.

 With the password grant type, the resource owner (user of the application) needs
to provide their username and password to the client application. Therefore, this
grant type should be used only with client applications that are trusted by the authori-
zation server. This model of access delegation is called access delegation with credential
sharing. It is, in fact, what OAuth 2.0 wanted to avoid using. Then why is it in the
OAuth 2.0 specification? The only reason the password grant type was introduced in
the OAuth 2.0 specification was to help legacy applications using HTTP Basic authen-
tication migrate to OAuth 2.0; otherwise, you should avoid using the password grant
type where possible.

 As with the client credentials grant type, the password grant type requires the appli-
cation to store the client secret securely. It’s also critically important to deal with the
user credentials responsibly. Ideally, the client application must not store the end user’s
password locally, using it only to get an access token from the authorization server and
then forgetting it. The access token the client application gets at the end of the pass-
word grant flow has a limited lifetime. Before this token expires, the client application
can get a new token by using the refresh_token received in the token response from
the authorization server. This way, the client application doesn’t have to prompt for the
user’s username and password every time the token on the application expires.

376 APPENDIX A OAuth 2.0 and OpenID Connect
A.4.3 Refresh token grant type

The refresh token grant is used to renew an existing access token. Typically, it’s used
when the current access token expires or is near expiry, and the application needs a
new access token to work with without having to prompt the user of the application to
log in again. To use the refresh token grant, the application should receive an access
token and a refresh token in the token response.

 Not every grant type issues a refresh token along with its access token, including
the client credentials grant and the implicit grant (discussed later in section A.4.5).
Therefore, the refresh token grant type is a special grant type that can be used only
with applications that use other grant types to obtain the access token. Figure A.5 illus-
trates the refresh token grant flow.

Figure A.5 The refresh token grant type allows a token to be renewed when it expires.

The following curl command can be used to renew an access token with the refresh
token grant (this is just a sample, so don’t try it out as-is):

\> curl \
-u application_id:application_secret \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "grant_type=refresh_token&
 refresh_token=heasdcu8-as3t-hdf67-vadt5-asdgahr7j3ty3" \
https://localhost:8085/oauth/token

As in the earlier cases, the application’s client ID and client secret (application_id
and application_secret) must be sent in base64-encoded format as the HTTP
Authorization header. You also need to send the value of the refresh token in the
request payload (body). Therefore, the refresh token grant should be used only with

Client sends client_id,
client_secret, and refresh token
to the authorization server

Authorization server validates the client_secret
against the client_id and the refresh token and
issues a new access token and refresh token pair

User uses application
after the current access
token has expired

Client
Application

Authorization
Server

1

2

3

377Grant types
the applications that can store the client secret and refresh token values securely, with-
out any risk of compromise.

 The refresh token usually has a limited lifetime, but it’s generally much longer
than the access token lifetime, so an application can renew its token even after a sig-
nificant duration of idleness. When you refresh an access token in the response, the
authorization server sends the renewed access token, along with another refresh
token. This refresh token may or may not be the same refresh token you get in the
first request from the authorization server. It’s up to the authorization server; it’s not
governed by the OAuth 2.0 specification.

A.4.4 Authorization code grant type

The authorization code grant is used with desktop applications and in web applications
(accessed via a web browser) or native mobile applications that are capable of handling
HTTP redirects. In the authorization code grant flow, the client application first initi-
ates an authorization code request to the authorization server. This request provides
the client ID of the application and a redirect URL to redirect the user when authen-
tication is successful. Figure A.6 illustrates the flow of the authorization code grant.

Figure A.6 The authorization code grant type allows a client application to obtain an access token on behalf of an
end user (or a resource owner).

Client
Application

Authorization
Server

User Agent
(web browser)

Resource Owner
(user)

Client application exchanges the
authorization code for an access token

Authorization server redirects the user
back to the client application along with
an authorization code. This message goes
through the browser.

User submits
credentials for
authentication

Browser posts user
credentials to the
authorization server

Authorization server
opens user agent to
prompt for credentials

Client application initiates authorization
grant request by redirecting the user to
the authorization server. This message
goes through the browser.

Authorization server replies
back with an access token

1

1

2

6

7

3

5

5
4

378 APPENDIX A OAuth 2.0 and OpenID Connect
As shown in figure A.6, the first step of the client application is to initiate the authori-
zation code request. The HTTP request to get the authorization code looks like the
following (this is just a sample, so don’t try it out as-is):

GET https://localhost:8085/oauth/authorize?
 response_type=code&
 client_id=application_id&
 redirect_uri=https%3A%2F%2Fweb.application.domain%2Flogin

As you can see, the request carries the client_id (application_id), the
redirect_uri, and the response_type parameters. The response_type indicates
to the authorization server that an authorization code is expected as the response to
this request. This authorization code is provided as a query parameter in an HTTP redi-
rect (https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections) on the
provided redirect_uri. The redirect_uri is the location to which the authoriza-
tion server should redirect the browser (user agent) upon successful authentication.

 In HTTP, a redirect happens when the server sends a response code between 300
and 310. In this case, the response code would be 302. The response would contain
an HTTP header named Location, and the value of the Location header would
bear the URL to which the browser should redirect. A sample Location header
looks like this:

Location: https://web.application.domain/login?code=hus83nn-8ujq6-7snuelq

The redirect_uri should be equal to the redirect_uri provided when register-
ing the particular client application on the authorization server. The URL (host) in
the Location response header should be equal to the redirect_uri query parame-
ter in the HTTP request used to initiate the authorization grant flow. One optional
parameter that’s not included in the authorization request in this example is scope.
When making the authorization request, the application can request the scopes it
requires on the token to be issued. We discuss scopes in detail in section A.5.

 Upon receiving this authorization request, the authorization server first validates
the client ID and the redirect_uri; if these parameters are valid, it presents the
user with the login page of the authorization server (assuming that no valid user ses-
sion is already running on the authorization server). The user needs to enter their
username and password on this login page. When the username and password are val-
idated, the authorization server issues the authorization code and provides it to the
user agent via an HTTP redirect. The authorization code is part of the redirect
_uri as shown here:

https://web.application.domain/login?code=hus83nn-8ujq6-7snuelq

Because the authorization code is provided to the user agent via the redirect_uri,
it must be passed over HTTPS. Also, because this is a browser redirect, the value of the
authorization code is visible to the end user, and also may be logged in server logs. To

https://developer.mozilla.org/en-US/docs/Web/HTTP/Redirections

379Grant types
reduce the risk that this data will be compromised, the authorization code usually has
a short lifetime (no more than 30 seconds) and is a one-time-use code. If the code is
used more than once, the authorization server revokes all the tokens previously issued
against it.

 Upon receiving the authorization code, the client application issues a token
request to the authorization server, requesting an access token in exchange for the
authorization code. The following is a curl command of such a request (step 6 in fig-
ure A.6):

\> curl \
-u application1:application1secret \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "grant_type=authorization_code&
 code=hus83nn-8ujq6-7snuelq&
 redirect_uri=https%3A%2F%2Fweb.application.domain%2Flogin" \
https://localhost:8085/oauth/token

Like the other grant types discussed so far, the authorization code grant type requires
the client ID and client secret (optional) to be sent as an HTTP Authorization header
in base64-encoded format. It also requires the grant_type parameter to be sent as
authorization_code; the value of the code itself and the redirect_uri are sent
in the payload of the HTTP request to the authorization server’s token endpoint.
Upon validation of these details, the authorization server issues an access token to the
client application in an HTTP response:

{
 "access_token":"de09bec4-a821-40c8-863a-104dddb30204",
 "refresh_token":" heasdcu8-as3t-hdf67-vadt5-asdgahr7j3ty3",
 "token_type":"bearer",
 "expires_in":3599
}

Prior to returning an authorization code (step 5 in figure A.6), the authorization
server validates the user by verifying the user’s username and password. In step 6 in
figure A.6, the authorization server validates the client application by verifying the
application’s client ID and secret. The authorization code grant type doesn’t mandate
authenticating the application. So, it’s not a must to use the application secret in the
request to the token endpoint to exchange the authorization code for an access
token. This is the recommended approach when you use the authorization code grant
type with SPAs, which we discuss in chapter 4.

 As you’ve seen, the authorization code grant involves the user, client application,
and authorization server. Unlike the password grant, this grant type doesn’t require
the user to provide their credentials to the client application. The user provides their
credentials only on the login page of the authorization server. This way, you prevent
the client application from learning the user’s login credentials. Therefore, this grant
type is suitable to provide user credentials for web, mobile, and desktop applications
that you don’t fully trust.

380 APPENDIX A OAuth 2.0 and OpenID Connect
 A client application that uses this grant type needs to have some prerequisites to use
this protocol securely. Because the application needs to know and deal with sensitive
information, such as the client secret, refresh token, and authorization code, it needs
to be able to store and use these values with caution. It needs to have mechanisms for
encrypting the client secret and refresh token when storing and to use HTTPS, for
example, for secure communication with the authorization server. The communication
between the client application and the authorization server needs to happen over TLS
so that network intruders don’t see the information being exchanged.

A.4.5 Implicit grant type

The implicit grant type is similar to the authorization code grant type, but it doesn’t
involve the intermediary step of getting an authorization code before getting the
access token. Instead, the authorization server issues the access token directly in
response to the implicit grant request. Figure A.7 illustrates the implicit grant flow.

Figure A.7 The implicit grant type allows a client application to obtain an access token.

With the implicit grant type, when the user attempts to log in to the application, the cli-
ent application initiates the login flow by creating an implicit grant request. This
request should contain the client ID and the redirect_uri. The redirect_uri, as
with the authorization code grant type, is used by the authorization server to redirect

Client
Application

Authorization
Server

User Agent
(Web Browser)

Resource Owner
(user)

Authorization server sends
the access token to the user
agent in an URI fragment

User submits
credentials for
authentication Browser posts user credentials

to the authorization server

Authorization server
opens user agent to
prompt for credentials

Client application initiates implicit grant request by
redirecting the user to the authorization server. This
message goes through the browser.

1

2

3

5

4

1

381Grant types
the user agent back to the client application when authentication is successful. The fol-
lowing is a sample implicit grant request (this is just a sample, so don’t try it out as-is):

GET https://localhost:8085/oauth/authorize?
 response_type=token&
 client_id=application_id&
 redirect_uri=https%3A%2F%2Fweb.application.domain%2Flogin

As you can see in the HTTPS request, the difference between the authorization code
grant’s initial request and the implicit grant’s initial request is the fact that the
response_type parameter in this case is token. This indicates to the authorization
server that you’re interested in getting an access token as the response to the implicit
request. As with the authorization code grant, here too scope is an optional parame-
ter that the user agent can provide to ask the authorization server to issue a token with
the required scopes.

 When the authorization server receives this request, it validates the client ID and the
redirect_uri, and if those are valid, it presents the user the login page of the autho-
rization server (assuming that no active user session is running on the browser against
the authorization server). When the user enters their credentials, the authorization
server validates them and presents to the user a consent page to acknowledge that the
application is capable of performing the actions denoted by the scope parameter (only
if scope is provided in the request). Note that the user provides credentials on the
login page of the authorization server, so only the authorization server gets to know the
user’s credentials. When the user has consented to the required scopes, the authoriza-
tion server issues an access token and provides it to the user agent on the redirect
_uri itself as a URI fragment. The following is an example of such a redirect:

https://web.application.domain/login#access_token=jauej28slah2&
 expires_in=3599

When the user agent (web browser) receives this redirect, it makes an HTTPS request
to the web.application.domain/login URL. Because the access_token field is
provided as a URI fragment (denoted by the # character in the URL), that particular
value doesn’t get submitted to the server on web.application.domain. Only the
authorization server that issued the token and the user agent (web browser) get to
know the value of the access token. The implicit grant doesn’t provide a refresh token
to the user agent. As we discussed earlier in this chapter, because the value of the
access token is passed in the URL, it will be in the browser history and also possibly
logged into server logs.

 The implicit grant type doesn’t require your client application to maintain any sen-
sitive information, such as a client secret or a refresh token. This fact makes it a good
candidate for use in SPAs, where rendering the content happens on web browsers
through JavaScript. These types of applications execute mostly on the client side
(browser); therefore, these applications are incapable of handling sensitive informa-
tion such as client secrets. But still, the security concerns in using the implicit grant
type is much higher than its benefits, and it’s no longer recommended, even for SPAs.

382 APPENDIX A OAuth 2.0 and OpenID Connect
As discussed in the previous section, the recommendation is to use the authorization
code grant type with no client secret, even for SPAs.

A.5 Scopes bind capabilities to an OAuth 2.0 access token
Each access token that an authorization server issues is associated with one or more
scopes. A scope defines the purpose of a token. A token can have more than one pur-
pose; hence, it can be associated with multiple scopes. A scope defines what the client
application can do at the resource server with the corresponding token.

 When a client application requests a token from the authorization server, along
with the token request, it also specifies the scopes it expects from the token (see figure
A.8). That doesn’t necessarily mean the authorization server has to respect that
request and issue the token with all requested scopes. An authorization server can
decide on its own, also with the resource owner’s consent, which scopes to associate
with the access token. In the token response, it sends back to the client application
the scopes associated with the token, along with the token.

Figure A.8 The client application requests an access token along with the expected set of scopes.
When the access token is a self-contained JWT, the resource server validates the token by itself,
without talking to the authorization server.

A.6 Self-contained access tokens
An access token can be either a reference token or a self-contained token. A reference
token is just a string, and only the issuer of the token knows how to validate it. When
the resource server gets a reference token, it has to talk to the authorization server all
the time to validate the token.

Authorization
Server

Resource
Server

Client
Application

Requests an access token
along with the expected
set of scopes

Client sends the access token along with
the request to the resource server

Authorization server sends a reference
access token or a JWT (a self-contained
access token) to the client along with
the associated scopes

Resource server validates the JWT
(self-contained access token) by itself
or in case of a reference access token,
talks to the authorization server

1

2

3

383What is OpenID Connect?
 In contrast, if the token is a self-contained token, the resource server can validate the
token itself; there’s no need to talk to the authorization server (see figure A.8). A self-
contained token is a signed JWT or a JWS (see appendix B). The JWT Profile for
OAuth 2.0 Access Tokens (which is in its fifth draft at the time of writing), developed
under the IETF OAuth working group, defines the structure for a self-contained
access token.

A.7 What is OpenID Connect?
OpenID Connect is built on top of OAuth 2.0 as an additional identity layer. It uses the
concept of an ID token. An ID token is a JWT that contains authenticated user informa-
tion, including user claims and other relevant attributes. When an authorization
server issues an ID token, it signs the contents of the JWT (a signed JWT is called a
JWS, or JSON Web Signature), using its private key. Before any application accepts an ID
token as valid, it should verify its contents by validating the signature of the JWT.

NOTE An ID token is consumed by an application to get information, such as a
user’s username, email address, phone number, and so on. An access token is a
credential used by an application to access a secured API on behalf of an end
user or just by being itself. OAuth 2.0 provides only an access token, whereas
OpenID Connect provides both an access token and an ID token.

The following is an example of a decoded ID token (payload only) that includes the
standard claims as defined by the OpenID Connect specification (http://mng.bz/
yyWo):

{
 "iss":"http://server.example.com",
 "sub":"janedoe@example.xom",
 "aud":"8ajduw82swiw",
 "nonce":"82jd27djuw72jduw92ksury",
 "exp":1311281970,
 "iat":1311280970,
 "auth_time":1539339705,
 "acr":"urn:mace:incommon:iap:silver",
 "amr":"password",
 "azp":"8ajduw82swiw"
}

Details on these attributes are in the OIDC specification. The following lists a few
important ones:

 iss—The identifier of the issuer of the ID token (usually, an identifier to rep-
resent the authorization server that issued the ID token).

 sub—The subject of the token for which the token was issued (usually, the user
who authenticated at the authorization server).

 aud—The audience of the token; a collection of identifiers of entities that are
supposed to use the token for a particular purpose. It must contain the OAuth
2.0 client_id of the client application, and zero or more other identifiers (an

https://shortener.manning.com/yyWo
https://shortener.manning.com/yyWo

384 APPENDIX A OAuth 2.0 and OpenID Connect
array). If a particular client application uses an ID token, it should validate
whether it’s one of the intended audiences of the ID token; the client applica-
tion’s client_id should be one of the values in the aud claim.

 iat—The time at which the ID token was issued.
 exp—The time at which the ID token expires. An application must use an ID

token only if its exp claim is later than the current timestamp.

An ID token usually is obtained as part of the access token response. OAuth 2.0 pro-
viders support various grant types for obtaining access tokens, as we discussed in sec-
tion A.5. An ID token usually is sent in the response to a request for an access token by
using a grant type. You need to specify openid as a scope in the token request to
inform the authorization server that you require an ID token in the response. The fol-
lowing is an example of how to request an ID token in an authorization request when
using the authorization_code grant type:

GET https://localhost:8085/oauth/authorize?
 response_type=code&
 scope=openid&
 client_id=application1&
 redirect_uri=https%3A%2F%2Fweb.application.domain%2Flogin

The ID token is sent in the response to the token request in following form:

{
 "access_token": "sdfj82j7sjej27djwterh720fnwqudkdnw72itjswnrlvod92hvkwyfp",
 "expires_in": 3600,
 "token_type": "Bearer",
 "id_token": "sdu283ngk23rmas….."
}

The id_token is a JWT, which is built with three base64 URL-encoded strings, each
separated by a period. We omitted the full string in the example for readability. In
chapter 3, you see how to use OpenID Connect in practice with a SPA.

A.8 More information about OpenID Connect and OAuth 2.0
If you are interested in learning more about OpenID Connect and OAuth 2.0, the fol-
lowing list provides a set of YouTube videos presented by Prabath Siriwardena (a coau-
thor of this book):

 OAuth 2.0 with curl (www.youtube.com/watch?v=xipHJSW93KI)—This video
takes you through all the core OAuth 2.0 grant types, using curl as a client
application.

 OAuth 2.0 Access Token versus OpenID Connect ID Token (www.youtube.com/
watch?v=sICt5aS7wzk)—This video explains the difference between an OAuth
2.0 access token and an OpenID Connect ID token.

 OAuth 2.0 Response Type versus Grant Type (www.youtube.com/watch?v=Qdjuavr
33E4)—This video explains the difference between the response_type
parameter and the grant_type parameter that you find in an OAuth 2.0 flow.

http://www.youtube.com/watch?v=xipHJSW93KI
http://www.youtube.com/watch?v=sICt5aS7wzk
http://www.youtube.com/watch?v=sICt5aS7wzk
http://www.youtube.com/watch?v=Qdjuavr33E4
http://www.youtube.com/watch?v=Qdjuavr33E4

385More information about OpenID Connect and OAuth 2.0
 OAuth 2.0 Token Introspection (www.youtube.com/watch?v=CuawoBrs_6k)—This
video explains the OAuth 2.0 token introspection RFC, which is used by the
resource server to talk to the authorization server to validate an access token.

 OAuth 2.0 Token Revocation (www.youtube.com/watch?v=OEab8UoEUow)—This
video explains the OAuth 2.0 token revocation RFC, which is used by the client
application to revoke an access token.

 Proof Key for Code Exchange (www.youtube.com/watch?v=2pJShFKYoJc)—This
video explains the Proof Key for Code Exchange RFC, which helps you protect
your applications from code interception attack.

 Securing Single-Page Applications with OpenID Connect (www.youtube.com/watch?
v=tmKD2famPJc)—This video explains the internals of OpenID Connect and
how to use OpenID Connect to secure a SPA.

www.youtube.com/watch?v=CuawoBrs_6k
www.youtube.com/watch?v=OEab8UoEUow
www.youtube.com/watch?v=2pJShFKYoJc
www.youtube.com/watch?v=tmKD2famPJc
www.youtube.com/watch?v=tmKD2famPJc

appendix B
JSON Web Token

We’ve discussed JSON Web Token (JWT) many times in this book. In chapter 2, we
talked about how we can use a JWT as an OAuth 2.0 self-contained access token,
and in chapter 4, we described how OpenID Connect uses a JWT as its ID token to
transfer user claims from the OpenID provider to the client application. In chapter
7, we discussed how to pass end-user context in a JWT among services in a microser-
vices deployment. In chapter 11, we examined how each pod in Kubernetes uses a
JWT to authenticate to the Kubernetes API server. In chapter 12, we showed how an
Istio service mesh uses JWT to verify the end-user context at the Envoy proxy.
Finally, in appendix F, we described how an Open Policy Agent (OPA) uses JWT to
carry policy data along with the authorization request.

 All in all, JWT is an essential ingredient in securing a microservices deployment.
In this appendix, we discuss JWT in detail. If you are interested in understanding
further internals of JWT, we recommend Advanced API Security: OAuth 2.0 and
Beyond (Apress, 2019) by Prabath Siriwardena (a coauthor of this book), and the
YouTube video JWT Internals and Applications (www.youtube.com/watch?v=
c-jsKk1OR24), presented by Prabath Siriwardena.

B.1 What is a JSON Web Token?
A JWT (pronounced jot) is a container that carries different types of assertions or
claims from one place to another in a cryptographically safe manner. An assertion is
a strong statement about someone or something issued by an entity. This entity is
also known as the issuer of the assertion.

 Imagine that your state’s Department of Motor Vehicles (DMV) can create a
JWT (to represent your driver’s license) with your personal information, which
includes your name, address, eye color, hair color, gender, date of birth, license
expiration date, and license number. All these items are attributes, or claims, about
you and are also known as attribute assertions. The DMV is the issuer of the JWT.
386

www.youtube.com/watch?v=c-jsKk1OR24
www.youtube.com/watch?v=c-jsKk1OR24

387What is a JSON Web Token?
 Anyone who gets this JWT can decide whether to accept what’s in it as true, based
on the level of trust they have in the issuer of the token (in this case, the DMV). But
before accepting a JWT, how do you know who issued it? The issuer of a JWT signs it by
using the issuer’s private key. In the scenario illustrated in figure B.1, a bartender, who
is the recipient of the JWT, can verify the signature of the JWT and see who signed it.

Figure B.1 A JWT is used as a container to transport assertions from one place to another
in a cryptographically safe manner. The bartender, who is the recipient of the JWT, accepts
the JWT only if they trust the DMV, the issuer of the JWT.

In addition to attribute assertions, a JWT can carry authentication and authorization
assertions. In fact, a JWT is a container; you can fill it with anything you need. An
authentication assertion might be the username of the user and how the issuer
authenticates the user before issuing the assertion. In the DMV use case, an authenti-
cation assertion might be your first name and last name (or even your driver’s license
number), or how you are known to the DMV.

 An authorization assertion is about the user’s entitlements, or what the user can do.
Based on the assertions the JWT brings from the issuer, the recipient can decide how
to act. In the DMV example, if the DMV decides to embed the user’s age as an attri-
bute in the JWT, that data is an attribute assertion, and a bartender can do the math to
calculate whether the user is old enough to buy a beer. Also, without sharing the user’s
age with a bartender, the DMV may decide to include an authorization assertion stat-
ing that the user is old enough to buy a beer. In that case, a bartender will accept the

JSON Web Token
(JWT)

DMV

Peter

Bartender

Peter wants to buy a beer and
uses a JWT issued by the DMV
to prove he is old enough!

The bartender is the recipient of the JWT
and validates the signature on it to make
sure that it comes from the DMV.

The DMV is the
issuer of the JWT.

The JWT carries attributes
about Peter and is signed
by the DMV.

388 APPENDIX B JSON Web Token
JWT and let the user buy a beer. The bartender wouldn’t know the user’s age, but the
DMV authorized the user to buy beer.

 In addition to carrying a set of assertions about the user, a JWT plays another role
behind the scenes. Apart from the end user’s identity, a JWT also carries the issuer’s
identity, which is the DMV in this case. The issuer’s identity is implicitly embedded in
the signature of the JWT. By looking at the corresponding public key while validating
the signature of the token, the recipient can figure out who the token issuer is.

B.2 What does a JWT look like?
Before we delve deep into the JWT use cases within a microservices deployment, take
a closer look at a JWT. Figure B.2 shows the most common form of a JWT. This figure
may look like gibberish unless your brain is trained to decode base64url-encoded
strings.

Figure B.2 A base64url-encoded JWT, which is also a JWS

What you see in figure B.2 is a JSON Web Signature (JWS), which we discuss in detail in
section B.3. The JWS, which is the most commonly used format of a JWT, has three
parts, with a dot (.) separating each part:

 The first part is known as the JSON Object Signing and Encryption (JOSE) header.
 The second part is the claims set, or body (or payload).
 The third part is the signature.

The JOSE header is a base64url-encoded JSON object, which expresses the metadata
related to the JWT, such as the algorithm used to sign the message. Here’s the
base64url-decoded JOSE header:

{
 "alg": "RS256",
}

JOSE header (before
the first separator)

The first
separator, a dot

Signature (after the second separator)

The second separator, a dot

JWT claims set (between
first and second separators)

eyJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJwZXRlciIsImF1ZCI6IiouZWNvbW0uY29tIiwibmJmIjoxNTMzMjcwNzk0LC
Jpc3MiOiJzdHMuZWNvbW0uY29tIiwiZXhwIjoxNTMzMjcxMzk0LCJpYXQiOjE1MzMyNzA3OTQsImp0aSI6IjVj
NGQxZmExLTc0MTItNGZiMS1iODg4LTliYzc3ZTY3ZmYyYSJ9.aOkwoXAsJHz1oD-N0Zz4-dvZBtz7oaBXyoysfT
Ky2vV6C_Sfw05w10Yg0oyQX6VBK8tw68TairpA9322ZziTcteGxaNb-Hqn39krHT35sD68sNOkh7zIqLIIJ59hisO81k
K11g05Nr-nZnEv9mfHFvU_dpQEP-Dgswy_lJ8rZTc

389What does a JWT look like?
The JWT claims set is a base64url-encoded JSON object, which carries the assertions
(between the first and second separators). Following is the base64url-decoded claims set:

{
 "sub": "peter",
 "aud": "*.ecomm.com",
 "nbf": 1533270794,
 "iss": "sts.ecomm.com",
 "exp": 1533271394,
 "iat": 1533270794,
 "jti": "5c4d1fa1-7412-4fb1-b888-9bc77e67ff2a"
}

The JWT specification (RFC 7519) defines seven attributes: sub, aud, nbf, iss, exp,
iat, and jti. None of these are mandatory—and it’s up to the other specifications
that rely on JWT to define what is mandatory and what is optional. For example, the
OpenID Connect specification makes the iss attribute mandatory. These seven attri-
butes that the JWT specification defines are registered in the Internet Assigned Num-
bers Authority (IANA) Web Token Claims registry. However, you can introduce your
own custom attributes to the JWT claims set. In the following sections, we discuss these
seven attributes in detail.

B.2.1 The issuer of a JWT

The iss attribute in the JWT claims set carries an identifier corresponding to the
issuer, or asserting party, of the JWT. The JWT is signed by the issuer’s private key. In a
typical microservices deployment within a given trust domain, all the microservices
trust a single issuer, and this issuer is typically known as the security token service (STS).

B.2.2 The subject of a JWT

The sub attribute in the JWT claims set defines the subject of a JWT. The subject is the
owner of the JWT—or in other words, the JWT carries the claims about the subject. The
applications of the JWT can further refine the definition of the sub attribute. For exam-
ple, the OpenID Connect specification makes the sub attribute mandatory, and the
issuer of the token must make sure that the sub attribute carries a unique identifier.

B.2.3 The audience of a JWT

The aud attribute in the JWT claims set specifies the audience, or intended recipient,
of the token. In figure B.2, it’s set to the string value *.ecomm.com. The value of the
aud attribute can be any string or a URI that’s known to the microservice or the recip-
ient of the JWT.

 Each microservice must check the value of the aud parameter to see whether it’s
known before accepting any JWT as valid. If you have a microservice called foo with the
audience value foo.ecomm.com, the microservice should reject any JWT carrying the
aud value bar.ecomm.com, for example. The logic in accepting or rejecting a JWT
based on audience is up to the corresponding microservice and to the overall microser-
vices security design. By design, you can define a policy to agree that any microservice

390 APPENDIX B JSON Web Token
will accept a token with the audience value <microservice identifier>.ecomm
.com or *.ecomm.com, for example.

B.2.4 JWT expiration, not before and issued time

The value of the exp attribute in the JWT claims set expresses the time of expiration
in seconds, which is calculated from 1970-01-01T0:0:0Z as measured in Coordinated
Universal Time (UTC). Any recipient of a JWT must make sure that the time repre-
sented by the exp attribute is not in the past when accepting a JWT—or in other
words, the token is not expired. The iat attribute in the JWT claims set expresses the
time when the JWT was issued. That too is expressed in seconds and calculated from
1970-01-01T0:0:0Z as measured in UTC.

 The time difference between iat and exp in seconds isn’t the lifetime of the JWT
when there’s an nbf (not before) attribute present in the claims set. You shouldn’t
start processing a JWT (or accept it as a valid token) before the time specified in the
nbf attribute. The value of nbf is also expressed in seconds and calculated from 1970-
01-01T0:0:0Z as measured in UTC. When the nbf attribute is present in the claims set,
the lifetime of a JWT is calculated as the difference between the exp and nbf attri-
butes. However, in most cases, the value of nbf is equal to the value of iat.

B.2.5 The JWT identifier

The jti attribute in the JWT claims set defines a unique identifier for the token. Ide-
ally, the token issuer should not issue two JWTs with the same jti. However, if the
recipient of the JWT accepts tokens from multiple issuers, a given jti will be unique
only along with the corresponding issuer identifier.

B.3 JSON Web Signature
The JWT explained in section B.2 (and, as a reminder, shown in figure B.3) is also a
JSON Web Signature. JWS is a way to represent a signed message. This message can be
anything, such as a JSON payload, an XML payload, or a binary.

Figure B.3 Base64url-encoded JWT, which is also a JWS

JOSE header (before
the first separator)

The first
separator, a dot

Signature (after the second separator)
The second separator, a dot

JWT claims set (between
first and second separators)

eyJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJwZXRlciIsImF1ZCI6IiouZWNvbW0uY29tIiwibmJmIjoxNTMzMjcwNzk0LC
Jpc3MiOiJzdHMuZWNvbW0uY29tIiwiZXhwIjoxNTMzMjcxMzk0LCJpYXQiOjE1MzMyNzA3OTQsImp0aSI6IjVj
NGQxZmExLTc0MTItNGZiMS1iODg4LTliYzc3ZTY3ZmYyYSJ9.aOkwoXAsJHz1oD-N0Zz4-dvZBtz7oaBXyoysfT
Ky2vV6C_Sfw05w10Yg0oyQX6VBK8tw68TairpA9322ZziTcteGxaNb-Hqn39krHT35sD68sNOkh7zIqLIIJ59hisO81k
K11g05Nr-nZnEv9mfHFvU_dpQEP-Dgswy_lJ8rZTc

391JSON Web Signature
A JWS can be serialized in two for-
mats, or represented in two ways:
compact serialization and JSON
serialization. We don’t call every
JWS a JWT. A JWS becomes a JWT
only when it follows compact seri-
alization and carries a JSON ob-
ject as the payload. Under JWT
terminology, we call this payload the claims set. Figure B.4 shows a compact-serialized
JWS—or a JWT. Section B.3 details the meaning of each component in figure B.4.

 With JSON serialization, the JWS is represented as a JSON payload (see figure
B.5). It’s not called a JWT. The payload parameter in the JSON-serialized JWS can
carry any value. The message being signed and represented in figure B.5 is a JSON
message with all its related metadata.

Unlike in a JWT, a JSON serialized JWS can carry multiple signatures corresponding
to the same payload. In figure B.5, the signatures JSON array carries two elements,
and each element carries a different signature of the same payload. The pro-
tected and header attributes inside each element of the signatures JSON array
define the metadata related to the corresponding signature.

 Let’s see how to use the open source Nimbus (https://connect2id.com/products/
nimbus-jose-jwt) Java library to create a JWS. The source code related to all the
samples used in this appendix is available in the https://github.com/microservices-
security-in-action/samples GitHub repository, inside the appendix-b directory.

Claims SetJOSE Header Signature

Figure B.4 A JWT that is a compact-serialized JWS with
a JOSE header, a claims set, and a signature

Figure B.5 A JWS with JSON
serialization that includes
related metadata

https://connect2id.com/products/nimbus-jose-jwt
https://connect2id.com/products/nimbus-jose-jwt
https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

392 APPENDIX B JSON Web Token
NOTE Before running the samples in this appendix, make sure that you
have downloaded and installed all the required software as mentioned in
section 2.1.1.

Let’s build the sample, which builds the JWS, and run it. Run the following Maven
command from the appendix-b/sample01 directory. It may take a couple of minutes
to finish the build process when you run this command for the first time. If everything
goes well, you should see the BUILD SUCCESS message at the end:

\> mvn clean install
[INFO] BUILD SUCCESS

Now run your Java program to create a JWS with the following command (from the
appendix-b/sample01/lib directory). If it executes successfully, it prints the base64url-
encoded JWS:

\> java -cp "../target/com.manning.mss.appendixb.sample01-1.0.0.jar:*" \
com.manning.mss.appendixb.sample01.RSASHA256JWTBuilder

eyJhbGciOiJSUzI1NiJ9.eyJzdWIiOiJwZXRlciIsImF1ZCI6IiouZWNvbW0uY29tIiwibmJmIj
oxNTMzMjcwNzk0LCJpc3MiOiJzdHMuZWNvbW0uY29tIiwiZXhwIjoxNTMzMjcxMzk0LCJpYXQiO
jE1MzMyNzA3OTQsImp0aSI6IjVjNGQxZmExLTc0MTItNGZiMS1iODg4LTliYzc3ZTY3ZmYyYSJ9
.aOkwoXAsJHz1oD-N0Zz4-dvZBtz7oaBXyoysfTKy2vV6C_Sfw05w10Yg0oyQX6VBK8tw68Tair
pA9322ZziTcteGxaNb-Hqn39krHT35sD68sNOkh7zIqLIIJ59hisO81kK11g05Nr-nZnEv9mfHF
vU_dpQEP-Dgswy_lJ8rZTc

You can decode this JWS by using the JWT decoder available at https://jwt.io. The fol-
lowing is the decoded JWS claims set, or payload:

{
 "sub": "peter",
 "aud": "*.ecomm.com",
 "nbf": 1533270794,
 "iss": "sts.ecomm.com",
 "exp": 1533271394,
 "iat": 1533270794,
 "jti": "5c4d1fa1-7412-4fb1-b888-9bc77e67ff2a"
}

NOTE If you get any errors while executing the previous command, check
whether you executed the command from the correct location. It has to be
from inside the appendix-b/sample01/lib directory, not from the appendix-b/
sample01 directory. Also make sure that the value of the –cp argument is
within double quotes.

Take a look at the code that generated the JWT. It’s straightforward and self-explanatory
with comments. You can find the complete source code in the sample01/src/main/
java/com/manning/mss/appendixb/sample01/RSASHA256JWTBuilder.java file.

 The following method does the core work of JWT generation. It accepts the token
issuer’s private key as an input parameter and uses it to sign the JWT with RSA-SHA256.

https://jwt.io

393JSON Web Encryption

public static String buildRsaSha256SignedJWT(PrivateKey privateKey)
 throws JOSEException {

 // build audience restriction list.
 List<String> aud = new ArrayList<String>();
 aud.add("*.ecomm.com");

 Date currentTime = new Date();

 // create a claims set.
 JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder().
 // set the value of the issuer.
 issuer("sts.ecomm.com").
 // set the subject value - JWT belongs to this subject.
 subject("peter").
 // set values for audience restriction.
 audience(aud).
 // expiration time set to 10 minutes.
 expirationTime(new Date(new Date().getTime() + 1000 * 60 * 10)).
 // set the valid from time to current time.
 notBeforeTime(currentTime).
 // set issued time to current time.
 issueTime(currentTime).
 // set a generated UUID as the JWT identifier.
 jwtID(UUID.randomUUID().toString()).build();
 // create JWS header with RSA-SHA256 algorithm.

 JWSHeader jswHeader = new JWSHeader(JWSAlgorithm.RS256);

 // create signer with the RSA private key..
 JWSSigner signer = new RSASSASigner((RSAPrivateKey) privateKey);

 // create the signed JWT with the JWS header and the JWT body.
 SignedJWT signedJWT = new SignedJWT(jswHeader, jwtClaims);

 // sign the JWT with HMAC-SHA256.
 signedJWT.sign(signer);

 // serialize into base64url-encoded text.
 String jwtInText = signedJWT.serialize();

 // print the value of the JWT.
 System.out.println(jwtInText);

 return jwtInText;
}

B.4 JSON Web Encryption
In the preceding section, we stated that a JWT is a compact-serialized JWS. It’s also a
compact-serialized JSON Web Encryption (JWE). Like JWS, a JWE represents an encrypted
message using compact serialization or JSON serialization. A JWE is called a JWT only
when compact serialization is used. In other words, a JWT can be either a JWS or a JWE,

Listing B.1 The RSASHA256JWTBuilder.java file

394 APPENDIX B JSON Web Token
which is compact serialized. JWS addresses the integrity and nonrepudiation aspects of
the data contained in it, while JWE protects the data for confidentiality.

 A compact-serialized JWE (see figure B.6) has five parts; each part is base64url-
encoded and separated by a dot (.). The JOSE header is the part of the JWE that car-
ries metadata related to the encryption. The JWE encrypted key, initialization vector,
and authentication tag are related to the cryptographic operations performed during
the encryption. We won’t talk about those in detail here. If you’re interested, we rec-
ommend the blog “JWT, JWS, and JWE for Not So Dummies” at http://mng.bz/gya8.
Finally, the ciphertext part of the JWE includes the encrypted text.

Figure B.6 A JWT that’s a compact-serialized JWE

With JSON serialization, the JWE is represented as a JSON payload. It isn’t called a
JWT. The ciphertext attribute in the JSON-serialized JWE carries the encrypted
value of any payload, which can be JSON, XML or even binary. The actual payload is
encrypted and represented in figure B.7 as a JSON message with all related metadata.

Figure B.7 A JWE with JSON serialization and all related metadata

JWE Encrypted
KeyJOSE Header Initialization

Vector
Ciphertext Authentication

Tag

https://shortener.manning.com/gya8

395JSON Web Encryption
Let’s see how to use the open source Nimbus Java library to create a JWE. The source
code related to all the samples used in this appendix is available in the https://
github.com/microservices-security-in-action/samples Git repository inside the
appendix-b directory. Before you delve into the Java code that you’ll use to build the
JWE, try to build the sample and run it. Run the following Maven command from the
appendix-b/sample02 directory. If everything goes well, you should see the BUILD
SUCCESS message at the end:

\> mvn clean install
[INFO] BUILD SUCCESS

Now run your Java program to create a JWE with the following command (from the
appendix-b/sample02/lib directory). If it executes successfully, it prints the base64url-
encoded JWE:

\> java -cp "../target/com.manning.mss.appendixb.sample02-1.0.0.jar:*" \
com.manning.mss.appendixb.sample02.RSAOAEPJWTBuilder

eyJlbmMiOiJBMTI4R0NNIiwiYWxnIjoiUlNBLU9BRVAifQ.Cd0KjNwSbq5OPxcJQ1ESValmRGPf
7BFUNpqZFfKTCd-9XAmVE-zOTsnv78SikTOK8fuwszHDnz2eONUahbg8eR9oxDi9kmXaHeKXyZ9
Kq4vhg7WJPJXSUonwGxcibgECJySEJxZaTmA1E_8pUaiU6k5UHvxPUDtE0pnN5XD82cs.0b4jWQ
HFbBaM_azM.XmwvMBzrLcNW-oBhAfMozJlmESfG6o96WT958BOyfjpGmmbdJdIjirjCBTUATdOP
kLg6-YmPsitaFm7pFAUdsHkm4_KlZrE5HuP43VM0gBXSe-41dDDNs7D2nZ5QFpeoYH7zQNocCjy
bseJPFPYEw311nBRfjzNoDEzvKMsxhgCZNLTv-tpKh6mKIXXYxdxVoBcIXN90UUYi.mVLD4t-85
qcTiY8q3J-kmg

Following is the decrypted JWE payload:

JWE Header:{"enc":"A128GCM","alg":"RSA-OAEP"}
JWE Content Encryption Key: Cd0KjNwSbq5OPxcJQ1ESValmRGPf7BFUNpqZFfKTCd-9
XAmVE-zOTsnv78SikTOK8fuwszHDnz2eONUahbg8eR9oxDi9kmXaHeKXyZ9Kq4vhg7WJPJXS
UonwGxcibgECJySEJxZaTmA1E_8pUaiU6k5UHvxPUDtE0pnN5XD82cs
Initialization Vector: 0b4jWQHFbBaM_azM
Ciphertext: XmwvMBzrLcNW-oBhAfMozJlmESfG6o96WT958BOyfjpGmmbdJdIjirjCBTUA
TdOPkLg6-YmPsitaFm7pFAUdsHkm4_KlZrE5HuP43VM0gBXSe-41dDDNs7D2nZ5QFpeoYH7z
QNocCjybseJPFPYEw311nBRfjzNoDEzvKMsxhgCZNLTv-tpKh6mKIXXYxdxVoBcIXN90UUYi
Authentication Tag: mVLD4t-85qcTiY8q3J-kmg
Decrypted Payload:
{
 "sub":"peter",
 "aud":"*.ecomm.com",
 "nbf":1533273878,
 "iss":"sts.ecomm.com",
 "exp":1533274478,
 "iat":1533273878,
 "jti":"17dc2461-d87a-42c9-9546-e42a23d1e4d5"
}

NOTE If you get any errors while executing the previous command, check
whether you executed the command from the correct location. It has to be
from inside the appendix-b/sample02/lib directory, not from the appendix-b/
sample02 directory. Also make sure that the value of the –cp argument is
within double quotes.

https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples

396 APPENDIX B JSON Web Token
Now take a look at the code that generated the JWE. It’s straightforward and self-
explanatory with code comments. You can find the complete source code in the
sample02/src/main/java/com/manning/mss/appendixb/sample02/RSAOAEPJWT
Builder.java file. The method in the following listing does the core work of JWE
encryption. It accepts the token recipient public key as an input parameter and uses it
to encrypt the JWE with RSA-OAEP.

public static String buildEncryptedJWT(PublicKey publicKey)
 throws JOSEException {

 // build audience restriction list.
 List<String> aud = new ArrayList<String>();

 aud.add("*.ecomm.com");

 Date currentTime = new Date();

 // create a claims set.
 JWTClaimsSet jwtClaims = new JWTClaimsSet.Builder().

 // set the value of the issuer.
 issuer("sts.ecomm.com").
 // set the subject value - JWT belongs to this subject.
 subject("peter").
 // set values for audience restriction.
 audience(aud).
 // expiration time set to 10 minutes.
 expirationTime(new Date(new Date().getTime() + 1000 * 60 * 10)).
 // set the valid from time to current time.
 notBeforeTime(currentTime).
 // set issued time to current time.
 issueTime(currentTime).
 // set a generated UUID as the JWT identifier.
 jwtID(UUID.randomUUID().toString()).build();
 // create JWE header with RSA-OAEP and AES/GCM.
 JWEHeader jweHeader = new JWEHeader(JWEAlgorithm.RSA_OAEP,
 EncryptionMethod.A128GCM);

 // create encrypter with the RSA public key.
 JWEEncrypter encrypter = new RSAEncrypter((RSAPublicKey) publicKey);

 // create the encrypted JWT with the JWE header and the JWT payload.
 EncryptedJWT encryptedJWT = new EncryptedJWT(jweHeader, jwtClaims);

 // encrypt the JWT.
 encryptedJWT.encrypt(encrypter);

 // serialize into base64url-encoded text.
 String jwtInText = encryptedJWT.serialize();

 // print the value of the JWT.
 System.out.println(jwtInText);

 return jwtInText;
}

Listing B.2 The RSAOAEPJWTBuilder.java file

appendix C
Single-page application

architecture

In chapter 4, we discussed how to create a single-page application (SPA) with Angu-
lar and then talked about accessing the Order Processing microservice from the
SPA. SPA is already a popular architectural pattern for building applications against
a set of APIs. In fact, the rise of API adoption had a great influence in moving
developers to build SPAs. In this appendix, we discuss the basic principles behind
the SPA architecture. If you are interested in learning the SPA architecture in
depth, we recommend SPA Design and Architecture (Manning, 2015) by Emmit A.
Scott, Jr.

C.1 What is single-page application architecture?
A single-page application (SPA) is an architectural pattern used to develop frontend,
user-facing web applications. In a traditional multiple-page application (MPA)
architecture, when a web browser makes a request to the web server, the web server
first loads the data (content) required for the requested web page (by reading a
database, talking to other external services, and so on), generates the HTML con-
tent, and provides it to the web browser for rendering.

 Notice the word HTML in the preceding sentence. In this case, the server is
responsible for generating multiple HTML pages for the browser to render, which
is why these types of applications are known as multipage applications. As illustrated
in figure C.1, when the web browser makes a request for a particular page, the web
server requests data from a data source and generates the HTML content using
that data. This HTML content is then sent back to the web browser.
397

398 APPENDIX C Single-page application architecture

Figure C.1 An MPA loads content to the browser with multiple page reloads.

A SPA, on the other hand, loads the initial HTML, Cascading Style Sheets (CSS), and
JavaScript to the browser when loading the application for the first time. On requests
to fetch further data, the SPA directly downloads the actual data—in JavaScript Object
Notation (JSON) or whatever the data format is—from the web server. The genera-
tion of dynamic HTML content happens on the browser itself through the JavaScript
that’s already loaded (and cached). Figure C.2 illustrates the flow of actions for a SPA.

 Most of the modern websites you use today follow this pattern. If you’ve used
Gmail, Google Maps, Facebook, Twitter, Airbnb, Netflix, PayPal, and the like, you’ve
used a SPA. All these websites use this design to load content into your web browser.

 A typical difference between an MPA and a SPA is that in an MPA, each request for
new content reloads the web page. But in a SPA, after the application has been loaded
into the browser, no page reloads happen. All new content is rendered on the browser
itself without any requests to the web server. The SPA talks to different endpoints (APIs)
to retrieve new content, but the rendering of that content happens in the browser.

 The reason these are called single-page applications is that most of them have only
one HTML file (a single page) for the entire application. The content of the website is
rendered by dynamically changing the HTML of the file upon user actions.

WEB
BROWSER

WEB
SERVER

DATABASE
AND/OR

API

Request for page 1

Request for page 2

Sends HTML to the browser

Sends HTML to browser

Requests data for page 1

Generates HTML content of page 1

Requests data for page 2

Generates HTML content of page 2

399Benefits of a SPA over an MPA
C.2 Benefits of a SPA over an MPA
A SPA has several benefits compared to an MPA, some of which are specifically useful
for microservices architectures:

 Beyond the initial loading of the application, page rendering is faster because
the generation of HTML happens on the client side (browser) and the amount
of data being downloaded is reduced (no HTML; mostly JSON content). The
HTML, CSS, and JavaScript are loaded once throughout the lifespan of the
application.

 The load on the web server is reduced because the server has been relieved of the
responsibility to generate HTML content. This thereby reduces the need for the
web application to scale, saving a lot of problems related to handling sessions.
Each request to backend APIs will carry a token (for authentication), and it’s the
responsibility of each API endpoint to manage how it wants to handle sessions.

WEB
BROWSER

WEB
SERVER

API
SERVER

Request for application

Sends JS/CSS to the browser

Request for JS/CSS

User clicks a link

Generates HTML for rendering

Sends static HTML content of the application

Sends data (JSON) to the browser

Requests for content from the API server

Figure C.2 Any web application that follows this architectural pattern is known as a SPA. A SPA
loads content to the browser with no page reloads.

400 APPENDIX C Single-page application architecture
 Because the application design is simple (HTML, CSS, and JavaScript only), the
application can be hosted in any type of environment that can be accessed over
HTTP and doesn’t require advanced web server capabilities.

 The application becomes more flexible because it can easily be changed to talk
to any number of microservices (via APIs) for fetching data and rendering as
appropriate.

 Because SPAs retrieve data mostly from standard HTTP-based REST APIs, they
can cache data effectively and use that data offline. A well-implemented REST
API supports HTTP ETags and similar cache validations, making it easy for
browsers to store, validate, and use client-side caches effectively.1

C.3 Drawbacks of a SPA compared with an MPA
SPAs don’t come for free, however. They have drawbacks that you need to think about
carefully before committing to implementing them. Luckily, engineers have found
ways to overcome the limitations in SPA architectures:

 The rendering of content happens through JavaScript. If the pages contain
heavy or unresponsive JavaScript, these can affect the browser process of the
application user.

 Because the application relies on JavaScript, it becomes more prone to cross-
site scripting (XSS) attacks; therefore, developers have to be extra cautious.

 SPAs won’t work on browsers that have JavaScript disabled. Workarounds exist
for these cases, but these don’t help you reap the benefits of a SPA.

 The initial loading of the application into the browser can be slow because it
involves loading all the HTML, CSS, and JavaScript. Workarounds are available
to improve the loading time, however.

 The application would find it hard to deal with sensitive information such as user
credentials or tokens because it works primarily on the client side (browser).

1 An HTTP ETag (entity tag) is one of several mechanisms HTTP provides for web cache validation.

appendix D
Observability in a

microservices deployment

In chapter 5, we discuss in detail how to monitor a microservices deployment with
Prometheus and Grafana. The modern term for monitoring and analytics is observ-
ability. In this appendix, we discuss why observability is so critical in a microservices
deployment as compared to monolithic applications.

D.1 The need for observability
Compared to a traditional monolithic application, microservices-backed applica-
tions are heavily distributed. In a traditional monolithic application, when function
foo calls function bar, the chances of the function invocation failing because of
external factors are rare. This is because in a monolithic application, both func-
tions reside on the same process. If a failure occurs in the process, the application
will fail as a whole, reducing the chances of partial failures. Figure D.1 illustrates a
traditional retail application composed of many functions within the same process.

Figure D.1 In a scalable monolithic application, all functions of the application are
within the same process. A failure of the application results in a failure of all functions.

Database

Client
Application

Products
Function

Orders
Function

Inventory
Function

Shipping
Function
401

402 APPENDIX D Observability in a microservices deployment
Figure D.2 In this microservices-based architecture of a retail store, individual
functions are divided into independent microservices.

If we break this monolithic application into a microservices-driven architecture, we’ll
probably end up with an architecture that looks like figure D.2.

 As you can see, a request made from a client can go through multiple hops of
microservices in a typical microservices deployment. This calls for resiliency, robust-
ness, and recovery factors to be built into our microservices to minimize failures as
much as possible. Let’s look at a real example and see why it’s important to have strin-
gent monitoring in place.

 When a client makes a request to query the available products through the Prod-
ucts microservice, the Products microservice makes a query to the Inventory microser-
vice to get the list of available product stock. At this point, the Inventory microservice
can fail for various reasons, such as these:

 The Inventory microservice is running under high resource utilization and,
therefore, is slow to respond. This can cause a time-out on the connection
between the Products microservice and the Inventory microservice.

 The Inventory microservice is currently unavailable. The process has either
crashed or has been stopped by someone.

Customers
Microservice

Products
Microservice

Inventory
Microservice

Products
Database

Inventory
Database

Order
Processing

Microservice

Shipping
Microservice

Orders
Database

Shipping
Database

Customer
Database

Client
Application

403The four pillars of observability
 The Inventory microservice seems pretty healthy in terms of resource utiliza-
tion; however, it takes a long time to respond because of a few slow-running
database queries.

 Some data inconsistency on the inventory database is causing a failure on the
code of the Inventory microservice, resulting in the code being unable to exe-
cute successfully, thus generating an error/exception.

In all four types of failures, the Products microservice needs to fall back to an alterna-
tive, such as presenting the list of products without providing details on stock availabil-
ity, for example. As you can see, these types of partial failures of our microservices
require immediate attention to be rectified and fixed. And that’s what makes observ-
ability a critical factor in our microservices.

D.2 The four pillars of observability
The four main pillars of observability are metrics, tracing, logging, and visualization.
Each factor is important in monitoring our microservices effectively. Let’s take a look
at why we need to pay attention to each of them.

D.2.1 The importance of metrics in observability

Metrics are a set of data values that are recorded over a period of time. These are
mostly numeric values that are constantly recorded as min, max, average, and percen-
tile. Metrics are usually used to measure the efficiency of the software process. These
can be things like memory usage of a particular process, CPU usage of a process, load
average, and so forth (figure D.3).

 Metrics come in handy when troubleshooting and taking precautionary actions to
minimize the impact of the failures described in the first and second bullet points of
the preceding section. When a particular microservice is running under heavy
resource utilization, monitoring the metrics of the relevant microservice would help
trigger alerts to enable our DevOps personnel to take relevant actions. Systems such as

memory_used = 12684920
deamon-threads = 36
total_requests = 7265
live_sessions = 31
start_time = 1.544621E9
open_files = 32
system_cpu = 8
cache_size = 63

Order
Processing

Service

memory_used = 6650
deamon-threads = 14
total_requests = 96236
live_sessions = 11
start_time = 1.544861E9
open_files = 12
system_cpu = 8
cache_size = 46

Inventory
Service

memory_used = 81920
deamon-threads = 21
total_requests = 1436
live_sessions = 18
start_time = 1.544821E9
open_files = 19
system_cpu = 8
cache_size = 139

Products
Service

Figure D.3 Recording metrics of a microservice based on various attributes such as memory,
sessions, and so forth

404 APPENDIX D Observability in a microservices deployment
Kubernetes (see appendix J) monitor these types of metrics to perform autohealing
and autoscaling activities so that these failures have minimal business impact.

 The downside of metrics is that they are useful only to monitor a given microser-
vice in isolation, based on a limited set of attributes. There are no technical barriers to
adding any number of attributes to your metrics. However, adding a lot of metrics
requires a lot of storage, making the microservice harder to manage. Metrics also
don’t give you a view of the problems that happen because of a request spanning
across multiple microservices and other third-party systems. This is when distributed
tracing comes to the rescue.

D.2.2 The importance of tracing in observability

A trace is a sequence of related distributed events. A single trace will have a unique
identifier (UID), which spans across all the parties involved in the trace. A trace is like
a collection of logs that spans across several components of a system. Each log record
has a UID that makes it possible to correlate the data of a single request (event),
which spans across various components of the system. Each record in a trace can con-
tain information relevant to tracing and troubleshooting a request, such as entry
point timestamps, latency information, or any other information that might be useful
to identify the source of a request or to troubleshoot a request flow.

 If you take a look at the third bullet point in section D.1, which talks about a
microservice (the Inventory microservice) taking a long time to respond to a request
because of a few slow-running database queries, you’ll see that metrics don’t help us a
lot in that case because the vitals of the systems remain intact. In this scenario, the
Inventory microservice as a whole remains healthy, but a particular function within it
that accesses the database takes a longer time to complete, causing the Products
microservice to fail partially. If we instrument the code of the Inventory microservice
to emit a record with the latency details of the database query, this would help us to
identify the particular section in the request flow that causes the problem. Let’s take a
deeper look at this in figure D.4.

Figure D.4 The points in the request flow at which the spans are
started and stopped

Products
Microservice

Inventory
Microservice

Products
Database

Client
Application

A

B'
B

Inventory
Database

D'
D

A'

C

C'

405The four pillars of observability
As you can see, when a client application makes a request to the Products microser-
vice, it initiates a trace with a UID. The following is a rough sequence of events that
happens to serve this request:

1 The client application initiates a request to the Products microservice. Because
there’s no trace prior to this point, the Products microservice begins the trace
by creating the first span (A).1

2 The Products microservice executes a function to retrieve the list of products
from the products database. The Products microservice creates a new span for
this (B to B') and adds it to the trace started in the previous step. Because this
particular span ends at this point, the span details are emitted from the
microservice itself.

3 The Products microservice gets the IDs of the relevant products and passes
them to the Inventory microservice for retrieving the inventory details of each
product item. At this point, the Products microservice creates a new span (C)
and adds it to the same trace.

4 The Inventory microservice queries the Inventory database for the inventory
details of each product and responds to the Products microservice. The Inven-
tory microservice creates a new span (D to D') and adds it to the trace started by
the Products microservice. Once the function completes, the span details are
emitted.

5 The Products microservice creates an aggregated response, which contains the
product and inventory details of each product to be sent back to the client appli-
cation. At this point, the span (C) is completed, and the span details are emitted.

6 The Products microservice responds to the client application with the infor-
mation. Before sending the response to the client application, the Products
microservice finishes span A, and the span details are emitted.

Each hop along this flow is represented as a span. When the execution flow reaches a
particular point in the instrumentation, a span record is emitted, which contains
details about the execution. Each
span belongs to the same trace bear-
ing the UID that was generated by the
Products microservice at the point of
initiating the processing of the
request. If we assume the complete
request takes about 1 second to com-
plete, the database query in the
Inventory microservice consumes
about 700 milliseconds. If that’s the
case, the spans would look like those
in figure D.5.

1 A span represents an individual unit of work performed in a distributed system.

A A'

B B'

C C'

D D'

1,000 ms

800 ms

700 ms

150 ms

Figure D.5 By analyzing the time taken in each span,
it becomes evident that the database operation that
happens in the Inventory microservice consumes the
largest chunk of request time.

406 APPENDIX D Observability in a microservices deployment
Although this description matches the general pattern of tracing distributed events,
we would need all our microservices to conform to a single pattern when emitting
their traces. This would make it easier and consistent for querying them. As such, it
would be perfect to have a global standard for all microservices worldwide when emit-
ting their traces. OpenTracing (https://opentracing.io/) is such a vendor-neutral
specification for distributed tracing requirements, supported by the Cloud Native
Computing Foundation (CNCF). It provides instrumentation libraries for various pro-
gramming languages. OpenCensus (https://opencensus.io/) provides another ap-
proach for collecting traces. This project started at Google and also got support from
Microsoft and VMWare. OpenCensus too provides libraries for various programming
languages to collect metrics and distributed traces. However, in May 2019 CNCF
announced that it’s merging both the OpenTracing and OpenCensus projects to cre-
ate a new project called OpenTelemetry (https://opentelemetry.io/). You can think
of OpenTelemetry as the next major version upgrade of both OpenTracing and Open-
Census projects.

NOTE Jaeger (www.jaegertracing.io) and Zipkin (https://zipkin.io/) are two
of the most popular open source distributed tracing solutions that conform to
the OpenTracing specification.

One major challenge with tracing is that it’s hard to retrofit into an existing system.
You need to add instrumentation code to a lot of places all across your microservices.
And on top of that, it may not even be possible to instrument some of the services
involved in the flow, because they may be out of your control. Failure to instrument all
components in a given flow may not give you the optimal results you’re looking for.
And in some cases, if you’re unable to trace an entire flow end to end, you may not be
able to use whatever traces you have on hand as well.

 Service meshes (see appendix K) can sometimes be a savior when you’re unable to
instrument your microservices for tracing (or something else). Service meshes attach
a sidecar (figure D.6) to your microservice, which adds tracing capabilities (and other
capabilities) to it.2 This way, you can strap on tracing to any microservice without hav-
ing to modify the microservice at all. Istio and Linkerd are two popular service mesh
implementations that can help with your microservices architecture.

2 A sidecar proxy is an architecture pattern that abstracts certain features such as security and traceability away
from the main process (microservice).

https://opentracing.io/
https://opencensus.io/
https://opentelemetry.io/
https://zipkin.io/

407The four pillars of observability

Figure D.6 Sidecars help microservices emit tracing-related information without requiring any changes
to the microservices themselves

D.2.3 The importance of logging in observability

A log is a timestamped record of a particular event. It could be an acknowledgement
of a request notifying the starting of a particular process or the recording of an error/
exception, for example. Most readers, by experience, know the importance of a log
record.

 Metrics and traces are both used for observing statistical information about your
microservices, either in isolation or spanning across several microservices. In many
instances, however, this statistical information isn’t useful for identifying the root
cause of an issue, as in the failure scenario we discussed under the fourth bullet point
in section D.1, which talks about data inconsistency of a database causing a failure on
the code of a microservice. In this case, a particular inconsistency in the database was
causing a problem in our microservice. This is a type of failure that we may not be able
to capture or troubleshoot by using metrics or tracing only. From a statistical point of
view, the microservice would have executed the function without delays or would have
added resource usage. However, the code would have failed with exceptions being
printed on the logs. This is why it becomes important to monitor your logs by using
log collection and analysis tools.

Client
Application

Jaeger

Inventory
Microservice

Products
Microservice

Sidecar attached
to microservice

The sidecar attached to the microservice
intercepts all incoming and outgoing requests
from it and performs various functions such as
emitting tracing information.

408 APPENDIX D Observability in a microservices deployment
 A technology such as Fluentd can be used for the aggregation of logs from all of
your microservices. It plugs into systems such as Elasticsearch and Splunk and can be
used for the analysis and querying of log records. Fluentd can also be configured to trig-
ger alerts based on connectors to send email, SMS notifications, and instant messages.

D.2.4 The importance of visualization in observability

Another key important factor in observability is being able to visualize the data and
streams you collect from your microservices. Visualization is, of course, for humans
only. We may have automated systems in place that are capable of acting based on fail-
ures or risks of failures. But in reality, most organizations still require some level of
human intervention to fix things when they go wrong.

 Therefore, having dashboards that constantly display the state of your systems can
help a great deal. Kibana and Grafana are two popular technologies for visualizing sta-
tistics related to monitoring your systems. We discuss using Grafana in detail to moni-
tor microservices in chapter 5. At the time of this writing, Grafana is the most popular
open source data visualization tool available.

appendix E
Docker fundamentals

As a software developer, you’ve probably experienced the pain of distributing soft-
ware and then finding out that it didn’t work in certain environments. This is
where the popular developer cry of “it works on my machine” was born. Docker
helps you overcome this problem to some extent by packaging your software, along
with all its dependencies, for distribution. In chapter 10, we discuss securing
microservices deployed in a Docker environment. If you’re new to Docker, this
appendix lays the right foundation for you to follow chapter 10.

E.1 Docker overview
Docker is an open source project that simplifies software packaging, distribution,
and execution. It’s also the name of a private company, founded in 2010, that’s
behind the Docker open source project and that also maintains a commercial ver-
sion of it. To avoid any confusion, when we talk about Docker the company, we use
Docker Inc. When we say just Docker, we mean the software produced by the Docker
open source project.

 Docker builds a layer of abstraction over the infrastructure (host machine). Any
software that runs on Docker can be easily decoupled from the infrastructure and
distributed. Docker’s core capabilities are built on top of Linux kernel features.
The Linux kernel helps with building an isolated environment for a running pro-
cess. We call this isolated environment a container.

 A process running in a container has its own view of the filesystem, process iden-
tifiers, hostname, domain name, network interface, and so on, which doesn’t con-
flict with the view of another process running in a container on the same host
operating system. For example, two independent processes, each running in its
own container, can listen on the same port even though they run on the same host
operating system. You’ll learn more about the level of isolation that containers
bring in as we move forward in this appendix.
409

410 APPENDIX E Docker fundamentals
E.1.1 Containers prior to Docker

Docker brought containers into the mainstream, but the concept is a few decades old
(figure E.1). In 1979, we could change the root directory of a running process with the
chroot system call, introduced in UNIX V7 and added to the Berkeley Software Distri-
bution (BSD) in 1982. To limit the visibility of the filesystem to a running process,
chroot is still popular today and is considered a best practice by system administrators.

 After almost two decades later, in 2000, FreeBSD added support for FreeBSD Jails.
Jails, built on top of the chroot concept, allowed dividing a given host environment
into multiple isolated partitions. Each partition is called a jail. A jail has its own set of
users, and a process running in one jail can’t interact with another process running in
another jail.

 Linux-VServer followed a similar concept, and by 2001, it was possible to partition
a Linux-VServer so that each partition had its own, isolated filesystem, network, and
memory.

 In 2004, Solaris 10 introduced a new feature called Solaris Containers (also known
as Solaris Zones). Like FreeBSD Jails, Solaris Containers provided operating system-
level virtualization. Then Google introduced Process Containers in 2006 as a way of
building isolation over the CPU, disk I/O, memory, and network. A year later, Process
Containers were renamed and added to Linux Kernel 2.6.24 as control groups
(cgroups). In 2008, Linux Containers (LXC) developed a container technology on
top of cgroups and namespaces. The cgroups and namespaces are fundamental to the

1982

2000

2001

2004

2008

2013

chroot introduced in Unix V7 was
added to the Berkeley Software
Distribution (BSD).

Jails, built on the chroot
concept, allowed dividing a
given host environment into
multiple isolated partitions.

FreeBSD added support
for FreeBSD Jails.

Linux VServer followed a similar
concept as in FreeBSD Jails.

It became possible to partition
a Linux VServer so that each
partition had its own isolated file
system, network, and memory.

Solaris 10 introduced a new feature
called Solaris Containers.

Docker

Linux Containers (LXC) developed a container
technology on top of cgroups and namespaces.

Figure E.1 The evolution of containers started in 1982 by introducing chroot to the Berkeley
Software Distribution (BSD).

411Docker overview
containers we see today. Docker, up to version 1.10, is based on LXC (more details in
section E.13). We further discuss cgroups and namespaces in detail and how these are
related to Docker in sections E.13.4 and E.13.5.

E.1.2 Docker adding value to Linux containers

The main value Docker provides over traditional Linux containers is portability.
Docker makes Linux containers portable among multiple platforms (not just Linux)
and builds an ecosystem to share and distribute containers. Docker does this by defin-
ing a common format to package an application (or a microservice) and all its depen-
dencies into an artifact called Docker image. Developers can use a Docker image on
any platform that runs Docker, and Docker makes sure it provides the same environ-
ment for the containers to run, regardless of the underlying infrastructure.

E.1.3 Virtual machines vs. containers

A virtual machine (VM) provides a virtualized environment over the infrastructure. In
general, a VM operates in two modes: with a type-1 hypervisor and with a type-2 hyper-
visor. A hypervisor is software that runs VMs, or in other words, manages the life cycle
of a VM. VMs with a type-2 hypervisor are the most common model. When you run
VirtualBox (www.virtualbox.org) as a VM (or even VMWare Workstation Player or Par-
allels Desktop for Mac), it operates with a type-2 hypervisor.

 As shown in figure E.2, the type-2 hypervisor runs on top of a host operating sys-
tem, and all the VMs run on the hypervisor. The type-1 hypervisor doesn’t require a

App App

Guest Operating
System

Type-2 Hypervisor

Host Operating System

Physical Machine

Type-1 Hypervisor

Physical Machine

Guest Operating
System

Guest Operating
System

Guest Operating
System

App App App App App App

Virtual machine (VM)
runs with its own guest
operating system

Provides complete isolation
for the applications running
on different VMs VM runs with its own

guest operating system Each VM carries its
own operating system

Figure E.2 A side-by-side comparison of a type-2 hypervisor and type-1 hypervisor. Each VM running on the host
operating system carries its own guest operating system. The type-2 hypervisor provides an abstraction over the
host operating system, while the type-1 hypervisor provides an abstraction over the physical machine.

412 APPENDIX E Docker fundamentals
host operating system; it runs directly on the physical machine. Any number of VMs
can run on a hypervisor (subject to the resource availability of the host machine), and
each VM carries its own operating system. The applications running on different VMs
(but on the same host operating system) are isolated from each other, but the applica-
tions running on the same VM aren’t.

 Unlike in a VM, a container doesn’t carry its own guest operating system; rather, it
shares the operating system kernel with the host. Figure E.3 shows that the containers
with the applications run on a Docker layer. But in reality, there’s no Docker layer, as
the container itself is a construct of the Linux operating system. The containers run
on the kernel itself.

Figure E.3 Each container shares the operating system kernel with the host. Each application
runs in its own container, and the applications are isolated from each other.

Docker natively runs on Linux. To run Docker on other platforms, we use a VM with
the Linux operating system and run Docker on top of that (we discuss this in detail in
section E.1.4). Because a container doesn’t carry a guest operating system, but only
the bare minimum software packages required to run the application, it’s far more
lightweight than a VM. That makes containers the preferred option to package and
distribute microservices. Also, because a container has no guest operating system, the
time it takes to boot a container is far less than that of a VM.

 In terms of packaging, we follow the pattern of one application per container: a con-
tainer represents a single process. Having one process per container helps us address
scalability requirements more smoothly. We can’t just scale a process with the load, but
we can horizontally scale a container, which carries a process. If we have multiple pro-
cesses running in the same container but with different scalability requirements, it
would be hard to address that just by scaling the container. Also, running multiple appli-
cations in a single container defeats the purpose of a container, as there’s no isolated
environment for each application, and this further creates a management nightmare.

 When we run multiple processes in a containerized environment, the processes
can’t talk to each other directly, as each process has its own container. To achieve the

App App

Docker

Host Operating System

Physical Machine

App App

Container Container Container Container

413Installing Docker
same level of isolation with a VM, we need to package each application with an inde-
pendent VM, creating a huge overhead on the host operating system.

E.1.4 Running Docker on non-Linux operating systems

When we run Docker on a non-Linux operating system such as Windows or macOS,
the layers in figure E.3 become a little different. Docker at its core uses basic Linux
constructs to provide process isolation, and it runs only on a Linux kernel. But a work-
around makes it work on non-Linux operating systems. There’s some good history on
how Docker support for Windows and macOS evolved, but in this section, we focus
only on how it works at present.

 As shown in figure E.4, Docker for macOS uses an xhyve hypervisor based on
HyperKit (a tool kit for embedding hypervisor capabilities in an application on
macOS), and Docker for Windows uses a Hyper-V hypervisor, which is built into Win-
dows from Windows 10 onward. Both xhyve and Hyper-V let you boot Alpine Linux (a
security-oriented, lightweight Linux distribution) on macOS and Windows, respec-
tively, and Docker runs on top of the Alpine Linux kernel.

Figure E.4 Docker on non-Linux operating systems runs on a hypervisor. Docker at its core
uses basic Linux constructs to provide process isolation, and it runs only on a Linux kernel
(in this case, on Alpine Linux).

E.2 Installing Docker
Installing Docker on a local machine isn’t as hard as it used to be in its early days.
Docker has two versions: Community Edition (CE) and Enterprise Edition (EE). In
this book, we use Docker CE, which is free and open source. Docker EE and Docker
CE share the same core feature set, while Docker EE adds more on top of it at a cost,
targeting mostly large enterprises that run mission-critical applications on Docker.

App App

Docker

Alpine Linux

Hypervisor

Host Operating System

Physical Machine

App App

Container Container Container Container

414 APPENDIX E Docker fundamentals
 In this section, we don’t list Docker installation instructions, because those could
change, and there’s a risk you’d end up with stale instructions that don’t work with the
latest Docker version. Docker has clean documentation, explaining how to install
Docker on different platforms. Refer to the Docker documentation related to your
platform at https://docs.docker.com/install/#supported-platforms. Then follow the
instructions to complete the installation. Once the installation is complete, run the
following command to find out the details related to the Docker version you’re using:

\> docker version

Client: Docker Engine - Community
 Version: 19.03.8
 API version: 1.40
 Go version: go1.12.17
 Git commit: afacb8b
 Built: Wed Mar 11 01:21:11 2020
 OS/Arch: darwin/amd64
 Experimental: false

Server: Docker Engine - Community
 Engine:
 Version: 19.03.8
 API version: 1.40 (minimum version 1.12)
 Go version: go1.12.17
 Git commit: afacb8b
 Built: Wed Mar 11 01:29:16 2020
 OS/Arch: linux/amd64
 Experimental: true
 containerd:
 Version: v1.2.13
 GitCommit: 7ad184331fa3e55e52b890ea95e65ba581ae3429
 runc:
 Version: 1.0.0-rc10
 GitCommit: dc9208a3303feef5b3839f4323d9beb36df0a9dd
 docker-init:
 Version: 0.18.0
 GitCommit: fec3683

Docker Enterprise Edition vs. Docker Community Edition
Both Docker EE and Docker CE share the same core, but Docker EE, which comes
with a subscription fee, includes additional features such as private image manage-
ment, container app management, cluster management support for Kubernetes and
Swarm (which we talk about in chapter 11), and integrated image security scanning
and signing. Explaining each of these features is beyond the scope of this book.

If you’re keen on learning Docker in detail, we recommend Docker in Action (Manning,
2019) by Jeff Nickoloff and Stephen Kuenzli, and Docker in Practice (Manning, 2019)
by Ian Miell and Aidan Hobson Sayers. Also, the book Docker Deep Dive (indepen-
dently published in 2018) by Nigel Poulton gives a very good overview of Docker
internals.

https://docs.docker.com/install/#supported-platforms

415Docker high-level architecture
E.3 Docker high-level architecture
Before we delve deep into Docker internals and how it builds a containerized environ-
ment, let’s have a look at the high-level component architecture. Docker follows a
client-server architecture, as shown in figure E.5. The Docker client talks to the
Docker daemon running on the Docker host over a REST API to perform various
operations on Docker images and containers. (We discuss the difference between an
image and a container later in this section; for now, think of a Docker image as the dis-
tribution unit of your application, and the container as the running instance of it.)

 The Docker daemon supports listening on three types of sockets: UNIX, TCP, and
FD (file descriptor). Only enabling TCP sockets will let your Docker client talk to the
daemon remotely. All the examples in this appendix assume that the communication
between the client and daemon happens over the UNIX socket (the default behav-
ior), so you run both the client and the daemon on the same machine. In chapter 10,
we discuss how to enable remote access to the Docker daemon over TCP and secure
Docker APIs.

 To run an application as a Docker container, we execute the docker run com-
mand via the Docker client (see step 1 in figure E.5). The Docker client creates an
API request and talks to the Docker daemon running on the Docker host (step 2).

Client Host Registry

\> docker build Docker Daemon Images

\> docker run Containers Images

The Docker client executes the
docker run command, which
internally talks to a Docker API.

The API requests to the Docker
daemon can be over UNIX sockets,
TCP, or FD (file descriptor).

Spins up a Docker container
from the Docker image

Pulls the corresponding Docker
image from the Docker registry

1

2 3

5

4

Figure E.5 In this high-level Docker component architecture, the Docker client talks to the Docker daemon
running on the Docker host over a REST API to perform various operations on Docker images and containers.

416 APPENDIX E Docker fundamentals
The Docker daemon checks whether the Docker image requested by the client is pres-
ent locally, and if not, it talks to a Docker registry (a store of Docker images) and pulls
the corresponding image and all its dependencies (step 3 and step 4). Then it starts
running the image as a container (step 5).

 A Docker image is the packaging of your application. To share a Docker image with
the developers or with the public, we use a Docker registry. For example, Docker Hub
(https://hub.docker.com) is a public Docker registry. A container is a running process.
We start a container using an image, and you can use the same image to run multiple
containers. In other words, a container is a running instance of an image.

 The following command instructs Docker to pull the hello-world image from
Docker Hub (when you run it for the first time) and execute it as a container. The pro-
cess running inside the Docker container prints the message Hello from Docker and
the rest of the text after that:

\> docker run hello-world

Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
1b930d010525: Pull complete
Digest:
sha256:2557e3c07ed1e38f26e389462d03ed943586f744621577a99efb77324b0fe535
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent

it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit https://docs.docker.com/get-started/.

E.4 Containerizing an application
In chapter 7, you learn about JSON Web Tokens (JWTs) and how to secure microser-
vices with a JWT issued by a security token service (STS). In chapter 10, we revisit the
same use case but in a containerized environment. Before running an application
(in this case, the STS, which is a Spring Boot application developed in Java) in a

https://docs.docker.com/get-started/
https://hub.docker.com

417Containerizing an application
containerized environment, we need to first create a Docker image. In this section,
we are going to create a Docker image for the STS.

E.4.1 What is a Docker image?

A Docker image is a file that packs your software for distribution and is built with multi-
ple layers (we discuss layers in section E.9). If you’re familiar with object-oriented pro-
gramming (OOP), you know about classes and objects. An image in Docker is
analogous to a class in OOP. A running instance of a Docker image is called a con-
tainer, and we can create multiple Docker containers from a single image, just as you
can create multiple objects or instances from a given class.

E.4.2 Building the application

The source code related to all the samples in this appendix is available in the GitHub
repository at https://github.com/microservices-security-in-action/samples inside the
appendix-e directory. The source code of the STS is also available in the appendix-e/
sample01 directory. Run the following Maven command from the appendix-e/
sample01 directory to build the STS. If everything goes well, you should see the BUILD
SUCCESS message at the end:

\> mvn clean install
[INFO] BUILD SUCCESS

Now if you look at the appendix-e/sample01/target directory, you’ll find a JAR file,
which is the STS that you just built.

E.4.3 Creating a Dockerfile

To run the STS in a Docker container, we need to build a Docker image from the JAR
file you created in section E.4.2. The first step in building a Docker image is to create
a Dockerfile (see listing E.1). A Dockerfile includes step-by-step instructions for
Docker on how to create a Docker image. Let’s have a look at the Dockerfile in the fol-
lowing listing (also available in the appendix-e/sample01 directory), which instructs
Docker to create an image for the STS with the required dependencies.

FROM openjdk:8-jdk-alpine
ADD target/com.manning.mss.appendixe.sample01-1.0.0.jar \
/com.manning.mss.appendixe.sample01-1.0.0.jar
ADD keystores/keystore.jks /opt/keystore.jks
ADD keystores/jwt.jks /opt/jwt.jks
ENTRYPOINT ["java", "-jar", \
"com.manning.mss.appendixe.sample01-1.0.0.jar"]

Listing E.1 The content of the Dockerfile

Fetches the Docker image
from the Docker registry

Copies the JAR file to
the container filesystem

Copies the jks file to
the container filesystem

Copies the jwt.jks file to
the container filesystem

Provides the entry
point to the container

https://github.com/microservices-security-in-action/samples

418 APPENDIX E Docker fundamentals
The first line of this Dockerfile instructs Docker to fetch the Docker image called
openjdk:8-jdk-alpine from the Docker registry and, in this case, from the public
Docker Hub, which is the default option. This is the base image of the Docker image
we are about to create. When we create a Docker image, we don’t need to create it
from scratch. If any other Docker images are already available for our application’s
dependencies, we can reuse them. For example, in this case, to run our application,
we need Java, so we start building our image from an existing OpenJDK Docker
image, which is already available in Docker Hub.

 The second line instructs Docker to copy the file com.manning.mss.appendixe
.sample01-1.0.0.jar from the target directory of the host filesystem to the root of the
container filesystem. The third line instructs Docker to copy the keystore.jks file from
the keystores directory of the host filesystem to the /opt directory of the container
filesystem. This is the keystore STS used to enable Transport Layer Security (TLS).
The fourth line instructs Docker to copy the jwt.jks file from the keystores directory
of the host filesystem to the /opt directory of the container filesystem. This keystore
contains the private key that STS uses to sign the JWTs it issues. Finally, the fifth line
tells Docker the entry point to the container (or which command to run when we start
the container). For example, in this case, Docker executes the com.manning.mss
.appendixe.sample01-1.0.0.jar file.

E.4.4 Building a Docker image

The following command run from the appendix-e/sample01/ directory instructs
Docker to use the Dockerfile (see listing E.1) from the current path and builds a
Docker image from it. Before executing the command, make sure that you have Docker
up and running on your machine:1

\> docker build -t com.manning.mss.appendixe.sample01 .

In this command, we don’t need to specifically mention the name of the Dockerfile. If
we leave it blank or don’t specify a filename, Docker, by default, looks for a file with
the name Dockerfile at the current location. The –t option in the command is used
to specify the name for the Docker image (in this case, com.manning.mss.appendixe
.sample01). The following shows the output of the command:

Sending build context to Docker daemon 22.32MB
Step 1/5 : FROM openjdk:8-jdk-alpine
8-jdk-alpine: Pulling from library/openjdk
e7c96db7181b: Pull complete
f910a506b6cb: Pull complete
c2274a1a0e27: Pull complete
Digest:
sha256:94792824df2df33402f201713f932b58cb9de94a0cd524164a0f2283343547b3
Status: Downloaded newer image for openjdk:8-jdk-alpine
 ---> a3562aa0b991

1 If you have Docker running on your local machine, the docker version command should return meaning-
ful output with the proper versions of the Docker Engine client and server.

419Containerizing an application
Step 2/5 : ADD target/com.manning.mss.appendixe.sample01-1.0.0.jar
/com.manning.mss.appendixe.sample01-1.0.0.jar
 ---> 802dd9300b9f
Step 3/5 : ADD keystores/keystore.jks /opt/keystore.jks
 ---> 125e96cbc5a8
Step 4/5 : ADD keystores/jwt.jks /opt/jwt.jks
 ---> feeb468921c9
Step 5/5 : ENTRYPOINT ["java", "-jar",
 "com.manning.mss.appendixe.sample01-1.0.0.jar"]
 ---> Running in 5c1931cc19a2
Removing intermediate container 5c1931cc19a2
 ---> defa4cc5639e
Successfully built defa4cc5639e
Successfully tagged com.manning.mss.appendixe.sample01:latest

Here, you can see from the output that Docker executes each line in the Dockerfile in
steps. Each instruction in the Dockerfile adds a read-only layer to the Docker image,
except for a few specific instructions. We learn about image layers in section E.9. The
following Docker command lists all the Docker images on your machine (or the
Docker host):

\> docker images

REPOSITORY TAG IMAGE ID SIZE
com.manning.ms.appendixe.sample01 latest defa4cc5639e 127MB
openjdk 8-jdk-alpine 792ff45a2a17 105MB

E.4.5 Running a container from a Docker image

Now you have a Docker image built for your STS. If you’d like, you can publish it to
the public Docker registry or to a private registry so that others can use it as well.
Before we do that, let’s try to run it locally and see how we can get a token from the
containerized STS. Run the following command by using the Docker client from any-
where on the machine where you built the Docker image (to be precise, you run the
Docker client from a machine that’s connected to the Docker host, which has the
image you built):

\> docker run -p 8443:8443 com.manning.mss.appendixe.sample01

This command spins up a Docker container from the image (com.manning.mss
.appendixe.sample01) we created in section E.4.4, starts the STS on the container
port 8443, and maps it to the host port 8443. The port mapping is done by the –p
argument we pass to the docker run command, where the first 8443 in the com-
mand represents the container port, and the second, the host port. Also make sure
that no other process is running on your host machine on port 8443. You’ll learn why
we have to do the port mapping this way in section E.18, when we talk about Docker
networking. Once we start the container successfully, we see the following logs printed
on the terminal:

INFO 30901 --- [main] s.b.c.e.t.TomcatEmbeddedServletContainer :
Tomcat started on port(s): 8443 (https)

420 APPENDIX E Docker fundamentals
INFO 30901 --- [main] c.m.m.appendixe.sample01.TokenService :
Started TokenService in 4.729 seconds (JVM running for 7.082)

Now let’s test the STS with the following curl command. This is exactly the same
curl command we used in section 7.5:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=bar" \
https://localhost:8443/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works fine, the STS returns an
OAuth 2.0 access token, which is a JWT (or a JWS, to be precise) and only a part of the
access token is shown in the following response:

{
"access_token":"eyJhbGciOiJSUzI1NiIsI...",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"bar",
"jti":"5ed1c472-c3ba-48a3-bab6-bac7c4cca311"
}

E.5 Container name and container ID
When we start a container from the docker run command, we can specify a name for
the container by passing the name argument. In the following command, we start a
Docker container from the hello-world image with the container name my-hello-
world:

\> docker run --name my-hello-world hello-world

In case we skip the name argument, Docker then assigns a generated universally unique
identifier (UUID) as the name of the container. In addition to the name, a container
also carries an ID (container ID), a randomly generated identifier that can’t be
changed. The main difference between the container ID and the container name is
that we can change the name of a running container (using docker rename), but the
container IDs are immutable. It’s always better to give a container a name that’s human
readable or easy to remember. This helps you perform certain operations on a running
container. Otherwise, if you want to do something on a container, first you need to find
out the corresponding container ID or the system-generated container name.

E.6 Docker registry
A Docker registry is where we store Docker images for distribution. It’s a storage and con-
tent delivery system for Docker images. A registry has multiple repositories. A repository
is a collection of different versions (or tags) of a given Docker image (figure E.6). To

https://localhost:8443/oauth/token

421Docker registry
deploy the Docker registry locally in your environment, you can follow the steps
defined in the Docker online documentation at https://docs.docker.com/registry/
deploying/.

 There are two versions of a Docker registry that you can deploy locally. One is the
open source community version, and the other is the Docker Trusted Registry (DTR)
from Docker Inc. DTR isn’t free, however, and the cost comes with a set of additional
features like built-in access control (along with LDAP/Active Directory integration),
security scans of images, and image signing. To find out more about DTR, you can
refer to the Docker online documentation at https://docs.docker.com/ee/dtr/.

E.6.1 Docker Hub

Docker Hub (https://hub.docker.com) is the best-known Docker registry and the
default registry in Docker. This hosted service provided by Docker Inc. offers both
public and private repositories. Public repositories are free, and an image published
to a public repository is accessible to anyone. At the time of writing, Docker Hub
offers only one free private repository; if you need more, you have to pay.

E.6.2 Harbor

Similar to DTR, Harbor (https://goharbor.io/) is a registry that’s also built on top of
the open source Docker registry with some additional features (mostly security and
identity management). Unlike DTR, Harbor is open source.

Registry

hello-service-image v1 order-service-image v1

hello-service-image v2 order-service-image v2

hello-service-image v3

Repository 1 Repository 2

Figure E.6 A Docker registry has multiple repositories, and each repository has
multiple versions of a Docker image.

https://docs.docker.com/ee/dtr/
https://goharbor.io/
https://hub.docker.com
https://docs.docker.com/registry/deploying/
https://docs.docker.com/registry/deploying/

422 APPENDIX E Docker fundamentals
E.6.3 Docker cloud platforms and registries

Instead of running Docker on your own servers and maintaining the hardware your-
self, you can look for a cloud vendor that provides a Docker platform as a service.
Multiple cloud vendors are available. All these vendors provide their own Docker reg-
istries as a hosted service as well:

 Google Container Registry (GCR) integrates with Google Cloud Platform.
 Amazon Elastic Container Registry (ECR) integrates with Amazon Elastic Con-

tainer Service (ECS).
 Azure Container Registry (ACR) by Microsoft integrates with Azure Kubernetes

Service (AKS). AKS replaced the Azure Container Service (ACS) after it was
retired on January 31, 2020.

 OpenShift Container Registry (OCR) by Red Hat integrates with OpenShift
Container Platform (OCP).

 Pivotal Container Service (PKS) integrates with Harbor as the Docker registry.
 IBM Cloud Container Registry integrates with IBM Cloud Kubernetes Service

(we discuss Kubernetes in appendix J).
 Oracle Container Registry integrates with Oracle Cloud Infrastructure Con-

tainer Engine for Kubernetes.

E.7 Publishing to Docker Hub
In this section, you’ll see how to publish the Docker image we created in section E.4.4.
We’ll publish it to the public Docker registry, which is Docker Hub. First, we need to
create a Docker ID from https://hub.docker.com. In this section, we use our Docker
ID, prabath; you need to replace it with your own Docker ID. Let’s use the following
command to create a valid login session with Docker Hub and then enter the corre-
sponding password:

\> docker login --username=prabath

Password:
Login Succeeded

Next, we need to find the image ID of the Docker image we want to publish to Docker
Hub. The following command lists all the images in the Docker host machine, and we
can pick the image ID corresponding to our Docker image:

\> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
com.manning.mss.appendixe.sample01 latest defa4cc5639e An hour ago 127MB

Now we need to tag the image with our Docker ID, as shown in the following com-
mand. (We discuss tagging in section E.8.) In this command, you need to use your

https://hub.docker.com

423Image name and image ID
own Docker ID. Here e7090e36543b is the image ID, and prabath/manning-sts-
appendix-e is the name of the Docker image, where prabath is the Docker ID that
you need to replace with your own ID:

\> docker tag defa4cc5639e prabath/manning-sts-appendix-e

Finally, we push the tagged Docker image to Docker Hub with the following command:

\> docker push prabath/manning-sts-appendix-e

When we publish the prabath/manning-sts-appendix-e image to Docker Hub, we, in
fact, publish it to the Docker Hub registry in the prabath/manning-sts-appendix-e
repository. Now anyone having access to Docker Hub can pull this Docker image and
spin up a container with the same command we used in section E.4.5, but with the
image name prabath/manning-sts-appendix-e:

\> docker run -p 8443:8443 prabath/manning-sts-appendix-e

E.8 Image name and image ID
When we build a Docker image, it needs a name. In section E.7, we used prabath/
manning-sts-appendix-e as our image name. To be precise, prabath/manning-sts-
appendix-e isn’t the image name, but the name of the corresponding repository (still,
many prefer to call it the image name too, which is fine). As we discussed in section
E.6, a repository can have multiple versions of a given Docker image. In other words,
the registry, the repository, and the image version (or the tag) uniquely identify a
given Docker image.

 The image version is commonly known as a tag. A tag is the same as a version, which
we use with other software. If you look at the Tomcat application server image (https://
hub.docker.com/_/tomcat?tab=tags) in Docker Hub, you’ll find multiple tags. Each
image tag represents a Tomcat version number. That’s a practice we follow. To pull the
Tomcat image from Docker Hub, we have two options: pull the image just by the repos-
itory name (without a tag), or pull the image both by the repository name and the tag.

E.8.1 Docker images with no tags (or the latest tag)

Let’s see how to work with Docker images with no tags. The following docker com-
mand pulls a Tomcat image without a tag:

\> docker pull tomcat

To see the tag of the Tomcat image pulled from Docker Hub, let’s use the following
docker command:

\> docker images tomcat

REPOSITORY TAG IMAGE ID CREATED SIZE
tomcat latest 1c721f25f939 11 hours ago 522MB

https://hub.docker.com/_/tomcat?tab=tags
https://hub.docker.com/_/tomcat?tab=tags

424 APPENDIX E Docker fundamentals
The output shows that the Tomcat image tag is latest. This special tag in Docker is
also the most confusing tag. If you’ve published an image to Docker Hub without a tag
(just by the repository name, as we did in section E.7), Docker Hub, by default, assigns
it the latest tag. But this name doesn’t mean it’s the latest Tomcat image in that
repository. It’s just a Tomcat image that the Tomcat developers have published to
Docker Hub without a tag.

 Also, when you use docker pull or docker run with only the repository name
of the image you want to retrieve (without the tag), Docker Hub thinks it’s a request
for the Docker image with the latest tag. That’s why earlier, when we used the
docker pull tomcat command, Docker pulled the corresponding Tomcat image
with the latest tag. Even if we have a more recent Tomcat image with a tag, Docker
still pulls the Tomcat image with the latest tag because we omitted the tag in our
command. What if all the images in the Tomcat repository are tagged? Then, the com-
mand with no tag results in an error.

E.8.2 Docker images with a tag

As a best practice, we should tag all the images we push to Docker Hub; at least that
will avoid the confusion with the latest tag. Let’s repeat the steps we followed in sec-
tion E.7 to publish a Docker image to Docker Hub, but this time with a tag. We’re not
going to explain each step here, but only the steps that we need for adding a tag.

 Before we push the image to Docker Hub, in addition to the repository name
(prabath/manning-sts-appendix-e), we also need to provide a tag (v1 in this
case). Then we can use the docker run command along with the image tag to pull
the exact version we pushed to Docker Hub under the v1 tag:

\> docker tag defa4cc5639e prabath/manning-sts-appendix-e:v1
\> docker push prabath/manning-sts-appendix-e:v1
\> docker run -p 8443:8443 prabath/manning-sts-appendix-e:v1

E.8.3 Working with third-party Docker registries

Although we mentioned in the introduction to section E.8 that the registry, the repos-
itory, and the image version (or the tag) uniquely identify a given Docker image, we
never used the registry name in any of the commands we’ve used so far. You might
have guessed the reason already! By default, Docker uses Docker Hub as the registry,
and if we don’t explicitly tell Docker to use a third-party registry, it simply uses the
Docker Hub. Let’s assume we have our prabath/manning-sts-appendix-e repository in
GCR. This is how we use docker run to pull our image from GCR. In the command,
gcr.io is the GCR endpoint:

\> docker run -p 8443:8443 gcr.io/prabath/manning-sts-appendix-e:v1

To publish an image to GCR, we can use the following commands:

\> docker tag e7090e36543b gcr.io/prabath/manning-sts-appendix-e:v1
\> docker push gcr.io/prabath/manning-sts-appendix-e:v1

425Image name and image ID
E.8.4 Docker Hub official and unofficial images

Docker Hub maintains a set of official Docker images, and the rest is just unofficial
images. When you publish an image to Docker Hub and do nothing else, it’s becomes
an unofficial image. The repository name of an unofficial Docker image must start
with the Docker Hub username. That’s why we had to use prabath/manning-sts-
appendix-e as our repository name, where prabath is the Docker Hub username,
instead of using manning-sts-appendix-e.

 Publishing an official image to Docker Hub requires more work, as defined at
https://docs.docker.com/docker-hub/official_images/. A dedicated team from Docker
Inc. reviews and publishes all the content in an official image. As a user of an official
image, the difference is in how the repository name is constructed. Official repository
names don’t need to start with the Docker Hub username. For example, the following
command pulls the official Tomcat image from Docker Hub:

\> docker pull tomcat

E.8.5 Image ID

We can represent each Docker image as a JSON object, and this object is written to a
JSON file inside the Docker image. Let’s have a look at it. We can use the following
two commands to pull the Tomcat Docker image having the tag 9.0.20 from the
Docker Hub and save it to a file called tomcat.9.0.20.tar:

\> docker pull tomcat:9.0.20
\> docker save -o tomcat.9.0.20.tar tomcat:9.0.20

The docker save command creates the tomcat.9.0.20.tar file with all the image con-
tent. It’s in a TAR compressed format, and we can use a tar utility (based on your oper-
ating system) to decompress it:

\> tar -xvf tomcat.9.0.20.tar

This produces a set of directories with long names and a JSON file. If you find it hard
to find the JSON file, you can use ls *.json command to filter the file. For our dis-
cussion, what matters is this JSON file; it’s the representation of the tomcat:9.0.20
Docker image. You can use a tool, based on your operating system, to calculate the
SHA-256 digest of this file. SHA-256 is a hashing algorithm that creates a fixed-length
digest (256 bits) from any given content. Here, we use OpenSSL to generate the SHA-
256 of the JSON file:

\> openssl dgst -sha256 \
e9aca7f29a6039569f39a88a9decdfb2a9e6bc81bca6e80f3e21d1e0e559d8c4.json

SHA256
(e9aca7f29a6039569f39a88a9decdfb2a9e6bc81bca6e80f3e21d1e0e559d8c4.json)
=e9aca7f29a6039569f39a88a9decdfb2a9e6bc81bca6e80f3e21d1e0e559d8c4

https://docs.docker.com/docker-hub/official_images/

426 APPENDIX E Docker fundamentals
Looking at the output, you might have already noticed a pattern. Yes! It’s not a coinci-
dence. The name of the file is, in fact, the SHA-256 hash value of that file. Now the
mystery is over! The image ID of a Docker image is the SHA-256 hash of the correspond-
ing JSON file; to be precise, it’s the hexadecimal representation of the SHA-256 hash.

 Let’s use the following docker command to clarify this. It prints the image ID of
the given Docker image, which is the first 12 digits of the image ID we got before:

\> docker images tomcat:9.0.20

REPOSITORY TAG IMAGE ID CREATED SIZE
tomcat 9.0.20 e9aca7f29a60 14 hours ago 639MB

E.8.6 Pulling an image with the image ID

To pull an image from a Docker registry, so far we’ve used the image name, along with
the tag. For example, the following command pulls the Tomcat image with the tag
9.0.20:

\> docker pull tomcat:9.0.20

We need to be concerned about a few things when we pull an image by the tag. Tags
aren’t immutable, which means they are subject to change. Also, we can push multiple
images with the same tag to a Docker registry, and the latest image overrides the previ-
ous image with the same tag. When we pull an image by the tag, there’s a chance we
might not get the same image all the time. Pulling an image with the image ID helps
overcome that issue.

 The image ID is the SHA-256 hash of the image. If the content of the image
changes, the hash of the image changes as well—hence, the image ID. Two different
images can never carry the same image ID, so when we pull an image by its ID (or the
hash of the image), we always get the same image. The following command shows how
to pull an image by the image ID. The text after tomcat@ in the command is the
image ID of the Tomcat image we want to pull:

\> docker pull \
tomcat@sha256:\
b3e124c6c07d761386901b4203a0db2217a8f2c0675958f744bbc85587d1e715

E.9 Image layers
The Docker image we built in section E.4.4 and published to the Docker Hub in sec-
tion E.7 has six layers. When we run the docker build command to build a Docker
image, Docker creates a layer for each instruction in the corresponding Dockerfile,
except for a few instructions such as ENV, EXPOSE, ENTRYPOINT, and CMD. For clarity,
we repeat the same Dockerfile used in listing E.1 in the following listing.

 As per the Dockerfile in listing E.2, the Docker image we create from it should
result in only four layers. Even though this Dockerfile has five instructions, no image
layer is created for the ENTRYPOINT instruction. But we mentioned before that this

427Image layers
Docker image has six layers. Where does it get the two remaining layers? Those two
come from the openjdk:8-jdk-alpine base image.

FROM openjdk:8-jdk-alpine
ADD target/com.manning.mss.appendixe.sample01-1.0.0.jar \
/com.manning.mss.appendixe.sample01-1.0.0.jar
ADD keystores/keystore.jks /opt/keystore.jks
ADD keystores/jwt.jks /opt/jwt.jks
ENTRYPOINT ["java", "-jar", \
"com.manning.mss.appendixe.sample01-1.0.0.jar "]

When we pull a Docker image from Docker Hub, Docker pulls the image in layers.
The following two commands pull and inspect the prabath/manning-sts-appendix-e
image, and in the truncated output shows the SHA-256 hash of the associated layers:

\> docker pull prabath/manning-sts-appendix-e
\> docker inspect prabath/manning-sts-appendix-e

"Layers": [
"sha256:f1b5933fe4b5f49bbe8258745cf396afe07e625bdab3168e364daf7c956b6b81",
"sha256:9b9b7f3d56a01e3d9076874990c62e7a516cc4032f784f421574d06b18ef9aa4",
"sha256:ceaf9e1ebef5f9eaa707a838848a3c13800fcf32d7757be10d4b08fb85f1bc8a",
"sha256:52b4aac6cb4680220c70a68667c034836839d36d37f3f4695d129c9919da9e3a",
"sha256:1fa9ff776ce74439b3437cdd53333c9e2552753cf74986e1f49ca305ad2e3c02",
"sha256:93fc1841ffce641e1da3f3bda10416efcbff73dd9bfe2ad8391683034942dbd5"
]

You can also use the tool dive (https://github.com/wagoodman/dive) to explore
each layer in a given Docker image. Once you install dive in your local machine, you
can run the following command to explore the layers of the prabath/manning-sts-
appendix-e Docker image:

\> dive prabath/manning-sts-appendix-e

Each layer in a Docker image is read-only and has a unique identifier. Each of these
layers is stacked over the other. When we create a container from an image, Docker
adds another layer that’s read/write on top of all the read-only layers. This is called
the container layer. Any writes from the container while it’s running are written to this
layer. Because the containers are immutable, any data written to this layer vanishes
after you remove the container. In section E.12, we discuss an approach to make the
container’s runtime data persistent, especially the data in logs.

 The layered approach Docker follows when creating an image promotes reusabil-
ity. When you run multiple containers from the same image, each container shares
the image (the read-only layers), but has its own independent layer on top of that.
Even between different images, if the containers depend on the same image layer,
Docker reuses such layers as well.

Listing E.2 The content of the Dockerfile, repeated

https://github.com/wagoodman/dive

428 APPENDIX E Docker fundamentals
E.10 Container life cycle
A container is an instance of an image. Once we create a container, it can go through
multiple phases in its life cycle: created, running, paused, stopped, killed, and
removed (figure E.7).

Figure E.7 The status of a container changes from created to destroyed in different phases.

E.10.1 Creating a container from an image

Earlier in this appendix, we used the docker run command to start a container. That
single command does two things: first it creates a container and then it starts it.
Instead of that, however, we can use docker create to create a container from a
given Docker image. The following command pulls the Tomcat Docker image from
Docker Hub and creates a container with the name my-web-server. Once the con-
tainer is created successfully, the command prints the generated container ID:

\> docker create --name my-web-server tomcat

d9ad318893e3844695d9f25dd53cb88128329b90d024c86d1774475b81e39de3

Stopped

Created Running (up)

Paused

Destroyed
(removed)

Exited (killed)

The main process inside the
container receives a SIGTERM,
and after a grace period,
a SIGKILL.

The double arrow says the
state of a container can be
changed either way from
one state to the other.

Suspends all processes in
the specified container with
a SIGSTOP signal

The main process
inside the container
receives a SIGKILL.

The main process inside the
container receives a SIGKILL;
then the container will be
removed.

Once a container is destroyed,
you can’t recover it; you need
to create a new one.

429Container life cycle
We can use the following command to view the status of the latest container (-l).
Here you can see the my-web-server container carries the Created status:

\> docker ps –l

CONTAINER ID IMAGE STATUS NAMES
d9ad318893e3 tomcat Created my-web-server

What does it mean that the container is created but not running or up? The docker
create command takes the corresponding image and, on top of that, adds a new
writable layer and then prepares it for running.

E.10.2 Starting a container

We can start a Docker container that’s created or stopped (not paused) with the
docker start command:

\> docker start my-web-server

Once the container is booted up, the following command shows its status as up:

\> docker ps –l

CONTAINER ID IMAGE STATUS NAMES
d9ad318893e3 tomcat Up 7 seconds my-web-server

E.10.3 Pausing a running container

We can use the docker pause command to suspend a running container. This sends
a SIGSTOP signal to all the processes running in the corresponding container.2 What
does this really mean?

 If we write data to the container’s writable layer, that data is still available when we
unpause the container. Pausing a container won’t remove its writable layer, and the
data already written remains unchanged. Docker cleans up the data written to the
container layer only when we remove a container from the system (section E.10.6).
Even killing a container (section E.10.5) won’t wipe out the container layer. Here’s
the command:

\> docker pause my-web-server

Once the container is paused, the following command shows its status as paused:

\> docker ps –l

CONTAINER ID IMAGE STATUS NAMES
d9ad318893e3 tomcat Up About a minute (Paused) my-web-server

2 If a process receives a SIGSTOP, it’s paused by the operating system. Its state is preserved, ready to be restarted,
and it doesn’t get any more CPU cycles until then.

430 APPENDIX E Docker fundamentals
We can use the following command to bring back a paused container to its running
status:

\> docker unpause my-web-server

Just as the container layer of a paused container remains unchanged after we unpause
it or bring it back to the running status, any data you write to the container’s memory
also remains unchanged. This is because the docker pause command doesn’t make
the processes running in the container restart when we unpause the container.

E.10.4 Stopping a running container

Once a container is in a running state, we can use docker stop to stop it. This sends
the main process inside the container a SIGTERM signal and, after a grace period, the
SIGKILL signal. Once an application receives a SIGTERM signal, it can determine
what it needs to do. Ideally, it will clean up any resources and then stop.

 For example, if your microservice running in a container already has inflight
requests that it’s currently serving, then it can work on those while not accepting any
new requests. Once all the inflight requests are served, the service can stop itself.

 In case the service decides not to stop itself, the SIGKILL signal generated after a
grace period ensures that the container is stopped no matter what:

\> docker stop my-web-server

Once the container is stopped, the following command shows its status as Exited
with a status code 143:

\> docker ps –l

CONTAINER ID IMAGE STATUS NAMES
d9ad318893e3 tomcat Exited (143) 3 seconds ago my-web-server

We can use the following command to bring back an exited container to running status:

\> docker restart my-web-server

Even though the container layer of the stopped container remains unchanged after
we restart it, any data you write to the container’s memory will be lost (unlike in
docker pause). This is because the docker stop command makes the main process
running in the container stop, and when we restart it, the process restarts too.

E.10.5 Killing a container

We can kill a container that’s running or that’s in a paused status by using the docker
kill command. This sends the main process inside the container a SIGKILL signal,
which immediately takes down the running container:

\> docker kill my-web-server

NOTE To stop a container, we should always use docker stop instead of
docker kill, as the stop command gives you control over cleanup of the
running process.

431Persisting runtime data of a container
Once the container is killed, the following command shows its status as Exited with
the status code 137:

\> docker ps –l

CONTAINER ID IMAGE STATUS NAMES
d9ad318893e3 tomcat Exited (137) 20 seconds ago my-web-server

We can use the following command to return an exited container to the running status:

\> docker restart my-web-server

Even though the container layer of the killed container remains unchanged after we
restart it, as with docker stop, any data you wrote to the container’s memory is lost.
That’s because the docker kill command makes the main process running in the
container stop, and when we restart it, the process restarts too.

E.10.6 Destroying a container

We can use docker rm to remove a container from the Docker host. We have to stop
the running container first, using either docker stop or docker kill, before
removing it:

\> docker rm my-web-server

There’s no way to bring back a removed container. We have to create it again.

E.11 Deleting an image
When we pull an image from a Docker registry (or create our own as in E.4.4), it’s
stored in the Docker host. We can use the following command to remove the copy of
the Tomcat image with the tag 9.0.20 stored in the Docker host:

\> docker image rm tomcat:9.0.20

When deleting an image, Docker deletes all the image layers, unless other images in the
system have dependencies to those. Before deleting an image, first, we need to remove
the corresponding container using the docker rm command (see section E.10.6).

 If you want to remove all unused containers, networks, and images, use the follow-
ing command:

\> docker system prune -a

E.12 Persisting runtime data of a container
Containers are immutable. Any data written to the container filesystem (or the con-
tainer layer) vanishes soon after we remove the container. Even so, we can’t let that
happen. Immutable containers are important in a containerized environment, so that
we can spin up and spin down containers from a Docker image and bring them into
the same state. Still, there’s some data we need to persist (for example, runtime logs),
and we can’t afford to lose that data. Docker volumes and bind mounts help with per-
sisting the runtime data of a container.

432 APPENDIX E Docker fundamentals
E.12.1 Using Docker volumes to persist runtime data

When we use Docker volumes to persist data outside a container filesystem, Docker
uses its own storage in the Docker host filesystem, and Docker itself manages this stor-
age. Let’s consider an example to illustrate how to use Docker volumes to share data
between containers.

 We can have one container that writes logs to a volume, and another container
that shares the same volume can read and possibly push the logs to a log management
system like Fluentd. In the same way, if you want to store log data in Amazon S3, you
can have another container that reads the logs from the shared volume and publishes
them to S3. The container, which writes logs to the volume, doesn’t necessarily need
to know where to publish them or how to publish them: a different container can
assume that responsibility. This is a good way of implementing separation of concerns
and the single responsibility principle.

 Let’s look at a simple example to see how volumes work. Here, we’re going to spin
up a Tomcat container and save its log files in a volume. So, even if we take the con-
tainer down, we still have the logs. Let’s use the following command to spin up a Tom-
cat container with a volume mapping. The –v argument in the docker run command
says map the /usr/local/tomcat/logs directory from the container filesystem to the
log-vol volume in the Docker host, and we use --rm argument to instruct Docker to
remove this container from the system after we shut down the process (the Tomcat
server). If log-vol volume does not exist in the system, Docker will automatically
create one:

\> docker run --rm --name tomcat \
-v log-vol:/usr/local/tomcat/logs tomcat:9.0.20

Once the container starts up, we can find all the logs inside the volume we created.
Even after we take down the container, the log files still remain in the volume. We
can’t directly view the files in a volume by checking the Docker host filesystem. One
workaround is to use another container, with the same volume, and then list the con-
tent of the volume, as in the following command. Here we use the busybox Docker
image:

\> docker run --rm -i -v log-vol:/view_volume busybox find /view_volume

In the example in this section, we use –v to do a volume mapping. Instead, you can
use the --mount option, as in the following command. The –v option was originally
intended to use with standalone Docker containers, while --mount was used with
Docker Swarm (which we discuss in section E.17). However, since Docker version
17.06 onward, you can also use the --mount option instead of –v. Here we need to
specify the type of the mount as volume. :

\> docker run --rm --name tomcat \
--mount type=volume,source=log-vol,target=/usr/local/tomcat/logs \
tomcat:9.0.20

433Persisting runtime data of a container
The --mount option supports two types: volume and bind. In section E.12.2, we dis-
cuss bind mounts. The default mount type is volume, so if you want to use a volume
mount, you can simply run the following command, skipping the type argument:

\> docker run --rm --name tomcat \
--mount source=log-vol,target=/usr/local/tomcat/logs tomcat:9.0.20

E.12.2 Using bind mounts to persist runtime data

A bind mount lets you map a directory or a file from the host filesystem to the container
filesystem. Unlike with volumes, where Docker itself manages the storage of a volume,
in a bind mount, the user has the total control of the storage.

 Let’s take the same example we used in section E.12.1 to see how bind mounts
work. Here, we’re going to spin up a Tomcat container and save its log files in a direc-
tory on the host machine. So, even if we take the container down, we still have the
logs. Let’s use the following command to spin up a Tomcat container with a bind
mount. The –v argument in the docker run command says map the /usr/local/
tomcat/logs directory from the container filesystem to the ~/logs directory in our
host filesystem. If you don’t have a directory called ~/logs in your host filesystem, the
following command will automatically create one:

\> docker run --name tomcat \
-v ~/logs:/usr/local/tomcat/logs tomcat:9.0.20

Once the container starts up, we can find all the logs inside the ~/logs directory of the
host filesystem. Even after we take down the container, the log files remain in the host
filesystem. This is only one use case of bind mounts (or even for volumes), where we
take data out from a container. We can also use bind mounts (or volumes) to feed in
data from the host filesystem to the container filesystem. In chapter 10, we use bind
mounts to externalize keys/credentials from a Docker image.

 In the example in this section, we use –v to do a bind mount. Instead, you can use
the --mount option, as in the following command:

\> docker run --name tomcat \
--mount type=bind,\
source=/Users/prabath/logs,target=/usr/local/tomcat/logs \
tomcat:9.0.20

Even though you can use --mount instead of –v, there are some differences. Unlike
–v, --mount won’t create the source directory in the host filesystem if it does not
exist.

 If you are to pick volumes or bind mounts, what would you pick? We’ve seen that
both options are heavily used, but the recommendation from the Docker community
is to use volumes instead of bind mounts. The reason is, unlike bind mounts, a volume
does not rely on the structure of the host filesystem, and Docker itself directly man-
ages its storage.

434 APPENDIX E Docker fundamentals
E.13 Docker internal architecture
Docker initially used Linux Containers (LXCs) to implement process isolation. Linux
cgroups and namespaces are the two fundamental technologies behind LXC. The
Linux kernel, but not LXC, implements cgroups and namespaces. When Docker was
first released in 2013, it included the Docker daemon, whose implementation was
based on LXC. Docker dropped the use of LXC as its execution environment from
version 1.10 onward, after making it optional since version 0.9.

 Libcontainer, developed by Docker Inc., replaced LXC. Now, libcontainer is the
default execution environment of Docker. The motivation behind building lib-
container was to get direct access to the kernel-level constructs to build and run con-
tainers, rather than going through LXC (as LXC isn’t part of the Linux kernel). Lib-
container is a library that interacts with cgroups and namespaces at the level of the
Linux kernel.

 In addition to dropping support for LXC, Docker also worked on breaking down
the monolithic Docker daemon and taking some functionalities out of it, which was
also the motivation behind the Moby project that we discuss in section E.19. Figure
E.8 shows the Docker internal architecture.

Figure E.8 In the Docker internal architecture, cgroups and namespaces, which are implemented
at the Linux kernel, are the fundamental building blocks of Docker containers.

Client

\> docker build

Host

Docker Daemon

containerd

containerd-shim

runc

libcontainer

Linux kernel

containerd-shim

runc

libcontainer

cgroups

containerd-shim

runc

libcontainer

namespaces

\> docker run

435Docker internal architecture
E.13.1 Containerd

Containerd is the component in the Docker internal architecture that’s responsible for
managing containers across all life-cycle stages. It takes care of starting, stopping,
pausing, and destroying containers. Containerd finds the corresponding Docker
image, based on the image name that comes with the API request and passed to it by
the Docker daemon, and converts the image to an Open Container Initiative (OCI)
bundle. It then passes control to another component called containerd-shim.

 OCI (www.opencontainers.org) is a group that operates under the Linux Founda-
tion, established in June 2015 by Docker Inc. and others in the container industry to
develop standards around container formats and runtime. Docker supports OCI spec-
ifications from version 1.11 onward.

E.13.2 Containerd-shim

Containerd-shim forks another process called runc, which internally talks to the operat-
ing system kernel to create and run containers. Runc starts a container as a child pro-
cess, and once the container starts running, runc kills itself.

E.13.3 Runc

Runc implements the OCI container runtime specification. It creates containers by
talking to the operating system kernel. Runc uses the libcontainer library to interact
with cgroups and namespaces at the kernel level.

E.13.4 Linux namespaces

Docker brings in process isolation with namespaces. A namespace in Linux partitions
kernel resources so that each running process has its own independent view of those
resources. While implementing namespaces, Linux introduced two new system calls:
share and setns together with six new constant flags. Each flag represents a
namespace as listed here:

 PID namespace—Identified by the CLONE_NEWPID flag. Ideally, when we run a
process on the host operating system, it gets a unique process identifier. When
we have a partitioned process ID (PID) namespace, each container can have its
own process identifiers, independent of the other processes running on other
containers (on the same host machine). By default, each container has its own
PID namespace.

If we want to share a PID namespace among multiple containers, we can
override the default behavior by passing the --pid argument to the docker
run command. For example, the following command forces the hello-world
Docker container to use the PID namespace of the host machine:

\> docker run --pid="host" hello-world

And the following command forces the hello-world Docker container to use the
PID namespace of the container foo:

\> docker run --pid="container:foo" hello-world

436 APPENDIX E Docker fundamentals
 UTS namespace—Identified by the CLONE_NEWUTS flag. This UNIX Time Shar-
ing (UTS) namespace isolates the hostname and the Network Information
Service (NIS) domain name. In other words, the UTS namespace isolates host-
names, and each container can have its own hostname, regardless of the names
that other containers have. To override this default behavior and to share the
UTS namespace of the host machine with a container, we can pass the --uts
argument with the value host to the docker run command like this:

\> docker run --uts="host" hello-world

 NET namespace—Identified by the CLONE_NEWNET flag. The NET namespace
isolates the network stack with all the routes, firewall rules, and network devices.
For example, two processes running in two different containers can listen on
the same port with no conflict. We discuss Docker networking in detail in sec-
tion E.18.

 MNT namespace—Identified by the CLONE_NEWNS flag. The MNT (mount)
namespace isolates the mount points in the system. In simple terms, a mount
point defines the location of your data. For example, when you plug in a USB
pen drive to your MacBook, the operating system automounts the pen drive’s
filesystem to the /Volumes directory. The mount namespace helps isolate one
container’s view of the filesystem from others, as well as the host filesystem.
Each container sees its own /usr, /var, /home, /opt, and /dev directories.

 IPC namespace—Identified by the CLONE_NEWIPC flag. The IPC namespace iso-
lates the resources related to interprocess communication: memory segments,
semaphores, and message queues. By default, each container has its own private
namespace, and we can override that behavior by passing the --ipc argument
to the docker run command. For example, the following command forces the
hello-world Docker container to join the IPC namespace of another container
(foo):

\> docker run --ipc="container:foo" hello-world

 USR namespace—Identified by the CLONE_NEWUSER flag. The USR namespace
isolates the user identifiers within a given container. This allows two different
containers to have two users (or groups) with the same identifier. Also you can
run a process as the root in a container, while (the same process) having no
root access outside the container.

E.13.5 Linux cgroups

Control groups (cgroups) are a Linux kernel feature that lets you control resources allo-
cated to each process. With cgroups, we can say how much CPU time, how many CPU
cores, how much memory, and so on, a given process (or a container) is allowed to
consume. This is extremely important in an environment in which multiple contain-
ers are sharing the same set of physical resources (CPU, memory, network, and so
forth) from the host machine, in order to avoid one container from misusing those.

437What is happening behind the scenes of docker run?
 We can restrict the resource usage of a given container by passing the amount of
resources allocated to it as arguments to the docker run command. The following
command sets the maximum memory usage to 256 MB to the container started from
the hello-world Docker image:

\> docker run -m 256m hello-world

The following command allows the hello-world container to use CPU core 1 or CPU
core 2:

\> docker run –cpuset-cpus="1,2" hello-world

E.14 What is happening behind the scenes of docker run?
When we execute the command docker run via a Docker client, it talks to an API run-
ning on the Docker daemon (see figure E.9). The Docker client and daemon can run
on the same host machine or on multiple machines. Once the Docker daemon receives
the API request to create and spin up a new container, it internally talks to another com-
ponent called the containerd, which we discussed earlier in this appendix.

 Containerd finds the corresponding Docker image, based on the image name,
which comes along with the API request; converts it to an OCI bundle; and then
passes control to the containerd-shim component. Containerd-shim forks a runc pro-
cess, which internally talks to the operating system kernel to create and run the con-
tainer. Runc starts the container as a child process, and once the container starts
running, runc kills itself. Figure E.9 illustrates the flow of spinning up a container.

Figure E.9 Behind the scenes of a docker run command

Docker Client Docker Daemon containerd containerd-shim

runc

Container
Operating System

(Kernel)

API request to create
a Docker container

Delegates the
control to
containerd

Runs the container as
an isolated process

Talks to the operating
system via the
libcontainer library

Forks a runc process

Delegates the control
to containerd-shim

1

2

6

3

5

4

438 APPENDIX E Docker fundamentals
In section E.3, we used the following command to run the hello-world process in a
container:

\> docker run hello-world

As you might have already noticed, when we run the container with this command,
the console or the terminal where we run the command automatically gets attached to
the container’s standard input, output, and errors. This way of running a container,
known as foreground mode, is the default behavior. If we want to start the container in
detached mode, we need to pass the –d argument to the docker run command. The
output will print the container ID:

\> docker run -d hello-world

74dac4e3398410c5f89d01b544aaee1612bb976f4a10b5293017317630f3a47a

Once the container starts, we can use the following command to connect to the con-
tainer with the container ID and get the logs:

\> docker container logs 74dac4e3398410c5f89d01b544aaee1612bb…

The following is another useful command to inspect the status and properties of a
running container:

\> docker container inspect 74dac4e3398410c5f89d01b544aaee1612bb…

[
 {
 "Id": "74dac4e3398410c5f89d01b544aaee1612bb976f4",
 "Created": "2019-05-22T18:29:47.992128412Z",
 "Path": "/hello",
 "Args": [],
 "State": {
 "Status": "exited",
 "Running": false,
 "Paused": false,
 "Restarting": false,
 "OOMKilled": false,
 "Dead": false,
 "Pid": 0,
 "ExitCode": 0,
 "Error": "",
 "StartedAt": "2019-05-22T18:29:48.609133534Z",
 "FinishedAt": "2019-05-22T18:29:48.70655394Z"
 },
 }
]

E.15 Inspecting traffic between Docker client and host
All the Docker commands you’ve tried so far are generated from your Docker client
and sent to the Docker host. Let’s inspect the traffic between the Docker client and
the host by using a tool called socat. This tool helps you understand what’s happening
underneath.

439Inspecting traffic between Docker client and host
 First, you need to install socat on your operating system. If you’re on a Mac, you
can use brew, or if you’re on Debian/Ubuntu Linux, you can use apt-get. The best way
to find the installation steps is to search Google for socat with your operating system
name. (We couldn’t find a single place that carries installation instructions for all the
operating systems.) Once you have socat (and all the other dependencies) installed,
you can use the following command to run it:

\> socat -d -d -v TCP-L:2345,fork,bind=127.0.01 UNIX:/var/run/docker.sock

2019/06/24 23:37:32 socat[36309] N listening on LEN=16 AF=2 127.0.0.1:2345

The -d -d flags in this command ask socat to print all fatal, error, warning, and
notice messages. If you add another –d, it also prints informational messages. The
manual (man page) of socat provides these details:

 The –v flag instructs socat to write the transferred data to its target streams and
also to stderr.

 The TCP-L:2345 flag instructs socat to listen in on port 2345 for TCP traffic.
 The fork flag enables socat to handle each arriving packet by its own sub-

process. When we use fork, socat creates a new process for each accepted
connection.

 The bind=127.0.0.1 flag instructs socat to listen only on the loopback inter-
face, so no one outside the host machine can directly talk to socat.

 UNIX:/var/run/docker.sock is the address of the network socket where the
Docker daemon accepts connections.

In effect, the command asks socat to listen for TCP traffic on port 2345, log it, and for-
ward the logs to the UNIX socket /var/run/docker.sock. By default, the Docker client
is configured to talk to a UNIX socket. But to intercept traffic between the client and
the Docker host, we need to instruct the Docker client to send requests via socat. You
can run the following command to override the DOCKER_HOST environment variable
and point it to socat:

\> export DOCKER_HOST=localhost:2345

Let’s run the following Docker command from the same terminal where you exported
the DOCKER_HOST environment variable, to find all the Docker images available in the
Docker host:

\> docker images

While running the command, also observe the terminal that runs socat. There you’ll
find printed request and response messages between the Docker client and host.
Without going through the docker images command, you can get the same results
from the following curl command (assuming the Docker daemon and socat are run-
ning on localhost) by talking to the Docker API:

\> curl http://localhost:2345/v1.39/images/json

440 APPENDIX E Docker fundamentals
To reset the DOCKER_HOST environment variable, run the following command. Now
your system will start to function as it was before, and the Docker client will directly
talk to the Docker host without going through socat:

\> export DOCKER_HOST=

E.16 Docker Compose
Docker Compose is an open source tool (not part of Docker Engine) written in Python
that helps you manage multicontainer applications. For example, your application
may have a microservice, a database, and a message queue. Each component runs in
its own container. Rather than managing those containers independently, we can cre-
ate a single YAML file called docker-compose.yaml and define all the required param-
eters and dependencies there. To start the application with all three containers, we
need to run only a single command, docker-compose up, from the directory where
you have the docker-compose.yaml file.

 By default, docker-compose looks for a file with the name docker-compose.yaml
in its current directory, but you can override the default behavior with the –f argument
and pass the name of the YAML file (docker-compose -f my-docker-compose
.yaml up). The following listing shows a sample docker-compose.yaml file.

version: '3'
services:
 zookeeper:
 image: wurstmeister/zookeeper
 kafka:
 image: wurstmeister/kafka
 ports:
 - "9092:9092"
 environment:
 KAFKA_ADVERTISED_HOST_NAME: localhost
 KAFKA_ZOOKEEPER_CONNECT: zookeeper:2181
 depends_on:
 - "zookeeper"
 sts:
 image: prabath/manning-sts-appendix-e
 ports:
 - "8443:8443"
 depends_on:
 - "kafka"

This docker-compose.yaml file defines three containers for the application. The STS is
a microservice that issues tokens, and it depends on Apache Kafka, which is a message
broker. Kafka, internally, depends on Apache ZooKeeper for distributed configuration
management. Effectively, to run our STS application, we need three Docker images. We
can start all three containers with the single docker-compose up command.

 A detailed discussion on Docker Compose is beyond the scope of this book. If
you’re still keen on understanding Docker Compose in detail, refer to the online

Listing E.3 The docker-compose.yaml file

441Docker Swarm
documentation (https://docs.docker.com/compose/overview/) or chapter 11 of
Docker in Action.

E.17 Docker Swarm
In practice, when we run Docker in production, we may have hundreds of Docker
containers running in multiple nodes. A node can be a physical machine or a VM. Also,
thinking in terms of high availability of the application we run in a container, we need
to have multiple replicas of the same application running in different containers. To
determine the number of replicas for a given application, we need to know how much
load (traffic) one single container can handle, as well as the average and peak loads
that our system gets. It’s desirable that we run the minimal number of replicas to han-
dle the average load and then autoscale (spin up more replicas) as the load increases.
With this approach, we waste a minimal amount of system resources.

 Docker Swarm addresses most of these concerns and more. This feature has been
part of Docker Engine since Docker 1.12; prior to that, it was an independent prod-
uct. Docker Swarm has two main objectives: to manage a multinode Docker cluster,
and to act as an orchestration engine for Docker containers. These features are built
into Docker with the open source project called SwarmKit (https://github.com/
docker/swarmkit/).

 Let’s revisit the high-level Docker architecture we discussed in section E.3. Figure
E.10 (which is the same as figure E.5 shown previously) depicts only a single Docker
node. If we want to run a container, the Docker client over an API talks directly to the
Docker host to run the container. In a Docker cluster with multiple nodes, it’s imprac-
tical for our Docker client to talk to multiple Docker hosts and schedule to run a con-
tainer. This is one very basic limitation, and there are many ways of addressing this
requirement, as we discussed at the beginning of this section. The architecture pre-
sented in figure E.10 won’t work anymore in a Docker cluster.

Figure E.10 In this high-level Docker component architecture, the Docker client talks to the Docker
daemon running on the Docker host over a REST API to perform various operations on Docker images
and containers.

Client

\> docker build

Registry

Images

Host

Docker Daemon

ImagesContainers\> docker run

1

2 3

5

4

https://docs.docker.com/compose/overview/
https://github.com/docker/swarmkit/
https://github.com/docker/swarmkit/

442 APPENDIX E Docker fundamentals
The new architecture that Docker Swarm proposes (figure E.11) introduces a set of
manager nodes and a set of worker nodes. In other words, a Docker cluster is a collec-
tion of manager and worker nodes.

 The manager nodes in a cluster are responsible for managing the state of the cluster.
For example, if our requirement is to run five replicas of a given application, the man-
ager nodes must make sure that happens. Also, if our requirement is to spin up more
replicas as the load goes up, and spin down replicas as the load goes down, the man-
ager nodes should generate the control signals to handle those situations by monitor-
ing the load on a particular application. The responsibility of the worker nodes is to
accept control signals from manager nodes and to act accordingly. In fact, containers
run on worker nodes.

 To schedule an application to run on the Docker cluster, the Docker client talks to
one of the manager nodes. The set of manager nodes in a cluster is collectively known
as the control plane.

Figure E.11 In this high-level Docker Swarm architecture, a Swarm cluster is built with a set of manager nodes
and a set of worker nodes.

Swarm introduces a new concept called a service: the smallest deployment unit in a
Docker cluster, not a container. In fact, a service builds a wrapper over a Docker con-
tainer. A container wrapped in a service is also known as a replica, or a task.

 We use the docker service create command to create a Docker service. In
addition to the image name, port mapping, and other arguments that we use in the

Swarm Worker
Node

Swarm Worker
Node

Swarm Worker
Node

Swarm Manager
Node

Swarm Manager
Node

Distributed Cluster Store

Swarm Manager
Node

Control plane
of the Swarm
cluster

Worker nodes get
tasks assigned from
the manager nodes.

Accesses Docker
APIs over HTTP

Swarm cluster with a
set of worker nodes
and manager nodes

Each worker node has a
Docker daemon running.

Docker clients
connect to Swarm
manager over HTTP.

There is an etcd database in
each manager node, which
stores the configuration
and the state of the cluster.

443Docker networking
docker run command, the docker service create command also accepts other
parameters, which you can check with the command docker service create
–help. The replicas argument in the following command asks Swarm to create five
replicas of the corresponding service (or the application):

\> docker service create –name hello-service –replicas 5 hello-world

An in-depth walk-through of Swarm is beyond the scope of this book. If you’re inter-
ested in reading more, we recommend checking out chapter 12 of Docker in Action.
The online documentation on Docker Swarm is another good place to start; you’ll
find that at https://docs.docker.com/engine/swarm/key-concepts/.

E.18 Docker networking
As discussed in section E.13.4, the NET namespace in the Linux kernel provides an
isolated networking stack with all the routes, firewall rules, and network devices for a
container. In other words, a Docker container has its own networking stack. Docker
networking is implemented with the libnetwork open source library written in the Go
programming language and based on the Container Network Model (CNM) design
specification. CNM defines core building blocks for Docker networking (figure E.12),
which are the sandbox, endpoint, and network.

Figure E.12 Docker follows the Container Network Model design for networking, which defines three building
blocks: sandbox, endpoint, and network.

Network Z

Docker Host

Network X Network Y

One or more endpoints
in a given sandbox
connect a sandbox to
one or more networks.

Endpoints A and F can communicate
with each other because they are
connected to the same network—but
not endpoints A and B.

All the containers run on the same
host machine, but each still has its
own isolated network stack.

Each sandbox has its
own isolated network
configuration, implemented
using the NET namepsace.

One endpoint can
connect a sandbox to
only one network.

If an endpoint connected to network X wants
to communicate with an endpoint connected
to network Z, networks X and Z need to
connect via a router.

Container 1

Sandbox

A B

Container 2

Sandbox

C D

Container 3

Sandbox

E F

https://docs.docker.com/engine/swarm/key-concepts/

444 APPENDIX E Docker fundamentals
A sandbox is an abstraction over an isolated networking configuration. For example,
each container has its own network sandbox with routing tables, firewall rules, and
Domain Name System (DNS) configurations. Docker implements a sandbox with the
NET namespace. An endpoint represents a network interface, and each sandbox has its
own set of endpoints. These virtual network interfaces (or endpoints) connect a sand-
box to the network. A set of endpoints that needs to communicate with each other
forms a network. By default, Docker supports three networking modes: bridge, host,
and none. The following command lists the supported Docker networks:

\> docker network ls

NETWORK ID NAME DRIVER SCOPE
f8c9f194e5b7 bridge bridge local
a2b417db8f94 host host local
583a0756310a none null local

The following listing uses the network ID to get further details of a given network.

\> docker network inspect f8c9f194e5b7

[
 {
 "Name": "bridge",
 "Id": "f8c9f194e5b70c305b3eb938600f9caa8f5ed11439bc313f7245f76e0769ebf6",
 "Created": "2019-02-26T00:20:44.364736531Z",
 "Scope": "local",
 "Driver": "bridge",
 "EnableIPv6": false,
 "IPAM": {
 "Driver": "default",
 "Options": null,
 "Config": [
 {
 "Subnet": "172.17.0.0/16",
 "Gateway": "172.17.0.1"
 }
]
 },
 "Internal": false,
 "Attachable": false,
 "Ingress": false,
 "ConfigFrom": {
 "Network": ""
 },
 "ConfigOnly": false,
 "Containers": {},
 "Options": {
 "com.docker.network.bridge.default_bridge": "true",
 "com.docker.network.bridge.enable_icc": "true",
 "com.docker.network.bridge.enable_ip_masquerade": "true",

Listing E.4 The details of a bridge network

445Docker networking
 "com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
 "com.docker.network.bridge.name": "docker0",
 "com.docker.network.driver.mtu": "1500"
 },
 "Labels": {}
 }
]

E.18.1 Bridge networking

Bridge networking in Docker uses Linux bridging and iptables to build connectivity
between containers running on the same host machine. It’s the default networking
mode in Docker. When Docker spins up a new container, it’s attached to a private IP
address.

 If you already have the hello-world container running from section E.3, the follow-
ing two commands help find the private IP address attached to it. The first command
finds the container ID corresponding to hello-world, and the second command uses it
to inspect the container. The output of the second command is truncated to show
only the network configuration:

\> docker ps

CONTAINER ID IMAGE STATUS PORTS
b410162d213e hello-world Up About a minute 0.0.0.0:8443->8443/tcp

\> docker inspect b410162d213e

[
 {
 {
 "Networks": {
 "bridge": {
 "Gateway": "172.17.0.1",
 "IPAddress": "172.17.0.2",
 "IPPrefixLen": 16,
 "IPv6Gateway": "",
 "GlobalIPv6Address": "",
 "GlobalIPv6PrefixLen": 0,
 "MacAddress": "02:42:ac:11:00:02"
 }
 }
 }
 }
]

The private IP address assigned to a container is not accessible directly from the host
machine. When one container talks to another container in the same host machine
with the private address, the connection is routed through the docker0 bridge-
networking interface, as shown in figure E.13.

 For the communications among containers on the same host machine, an IP
address isn’t the best option. IP addresses can change dynamically when containers

446 APPENDIX E Docker fundamentals
spin up and down. Instead of the private address, we can use the container’s name
itself to communicate among containers. This is one benefit of giving a container a
meaningful name (rather than relying on a randomly generated UUID by Docker) at
the time we spin up a container.

E.18.2 Host networking

To facilitate communication among containers, host networking is the laziest option in
Docker. When host networking is enabled for a given container, it uses the host
machine’s networking stack directly and shares the network namespace with the host
machine. To enable host networking, we need to pass the network argument to the
docker run command with the value host; for example:

\> docker run --network="host" hello-world

E.18.3 No networking

No networking mode disables all the networking interfaces available for a given con-
tainer. It’s a closed container. You would need a container with no networking to carry
out certain specific tasks; for example, to process a set of log files in one format
and then output into another format. To disable networking, we need to pass the
--network argument to the docker run command with the value none like so:

\> docker run --network="none" hello-world

Container 1

Private Network Interface

Container 1 Virtual Interface

Container 2

Private Network Interface

Container 2 Virtual Interface

Docker Bridge Interface (docker0)

Logical Host Interface

Physical Host Interface

This is represented as an
endpoint in the container 1
network sandbox.

Host operating system
network stack

Bridge networking works only between two
containers running on the same host machine.

Figure E.13 Containers use the bridge-networking interface provided by Docker to communicate
with each other.

447Moby project
E.18.4 Networking in a Docker production deployment

Bridge networking works in only a single host environment or, in other words, only
among the containers deployed on the same host machine. In a production deploy-
ment, this isn’t sufficient, and containers have to interact with each other running on
different host machines. Container orchestration frameworks like Kubernetes and
Docker Swarm support multihost networking in Docker. Docker Swarm supports mul-
tihost container communications with Docker overlay networking, and in chapter 11,
we discuss in detail how Kubernetes supports multihost networking.

E.19 Moby project
Docker Inc. announced the Moby project during its annual user conference, Docker-
Con, in 2017. With this announcement, the Docker GitHub project moved from
github.com/docker/docker to github.com/moby/moby.

 The Moby project aims to expand the Docker ecosystem by breaking the old mono-
lithic Docker project into multiple components. Developers from various other proj-
ects can reuse these components to build their own container-based systems. You can
read more on the Moby project at https://blog.docker.com/2017/04/introducing-
the-moby-project/.

http://github.com/moby/moby
http://github.com/docker/docker
https://blog.docker.com/2017/04/introducing-the-moby-project/
https://blog.docker.com/2017/04/introducing-the-moby-project/

appendix F
Open Policy Agent

In a typical microservices deployment, we can enforce access-control policies in
either of the following two locations or both:

 The edge of the deployment—Typically, with an API gateway (which we discuss in
chapter 5)

 The edge of the service—Typically, with a service mesh or with a set of embedded
libraries (which we discuss in chapter 7 and chapter 12)

Authorization at the service level enables each service to enforce access-control pol-
icies in the way it wants. Typically, you apply coarse-grained access-control policies at
the API gateway (at the edge), and more fine-grained access-control policies at the
service level. Also, it’s common to do data-level entitlements at the service level. For
example, at the edge of the deployment, we can check whether a given user is eligi-
ble to perform an HTTP GET for the Order Processing microservice. But the data
entitlement checks, such as only an order admin can view orders having a transac-
tion amount greater than $10,000, are enforced at the service level.

 In this appendix, we discuss key components of an access-control system, access-
control patterns, and how to define and enforce access-control policies by using Open
Policy Agent (OPA). OPA (www.openpolicyagent.org) is an open source, lightweight,
general-purpose policy engine with no dependency on microservices. You can use
OPA to define fine-grained access-control policies and enforce those policies at dif-
ferent locations across your infrastructure as well as within a microservices deploy-
ment. We discussed OPA briefly in chapter 5. In this appendix, we delve deep into the
details. We also assume that you’ve already gone through chapters 5, 7, 10, 11, and
12, and have a good understanding of containers, Kubernetes, Istio, and JWT.

F.1 Key components in an access-control system
In a typical access-control system, we find five key components (figure F.1): the pol-
icy administration point (PAP), policy enforcement point (PEP), policy decision
448

www.openpolicyagent.org

449Key components in an access-control system
point (PDP), policy information point (PIP), and policy store. The PAP is the compo-
nent that lets policy administrators and developers define access-control policies.

 Most of the time, PAP implementations come with their own user interface or
expose the functionality via an API. Some access-control systems don’t have a specific
PAP; rather, they read policies directly from the filesystem, so you need to use third-
party tools to author these policies. Once you define the policies via a PAP, the PAP
writes the policies to a policy store. The policy store can be a database, a filesystem, or
even a service that’s exposed via HTTP.

 The PEP sits between the service/API, which you want to protect, and the client
application. At runtime, the PEP intercepts all the communications between the cli-
ent application and the service. As we discussed in chapter 3, the PEP can be an API

Policy Administration
Point (PAP)

Policy Decision Point
(PDP)

Policy Enforcement
Point (PEP)

Policy Store

Policy Information
Point (PIP)

Policy Information
Point (PIP)

Database

Policy Information
Point (PIP)

API/Microservices

Stores all access-
control policies

Policy administrators define
access-control policies via PAP.

Loads policies from
the policy store and
makes decisions based
on the request and the
corresponding policies

Intercepts all the requests going
through to the API/microservices
and enforces access-control policies

Feeds PDP with any missing
information that’s required to
evaluate policies against the
corresponding authorization
request

1

2

6

8

7

3

5

4

Figure F.1 Components of a typical access-control system. The PAP defines access-control policies and then
stores those in the policy store. At runtime, the PEP intercepts all the requests, builds an authorization request,
and talks to the PDP. The PDP loads the policies from the policy store and any other missing information from the
PIP, evaluates the policies, and passes the decision back to the PEP.

450 APPENDIX F Open Policy Agent
gateway, or as we discussed in chapters 7 and 8, it can be some kind of an interceptor
embedded into your application itself. And in chapter 12, we discussed how in a ser-
vice mesh deployment, a proxy can be used as a PEP that intercepts all the requests
coming to your microservice.

 When the PEP intercepts a request, it extracts certain parameters from the
request—such as the user, resource, action, and so on—and creates an authorization
request. Then it talks to the PDP to check whether the request is authorized. If it’s
authorized, the PDP dispatches the request to the corresponding service or to the
API; otherwise, it returns an error to the client application. Before the request hits the
PEP, we assume it’s properly authenticated.

 When the PEP talks to the PDP to check authorization, the PDP loads all the corre-
sponding policies from the policy store. And while evaluating an authorization
request against the applicable policies, if there is any required but missing informa-
tion, the PDP will talk to a PIP. For example, let’s say we have an access-control policy
that says you can buy a beer only if your age is greater than 21, but the authorization
request carries only your name as the subject, buy as the action, and beer as the
resource. The age is the missing information here, and the PDP will talk to a PIP to
find the corresponding subject’s age. We can connect multiple PIPs to a PDP, and
each PIP can connect to different data sources.

F.2 What is an Open Policy Agent?
As we discussed in the introduction to this appendix, OPA is an open source, light-
weight, general-purpose policy engine that has no dependency on microservices. You
can use OPA to define fine-grained access-control policies and enforce those policies
at different locations throughout your infrastructure as well as within a microservices
deployment. To define access-control policies, OPA introduces a new declarative lan-
guage called Rego (www.openpolicyagent.org/docs/latest/policy-language).

 OPA started as an open source project in 2016, with a goal to unify policy enforce-
ment across multiple heterogeneous technology stacks. Netflix, one of the early
adopters of OPA, uses it to enforce access-control policies in its microservices deploy-
ment. Apart from Netflix, Cloudflare, Pinterest, Intuit, Capital One, State Street, and
many more use OPA. At the time of this writing, OPA is an incubating project under
the Cloud Native Computing Foundation (CNCF).

F.3 OPA high-level architecture
In this section, we discuss how OPA’s high-level architecture fits into our discussion. As
you can see in figure F.2, the OPA engine can run on its own as a standalone deploy-
ment or as an embedded library along with an application.

 When you run the OPA server as a standalone deployment, it exposes a set of
REST APIs that PEPs can connect to and check authorization. In figure F.2, the OPA
engine acts as the PDP.

 The open source distribution of the OPA server doesn’t come with a policy author-
ing tool or a user interface to create and publish policies to the OPA server. But you

www.openpolicyagent.org/docs/latest/policy-language

451OPA high-level architecture
can use a tool like Visual Studio (VS) Code to create OPA policies, and OPA has a
plugin for VS Code. If you decide to embed the OPA server (instead of using it as a
hosted server) as a library in your application, you can use the Go API (provided by
OPA) to interact with it.

 Once you have the policies, you can use the OPA API to publish them to the OPA
server. When you publish those policies via the API, the OPA engine keeps them in
memory only. You’ll need to build a mechanism to publish policies every time the
server boots up. The other option is to copy the policy files to the filesystem behind
OPA, and the OPA server will pick them up when it boots up. If any policy changes
occur, you’ll need to restart the OPA server. However, there is an option to ask the
OPA server to load policies dynamically from the filesystem, but that’s not recom-
mended in a production deployment. Also, you can load policies to the OPA server by
using a bundle server; we discuss that in detail in section F.7.

 OPA has a PIP design to bring in external data to the PDP or to the OPA engine.
This model is quite similar to the model we discussed in the previous paragraph with
respect to policies. In section F.7, we detail how OPA brings in external data.

OPA Engine

Kubernetes Admission
Controller, Istio Pilot

plugin, Zuul filter, and so on

Systems push policies and data
to the OPA server via the API.

In addition to the REST API, OPA
provides a Go API. With the Go
API, you can embed an OPA engine
into the application itself.

OPA provides an HTTP REST API to
push data/policies as well as to query
the policy engine to see whether a
request is authorized.

The interaction between
the PEP and the PDP can
happen over the HTTP REST
API or via the Go API.

OPA policies can be enforced
from anywhere (PEPs).

OPA loads policies
and data from the
filesystem.

OPA continues to pull
data from a given data
source with a predefined
time interval.

Figure F.2 An application or a PEP can integrate with the OPA policy engine via its HTTP REST API or via
the Go API.

452 APPENDIX F Open Policy Agent
F.4 Deploying OPA as a Docker container
In this section, we discuss how to deploy an OPA server as a Docker container. In OPA,
there are multiple ways of loading policies. Importantly, OPA stores those policies in
memory (there is no persistence), so that on a restart or redeployment, OPA needs a
way to reload the policies. For example, when we use OPA for the Kubernetes admis-
sion control, policies are persisted in the Kubernetes API server, and OPA has its own
sidecar that loads policies via OPA’s REST API. That’s roughly the approach we fol-
lowed in section 5.3. In using OPA in a microservices deployment, the most common
approaches are to either configure OPA to download policies via the bundle API (for
example, using AWS’s S3 as the bundle server) or use volume/bind mounts to mount
policies into the container running OPA.

 With bind mounts, we keep all the policies in a directory in the host filesystem and
then mount it to the OPA Docker container filesystem. If you look at the appendix-f/
sample01/run_opa.sh file, you’ll find the following Docker command (do not try it as
it is). Here, we mount the policies directory from the current location of the host file-
system to the policies directory of the container filesystem under the root:

\> docker run --mount type=bind,source="$(pwd)"/policies,target=/policies \
-p 8181:8181 openpolicyagent/opa:0.15.0 run /policies --server

To start the OPA server, run the following command from the appendix-f/sample01
directory. This loads the OPA policies from the appendix-f/sample01/policies direc-
tory (in section F.6, we discuss OPA policies in detail):

\> sh run_opa.sh

{
 "addrs":[
 ":8181"
],
 "insecure_addr":"",
 "level":"info",
 "msg":"Initializing server.",
 "time":"2019-11-05T07:19:34Z"
}

You can run the following command from the appendix-f/sample01 directory to test
the OPA server. The appendix-f/sample01/policy_1_input_1.json file carries the
input data for the authorization request in JSON format (in section F.6, we discuss
authorization requests in detail):

\> curl -v -X POST --data-binary @policy_1_input_1.json \
http://localhost:8181/v1/data/authz/orders/policy1

{"result":{"allow":true}}

The process of deploying OPA in Kubernetes is similar to deploying any other service
on Kubernetes, as we discuss in appendix J. You can check the OPA documentation
available at http://mng.bz/MdDD for details.

https://shortener.manning.com/MdDD

453Protecting an OPA server with mTLS
F.5 Protecting an OPA server with mTLS
OPA was designed to run on the same server as the microservice that needs authoriza-
tion decisions. As such, the first layer of defense for microservice-to-OPA communica-
tion is the fact that the communication is limited to localhost. OPA is a host-local
cache of the relevant policies authored in the PAP and recorded in the policy store.
To make a decision, OPA is often self-contained and can make the decision all on its
own without reaching out to other servers.

 This means that decisions are highly available and highly performant, for the simple
reason that OPA shares a fate with the microservice that needs authorization decisions
and requires no network hop for those decisions. Nevertheless, OPA recommends
defense in depth and ensuring that communication between it and its microservice or
other clients is secured via mTLS.

 In this section, we discuss how to protect the OPA server with mTLS. This will
ensure all the communications that happen among the OPA server and other client
applications are encrypted. Also, only legitimate clients with proper keys can talk to
the OPA server. To protect the OPA server with mTLS, we need to accomplish the fol-
lowing tasks:

 Generate a public/private key pair for the OPA server
 Generate a public/private key pair for the OPA client
 Generate a public/private key pair for the CA
 Sign the public key of the OPA server with the CA’s private key to generate the

OPA server’s public certificate
 Sign the public key of the OPA client with the CA’s private key to generate the

OPA client’s public certificate

To perform all these tasks, we can use the appendix-f/sample01/keys/gen-key.sh
script with OpenSSL. Let’s run the following Docker command from the appendix-f/
sample01/keys directory to spin up an OpenSSL Docker container. You’ll see that we
mount the current location (which is appendix-f/sample01/keys) from the host file-
system to the /export directory on the container filesystem:

\> docker run -it -v $(pwd):/export prabath/openssl
#

Once the container boots up successfully, you’ll find a command prompt where you
can type OpenSSL commands. Let’s run the following command to execute the
gen-key.sh file that runs a set of OpenSSL commands:

sh /export/gen-key.sh

Once this command executes successfully, you’ll find the keys corresponding to the CA
in the appendix-f/sample01/keys/ca directory, the keys corresponding to the OPA
server in the appendix-f/sample01/keys/opa directory, and the keys corresponding to
the OPA client in the appendix-f/sample01/keys/client directory. If you want to under-
stand the exact OpenSSL commands we ran during key generation, check appendix G.

454 APPENDIX F Open Policy Agent

c
to t
 In case you’re already running the OPA server, stop it by pressing Ctrl-C on the
corresponding command console. To start the OPA server with TLS support, use the
following command from the appendix-f/sample01 directory:

\> sh run_opa_tls.sh

{
 "addrs":[
 ":8181"
],
 "insecure_addr":"",
 "level":"info",
 "msg":"Initializing server.",
 "time":"2019-11-05T19:03:11Z"
}

You can run the following command from the appendix-f/sample01 directory to test
the OPA server. The appendix-f/sample01/policy_1_input_1.json file carries the
input data for the authorization request in JSON format. Here we use HTTPS to talk
to the OPA server:

\> curl -v -k -X POST --data-binary @policy_1_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy1

{"result":{"allow":true}}

Let’s check what’s in the run_opa_tls.sh script, shown in the following listing. The
code annotations in the listing explain what each argument means.

\> docker run \
 -v "$(pwd)"/policies:/policies \
 -v "$(pwd)"/keys:/keys \
 -p 8181:8181 \
 openpolicyagent/opa:0.15.0 \
 run /policies \
 --tls-cert-file /keys/opa/opa.cert \
 --tls-private-key-file /keys/opa/opa.key \
 --server

Now the communication between the OPA server and the OPA client (curl) is pro-
tected with TLS. But still, anyone having access to the OPA server’s IP address can

Listing F.1 Protecting an OPA server endpoint with TLS

Instructs the OPA server to load
policies from policies directory, which

is mounted to the OPA container
The OPA server finds key/certificate
for the TLS communication from
the keys directory, which is
mounted to the OPA container.

Port mapping
maps the

ontainer port
he host port.

Name of the OPA
Docker image

Runs the OPA server
by loading policies and
data from the policies
directory, which is
mounted to the OPA
container

Certificate used for the
TLS communication

Private key used for
the TLS communicationStarts the OPA engine

under the server mode

455OPA policies
access it over TLS. There are two ways to protect the OPA endpoint for authentica-
tion: token authentication and mTLS.

 With token-based authentication, the client has to pass an OAuth 2.0 token in the
HTTP Authorization header as a bearer token, and you also need to write an authori-
zation policy.1 In this section, we focus on securing the OPA endpoint with mTLS.

 If you’re already running the OPA server, stop it by pressing Ctrl-C on the corre-
sponding command console. To start the OPA server enabling mTLS, run the follow-
ing command from the appendix-f/sample01 directory:

\> sh run_opa_mtls.sh

Let’s check what’s in the run_opa_mtls.sh script, shown in the following listing. The
code annotations explain what each argument means.

\> docker run \
 -v "$(pwd)"/policies:/policies \
 -v "$(pwd)"/keys:/keys \
 -p 8181:8181 \
 openpolicyagent/opa:0.15.0 \
 run /policies \
 --tls-cert-file /keys/opa/opa.cert \
 --tls-private-key-file /keys/opa/opa.key \
 --tls-ca-cert-file /keys/ca/ca.cert \
 --authentication=tls \
 --server

You can use the following command from the appendix-f/sample01 directory to test
the OPA server, which is now secured with mTLS:

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_1_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy1

Here, we use HTTPS to talk to the OPA server, along with the certificate and the key
generated for the OPA client at the start of this section. The key and the certificate of
the OPA client are available in the appendix-f/sample01/keys/client directory.

F.6 OPA policies
To define access-control policies, OPA introduces a new declarative language called
Rego.2 In this section, we go through a set of OPA policies (listing F.3) to understand
the strength of the Rego language. All the policies we discuss here are available in the

1 This policy is explained at www.openpolicyagent.org/docs/latest/security/.

Listing F.2 Protecting an OPA server endpoint with mTLS

2 You can find more details about Rego at www.openpolicyagent.org/docs/latest/policy-language/.

The public certificate of the CA.
All the OPA clients must carry
a certificate signed by this CA.

Enables mTLS
authentication

www.openpolicyagent.org/docs/latest/security/
www.openpolicyagent.org/docs/latest/policy-language/

456 APPENDIX F Open Policy Agent
appendix-f/sample01/policies directory and are already loaded into the OPA server
we booted up in section F.5, which is protected with mTLS.

package authz.orders.policy1

default allow = false

allow {
 input.method = "POST"
 input.path = "orders"
 input.role = "manager"
}

allow {
 input.method = "POST"
 input.path = ["orders",dept_id]
 input.deptid = dept_id
 input.role = "dept_manager"
}

The policy defined in listing F.3, which you’ll find in the policy_1.rego file, has two
allow rules. For an allow rule to return true, every statement within the allow
block must return true. The first allow rule returns true only if a user with the
manager role is the one doing an HTTP POST on the orders resource. The second
allow rule returns true if a user with the dept_manager role is the one doing an
HTTP POST on the orders resource under their own department.

 Let’s evaluate this policy with two different input documents. The first is the input
document in listing F.4, which you’ll find in the policy_1_input_1.json file. Run the
following curl command from the appendix-f/sample01 directory and it returns
true, because the inputs in the request match with the first allow rule in the policy
(listing F.3):

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_1_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy1

{"result":{"allow":true}}

{
 "input":{
 "path":"orders",
 "method":"POST",

Listing F.3 OPA policy written in Rego

Listing F.4 Rego input document with manager role

The package name of the policy. Packages
let you organize your policies into modules,

just as with programming languages. By default, all requests are
disallowed. If this isn’t set and no
allowed rules are matched, OPA
returns an undefined decision.

Declares the conditions to
allow access to the resource

The Input document is an arbitrary JSON object
handed to OPA and includes use-case-specific
information. In this example, the Input
document includes a method, path, role, and
deptid. This condition requires that the method
parameter in the input document must be POST.

The value of the path parameter in the
input document must match this value,
where the value of the dept_id is the deptid
parameter from the input document.

457OPA policies
 "role":"manager"
 }
}

Let’s try with another input document, as shown in listing F.5, which you’ll find in the
policy_1_input_2.json file. Run the following curl command from the appendix-f/
sample01 directory and it returns true, because the inputs in the request match with
the second allow rule in the policy (listing F.3). You can see how the response from
OPA server changes by changing the values of the inputs:

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_1_input_2.json \
https://localhost:8181/v1/data/authz/orders/policy1

{"result":{"allow":true}}

{
 "input":{
 "path":["orders",1000],
 "method":"POST",
 "deptid":1000,
 "role":"dept_manager"
 }
}

Now let’s have a look at a slightly improved version of the policy in listing F.3. You can
find this new policy in listing F.6, and it’s already deployed to the OPA server you’re
running. Here, our expectation is that if a user has the manager role, they will be able
to do HTTP PUTs, POSTs, or DELETEs on any orders resource, and if a user has the
dept_manager role, they will be able to do HTTP PUTs, POSTs, or DELETEs only on
the orders resource in their own department. Also any user, regardless of the role,
should be able to do HTTP GETs to any orders resource under their own account.
The annotations in the following listing explain how the policy is constructed.

package authz.orders.policy2

default allow = false

allow {
 allowed_methods_for_manager[input.method]
 input.path = "orders"
 input.role = "manager"
}

allow {
 allowed_methods_for_dept_manager[input.method]

Listing F.5 Rego input document with dept_manager role

Listing F.6 Improved OPA policy written in Rego

Checks whether the value of the method
parameter from the input document is in
the allowed_methods_for_manager set

Checks whether the value of the method
parameter from the input document is in the

allowed_methods_for_dept_manager set

458 APPENDIX F Open Policy Agent
 input.deptid = dept_id
 input.path = ["orders",dept_id]
 input.role = "dept_manager"
}

allow {
 input.method = "GET"
 input.empid = emp_id
 input.path = ["orders",emp_id]
}

allowed_methods_for_manager = {"POST","PUT","DELETE"}
allowed_methods_for_dept_manager = {"POST","PUT","DELETE"}

Let’s evaluate this policy with the input document in listing F.7, which you’ll find in the
policy_2_input_1.json file. Run the following curl command from the appendix-f/
sample01 directory and it returns true, because the inputs in the request match with
the first allow rule in the policy (listing F.6):

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_2_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy2

{
 "result":{
 "allow":true,
 "allowed_methods_for_dept_manager":["POST","PUT","DELETE"],
 "allowed_methods_for_manager":["POST","PUT","DELETE"]
 }
}

{
 "input":{
 "path":"orders",
 "method":"PUT",
 "role":"manager"
 }
}

You can also try out the same curl command as shown here with two other input doc-
uments: policy_2_input_2.json and policy_2_input_3.json. You can find these files
inside the appendix-f/sample01 directory.

F.7 External data
During policy evaluation, sometimes the OPA engine needs access to external data. As
we discussed in section F.1 while evaluating an authorization request against the appli-
cable policies, if there is any required but missing information, the OPA server will talk

Listing F.7 Rego input document with manager role

Allows anyone to access
the orders resource under
their own employee ID

The definition of the
allowed_methods_for_manager set

The definition of the
allowed_methods_for_dept_manager set

459External data

It
over

p

to a PIP (or external data sources). For example, let’s say we have an access-control pol-
icy that says you can buy a beer only if your age is greater than 21, but the authorization
request carries only your name as the subject, buy as the action, and beer as the
resource. The age is the missing information here, and the OPA server will talk to an
external data source to find the corresponding subject’s age. In this section, we discuss
multiple approaches OPA provides to bring in external data for policy evaluation.3

F.7.1 Push data

The push data approach to bring in external data to the OPA server uses the data API
provided by the OPA server. Let’s look at a simple example. This is the same example
we used in section 5.3. The policy in listing F.8 returns true if method, path, and the
set of scopes in the input message match some data read from an external data
source that’s loaded under the package named data.order_policy_data.

package authz.orders.policy3

import data.order_policy_data as policies

default allow = false

allow {
 policy = policies[_]
 policy.method = input.method
 policy.path = input.path
 policy.scopes[_] = input.scopes[_]
}

This policy consumes all the external data from the JSON file appendix-f/sample01/
order_policy_data.json (listing F.9), which we need to push to the OPA server using
the OPA data API. Assuming your OPA server is running on port 8181, you can run
the following curl command from the appendix-f/sample01 directory to publish the
data to the OPA server. Keep in mind that here we’re pushing only external data, not
the policy. The policy that consumes the data is already on the OPA server, which you
can find in the appendix-f/sample01/policies/policy_3.rego file:

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -H "Content-Type: application/json" \
-X PUT --data-binary @order_policy_data.json \
https://localhost:8181/v1/data/order_policy_data

3 A detailed discussion of these approaches is documented at www.openpolicyagent.org/docs/latest/external-
data/.

Listing F.8 OPA policy using pushed external data

The package name
of the policy

Declares the set of statically
registered data identified as policies

By default, all requests are disallowed. If
this isn’t set and no allowed rules matched,
OPA returns an undefined decision.

Declares the conditions to
allow access to the resource

erates
values
in the
olicies
array For an element in the policies array, checks

whether the value of the method parameter in the
input matches the method element of the policy

www.openpolicyagent.org/docs/latest/external-data/
www.openpolicyagent.org/docs/latest/external-data/

460 APPENDIX F Open Policy Agent
[
{
 "id": "r1",
 "path": "orders",
 "method": "POST",
 "scopes": ["create_order"]
},
{
 "id": "r2",
 "path": "orders",
 "method": "GET",
 "scopes": ["retrieve_orders"]
},
{
 "id": "r3",
 "path": "orders/{order_id}",
 "method": "PUT",
 "scopes": ["update_order"]
}
]

Now you can run the following curl command from the appendix-f/sample01 direc-
tory with the input message, which you’ll find in the JSON file appendix-f/sample01/
policy_3_input_1.json (in listing F.10) to check if the request is authorized:

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_3_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy3

{"result":{"allow":true}}

{
 "input":{
 "path":"orders",
 "method":"GET",
 "scopes":["retrieve_orders"]
 }
}

With the push data approach, you control when you want to push the data to the OPA
server. For example, when the external data gets updated, you can push the updated
data to the OPA server. This approach, however, has its own limitations. When you use
the data API to push external data into the OPA server, the OPA server keeps the data
in cache (in memory), and when you restart the server, you need to push the data
again. Nevertheless, this is the approach used within the Kubernetes admission con-
trol use case, where there is a sidecar running next to OPA that synchronizes the state
of OPA with external data.

Listing F.9 Order Processing resources defined as OPA data

Listing F.10 OPA input document

An identifier for
the resource path The resource

path

The HTTP
method

To do an HTTP POST to the orders
resource, you must have this scope.

461External data
F.7.2 Loading data from the filesystem

In this section, we discuss how to load external data from the filesystem. When we start
the OPA server, we need to specify from which directory on the filesystem the
OPA server should load data files and policies. Let’s have a look at the appendix-f/
sample-01/run_opa_mtls.sh shell script, shown in the following listing. The code
annotations explain how OPA loads policies from the filesystem at startup.

docker run \
 -v "$(pwd)"/policies:/policies \
 -v "$(pwd)"/keys:/keys \
 -p 8181:8181 \
 openpolicyagent/opa:0.15.0 \
 run /policies \
 --tls-cert-file /keys/opa/opa.cert \
 --tls-private-key-file /keys/opa/opa.key \
 --tls-ca-cert-file /keys/ca/ca.cert \
 --authentication=tls \
 --server

The OPA server you already have running has the policy and the data we’re going to
discuss in this section. Let’s first check the external data file (order_policy_data_
from_file.json), which is available in the appendix-f/sample01/policies directory. This
is the same file you saw in listing F.9 except for a slight change to the file’s structure.
You can find the updated data file in the following listing.

{"order_policy_data_from_file" :[
 {
 "id": "p1",
 "path": "orders",
 "method": "POST",
 "scopes": ["create_order"]
 },
 {
 "id": "p2",
 "path": "orders",
 "method": "GET",
 "scopes": ["retrieve_orders"]
 },
 {
 "id": "p3",
 "path": "orders/{order_id}",
 "method": "PUT",
 "scopes": ["update_order"]
 }
]
}

Listing F.11 Loading policies at startup

Listing F.12 Order Processing resources defined as data with a root element

A Docker bind mount, which
mounts the policies directory
under the current path of the host
machine to the policies directory
of the container filesystem

Runs the OPA server by
loading policies and data
from the policies directory

462 APPENDIX F Open Policy Agent
You can see in the JSON payload that we have a root element called order_policy
_data_from_file. The OPA server derives the package name corresponding to this
data set as data.order_policy_data_from_file, which is used in the policy in
the following listing. This policy is exactly the same as in listing F.8 except the package
name has changed.

package authz.orders.polic4

import data.order_policy_data_from_file as policies

default allow = false

allow {
 policy = policies[_]
 policy.method = input.method
 policy.path = input.path
 policy.scopes[_] = input.scopes[_]
}

Now you can run the following curl command from the appendix-f/sample01 direc-
tory with the input message (appendix-f/sample01/policy_4_input_1.json) from list-
ing F.10 to check whether the request is authorized:

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_4_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy4

{"result":{"allow":true}}

One issue with loading data from the filesystem is that when there’s any update,
you need to restart the OPA server. There is, however, a configuration option (see
appendix-f/sample01/run_opa_mtls_watch.sh) to ask the OPA server to load policies
dynamically (without a restart), but that option isn’t recommended for production
deployments. In practice, if you deploy an OPA server in a Kubernetes environment,
you can keep all your policies and data in a Git repository and use an init container
along with the OPA server in the same Pod to pull all the policies and data from Git
when you boot up the corresponding Pod. This process is the same as the approach
we discussed in section 11.2.7 to load keystores. And when there’s an update to the
policies or data, we need to restart the Pods.

F.7.3 Overload

The overload approach to bringing in external data to the OPA server uses the input
document itself. When the PEP builds the authorization request, it can embed exter-
nal data into the request. Say, for example, the orders API knows, for anyone wanting
to do an HTTP POST to it, they need to have the create_order scope. Rather than

Listing F.13 OPA policy using pushed external data

463External data
pre-provisioning all the scope data into the OPA server, the PEP can send it along with
the authorization request. Let’s have a look at a slightly modified version of the policy
in listing F.8. You can find the updated policy in the following listing.

package authz.orders.policy5

import input.external as policy

default allow = false

allow {
 policy.method = input.method
 policy.path = input.path
 policy.scopes[_] = input.scopes[_]
}

You can see that we used the input.external package name to load the external
data from the input document. Let’s look at the input document in the following list-
ing, which carries the external data with it.

{
 "input":{
 "path":"orders",
 "method":"GET",
 "scopes":["retrieve_orders"],
 "external" : {
 "id": "r2",
 "path": "orders",
 "method": "GET",
 "scopes": ["retrieve_orders"]
 }
 }
}

Now you can run the following curl command from the appendix-f/sample01 direc-
tory with the input message from listing F.15 (appendix-f/sample01/policy_5_input_
1.json) to check whether the request is authorized:

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_5_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy5

{"result":{"allow":true}}

Reading external data from the input document doesn’t work all the time. For exam-
ple, there should be a trust relationship between the OPA client (or the policy
enforcement point) and the OPA server. Next we discuss an alternative for sending

Listing F.14 OPA policy using external data that comes with the request

Listing F.15 OPA request carrying external data

464 APPENDIX F Open Policy Agent
data in the input document that requires less trust and is applicable especially for end-
user external data.

F.7.4 JSON Web Token

JSON Web Token (JWT) provides a reliable way of transferring data over the wire
between multiple parties in a cryptographically secure way. (If you’re new to JWT, check
out appendix B.) OPA provides a way to pass a JWT in the input document. The OPA
server can verify the JWT and then read data from it. Let’s go through an example.

 First, we need to have an STS that issues a JWT. You can spin up an STS by using
the following command. This is the same STS we discussed in chapter 10:

\> docker run -p 8443:8443 prabath/insecure-sts-ch10:v1

Here, the STS starts on port 8443. Once it starts, run the following command to get a
JWT:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://localhost:8443/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret (which are hardcoded in the STS). If every-
thing works fine, the STS returns an OAuth 2.0 access token, which is a JWT (or a
JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTIzNz
YsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6I
jRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6ImFwcGxp
Y2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS0Yoc2uBuA
W5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ4uFLAP0NpZ6
BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2jdEhBp1TvMaRKLB
Dk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegBbGgyXHVak2gB7I07
ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlveyjfKs_XIXgU5qizRm9mt5
xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

Now you can extract the JWT from the output, which is the value of the
access_token parameter. It’s a bit lengthy, so make sure that you copy the complete
string. In listing F.16, you’ll find the input document. There we use the copied value
of the JWT as the value of the token parameter. The listing shows only a part of the
JWT, but you can find the complete input document in the appendix-f/sample01/
policy_6_input_1.json file.

https://localhost:8443/oauth/token

465External data

{
 "input":{
 "path": ["orders",101],
 "method":"GET",
 "empid" : 101,
 "token" : "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9... "
 }
}

The following listing shows the policy corresponding to the input document in listing
F.16. The code annotations here explain all key instructions.

package authz.orders.policy6

default allow = false

certificate = `-----BEGIN CERTIFICATE-----
MIICxzCCAa+gAwIBAgIEHP9VkjAN…
-----END CERTIFICATE-----`

allow {
 input.method = "GET"
 input.empid = emp_id
 input.path = ["orders",emp_id]
 token.payload.authorities[_] = "ROLE_USER"
}

token = {"payload": payload} {
 io.jwt.verify_rs256(input.token, certificate)
 [header, payload, signature] := io.jwt.decode(input.token)
 payload.exp >= now_in_seconds
}

now_in_seconds = time.now_ns() / 1000000000

Now you can run the following curl command from the appendix-f/sample01 direc-
tory with the input message from listing F.16 (appendix-f/sample01/policy_6_input_
1.json) to check whether the request is authorized:

\> curl -k -v --key keys/client/client.key \
--cert keys/client/client.cert -X POST \
--data-binary @policy_6_input_1.json \
https://localhost:8181/v1/data/authz/orders/policy6

{"result":{"allow":true}}

In listing F.17, to do the JWT validation, we first needed to validate the signature and
then check the expiration. OPA has a built-in function, called io.jwt.decode

Listing F.16 Input document, which carries data in a JWT

Listing F.17 OPA policy using external data that comes with the request in a JWT

The PEM-encoded certificate of the STS
to validate the JWT, which corresponds
to the private key that signs the JWT

Verifies the signature of the JWT
following the RSA SHA256 algorithm

Decodes the JWT
Checks whether
the JWT is expired

Finds the current time in seconds;
now_ns() returns time in nanoseconds.

466 APPENDIX F Open Policy Agent
_verify(string, constraints) that validates all in one go.4 For example, you can
use this function to validate the signature, expiration (exp), not before use (nbf),
audience, issuer, and so on.

F.7.5 Bundle API

To bring in external data to an OPA server under the bundle API approach, first you
need to have a bundle server. A bundle server is an endpoint that hosts a bundle. For
example, the bundle server can be an AWS S3 bucket or a GitHub repository. A bun-
dle is a gzipped tarball, which carries OPA policies and data files under a well-defined
directory structure.5

 Once the bundle endpoint is available, you need to update the OPA configuration
file with the bundle endpoint, the credentials to access the bundle endpoint (if it’s
secured), the polling interval, and so on, and then pass the configuration file as a
parameter when you spin up the OPA server.6 Once the OPA server is up, it continu-
ously polls the bundle API to get the latest bundle after each predefined time interval.

 If your data changes frequently, you’ll find some drawbacks in using the bundle
API. The OPA server polls the bundle API after a predefined time interval, so if you
frequently update the policies or data, you could make authorization decisions based
on stale data. To fix that, you can reduce the polling time interval, but then again, that
will increase the load on the bundle API.

F.7.6 Pull data during evaluation

At the time of this writing, the pull data during evaluation approach is an experimental
feature. With this approach, you don’t need to load all the external data into the OPA
server’s memory; rather, you pull data as and when needed during the policy evalua-
tion. To implement pull data during evaluation, you need to use the OPA built-in
function http.send. To do that, you need to host an API (or a microservice) over
HTTP (which is accessible to the OPA server) to accept data requests from the OPA
server and respond with the corresponding data.7

F.8 OPA integrations
As we discussed early in this appendix, OPA is a general-purpose policy engine. As a
general-purpose policy engine, it can address a large variety of access-control use
cases. For example, you can use OPA with Kubernetes and Docker for admission con-
trol, with Envoy, Kong, and other popular API gateways for API authorization, with
Spinnaker, Boomerang, and Terraform in CI/CD pipelines and with SQLite for data
filtering. In this section, we briefly discuss three use cases that are related to a micro-
services deployment.8

4 You can find all the OPA functions to verify JWT at http://mng.bz/aRv9.
5 Details on how to create a bundle are at www.openpolicyagent.org/docs/latest/management/#bundles.
6 Details on these configuration options are documented at www.openpolicyagent.org/docs/latest/

configuration/.
7 Details on how to use http.send and some examples are documented at www.openpolicyagent.org/docs/

latest/policy-reference/#http.
8 You can find more OPA integration use cases at www.openpolicyagent.org/docs/latest/ecosystem/.

http://mng.bz/aRv9
www.openpolicyagent.org/docs/latest/management/#bundles
www.openpolicyagent.org/docs/latest/configuration/
www.openpolicyagent.org/docs/latest/configuration/
www.openpolicyagent.org/docs/latest/policy-reference/#http
www.openpolicyagent.org/docs/latest/policy-reference/#http
www.openpolicyagent.org/docs/latest/ecosystem/

467OPA integrations
F.8.1 Istio

Istio is a service mesh implementation developed by Google, Lyft, and IBM. It’s open
source, and the most popular service mesh implementation at the time of this writing.
If you’re new to Istio or service mesh architecture, see appendix K.

 Istio introduces a component called Mixer that runs on an Istio control plane (fig-
ure F.3). Mixer takes care of precondition checking, quota management, and teleme-
try reporting. For example, when a request hits the Envoy proxy at the data plane, it
talks to the Mixer API to see if it’s OK to proceed with that request. Mixer has a rich
plugin architecture, so you can chain multiple plugins in the precondition check
phase. For example, you can have a mixer plugin that connects to an external PDP to
evaluate a set of access-control policies against the incoming request.

Figure F.3 Istio high-level architecture with a control plane and a data plane

Envoy

Data
Plane

Microservice

Envoy

Is
tio

 In
gr

es
s

G
at

ew
ay

Istio E
gress

G
atew

ay

Microservice

Envoy

Microservice

Pilot Citadel Mixer

A
ut

hz
 P

lu
gi

n

Lo
gg

in
g

P
lu

gi
n

M
on

ito
rin

g
P

lu
gi

n

Control
Plane

All the incoming traffic to
the service mesh first goes
through the Istio Ingress
gateway.

Takes care of
precondition
checking, quota
management, and
telemetry reporting

All the outgoing traffic
from the service mesh
goes through the Istio
Egress gateway.

Data flow

Controls instructions
between the control
plane and the data
plane

Helps Istio operators
define routing rules and
configurations, which are
required in service-to-
service communications

Maintains an identity for each workload
(or microservice) that runs under Istio
and facilitates secure communications
among workloads

468 APPENDIX F Open Policy Agent
Istio integrates with OPA in two ways: via the OPA Mixer adapter (plugin) and directly
with Envoy’s check API. You pick one or the other; there is no need for both. For the
Mixer integration, when a request hits the Envoy proxy in the data plane, it does a
check API call to Mixer. This API call carries certain attributes with respect to the
request (for example, path, headers, and so on). Then Mixer hands over control to
the OPA mixer adapter. The OPA mixer adapter, which embeds the OPA engine as an
embedded library, does the authorization check against defined policies and returns
the decision to Mixer and then to the Envoy proxy.9

 For the second style of integration with Istio, OPA runs as a sidecar next to each
instance of Envoy. Mixer is not involved at all. When a request hits the Envoy proxy, it
asks OPA directly for an authorization decision, providing the same information it
would provide to Mixer. OPA makes a decision, and Envoy enforces it. The benefit to
this approach is that all decisions are made locally on the same server as the microser-
vice and require no network hops, yielding better availability and performance.

F.8.2 Kubernetes admission controller

The Kubernetes admission controller is a component that’s run in the Kubernetes API
server. (In section J.18, we discuss how the Kubernetes internal communication works
and the role of an admission controller.) When an API request arrives at the Kuber-
netes API server, it goes through a set of authentication and authorization plugins and
then, finally, the admission controller plugins (figure F.4).

Figure F.4 A request generated by kubectl passes through authentication, authorization, and admission controller
plugins of the API server; is validated; and then is stored in etcd. The scheduler and kubelet respond to events
generated by the API server.

9 Details on the OPA Mixer plugin are at https://github.com/istio/istio/tree/master/mixer/adapter/opa.

Scheduler

Worker
Node

kubeletClient

kubectl Container
Runtime

kube-
proxy

etcd

Admission Controller Plugins

Authentication
Plugins Authorization

Plugins

API Server

1

2
6

6

8

7

3

5
4

4

https://github.com/istio/istio/tree/master/mixer/adapter/opa

469OPA alternatives
OPA Gatekeeper is a native integration of OPA into the Kubernetes API server that
lets you write policies that are enforced via admission control. It lets you control which
Pods, Ingresses, Services, and so on, are allowed on the Kubernetes cluster and how
they are individually configured. Common policies include ensuring that all images
come from a trusted image registry, prohibiting multiple Ingresses from using the
same host, and requiring encryption be used on storage.10

F.8.3 Apache Kafka

In chapter 9, we discuss Kafka under the context of securing reactive microservices.
Apache Kafka is the most popular message broker implementation used in microser-
vices deployments. To use OPA for Kafka authorization, you need to engage the OPA
Authorizer plugin with Kafka. To authorize a request, the OPA Authorizer plugin talks
to a remote OPA server over HTTP.11 In a Kubernetes deployment, you would deploy
the OPA server as a sidecar along with Kafka on the same Pod.

F.9 OPA alternatives
Since OPA was introduced in 2016, OPA has become the de facto implementation of
fine-grained access control, mostly in the Kubernetes and microservices domains. A
couple of alternatives to OPA exist, but at the time of this writing, none of them are as
popular as OPA.

 One alternative, eXtensible Access Control Markup Language (XACML), is an open
standard developed by the Organization for the Advancement of Structured Informa-
tion Standards (OASIS). The XACML standard introduces a policy language based on
XML and a schema based on XML for authorization requests and responses. OASIS
released the XACML 1.0 specification in 2003, and at the time of this writing, the lat-
est is XACML 3.0. XACML was popular many years back, but over time, as the popu-
larity of XML-based standards declined, XACML adoption lessened rapidly as well.
Also, XACML as a policy language is quite complex, though very powerful. If you’re
looking for an open source implementation of XACML 3.0, check the Balana project,
which is available at https://github.com/wso2/balana.

 Speedle, another open source alternative to OPA, is also a general-purpose authori-
zation engine. Speedle was developed by Oracle and is relatively new. It’s too early to
comment on how Speedle competes with OPA, and at the time of this writing, only
Oracle Cloud uses Speedle internally. You can find more details on Speedle at https://
speedle.io/.

10 You can find more details on OPA Gatekeeper at https://github.com/open-policy-agent/gatekeeper. How
to deploy an OPA Gatekeeper on Kubernetes for a Kubernetes ingress validation is documented at
www.openpolicyagent.org/docs/latest/kubernetes-tutorial/.

11 You can find more details on OPA Kafka Authorizer at https://github.com/open-policy-agent/contrib/tree/
master/kafka_authorizer.

https://github.com/open-policy-agent/gatekeeper
www.openpolicyagent.org/docs/latest/kubernetes-tutorial/
https://github.com/open-policy-agent/contrib/tree/master/kafka_authorizer
https://github.com/open-policy-agent/contrib/tree/master/kafka_authorizer
https://github.com/wso2/balana
https://speedle.io/
https://speedle.io/

appendix G
Creating a certificate
authority and related

keys with OpenSSL

Anyone who wants to expose services over the web that are protected with Trans-
port Layer Security (TLS) must get their certificates signed by a trusted certificate
authority (CA). Few trusted CAs are available globally, and their public keys are
embedded in all browsers. When a browser talks to amazon.com over TLS, for
example, it can verify that Amazon’s certificate is valid (not forged) by verifying its
signature against the corresponding CA’s public key that’s embedded in the
browser. The certificate also includes the hostname of Amazon (which is called the
common name), so the browser knows it’s communicating with the right server.

 In this appendix, we show you how to create a CA by using OpenSSL. OpenSSL is
a commercial-grade toolkit and cryptographic library for TLS, available for multiple
platforms. You can download and set up the distribution that fits your platform from
www.openssl.org/source. But the easiest way to try OpenSSL is to use Docker. In this
appendix, you’ll use an OpenSSL Docker image. You need to install Docker, follow-
ing the instructions at https://docs.docker.com/install/#supported-platforms. The
process is straightforward. A deeper understanding of how Docker works isn’t nec-
essary to follow along in this appendix (we talk about Docker and containers in detail
in appendix E).

G.1 Creating a certificate authority
Assuming that you have Docker installed, follow the instructions in this section to set
up the CA. To begin, download the appendix G samples from GitHub (https://
github.com/microservices-security-in-action/samples) to your computer. Let’s spin
up the OpenSSL Docker container from the appendix-g/sample01/ directory.
470

https://github.com/microservices-security-in-action/samples
https://github.com/microservices-security-in-action/samples
https://docs.docker.com/install/#supported-platforms
www.openssl.org/source

471Creating a certificate authority
 The following docker run command starts OpenSSL in a Docker container with a
bind mount that maps the appendix-g/sample01/ directory (or the current directory,
which is indicated by $(pwd) in listing G.1) from the host filesystem to the /export
directory of the container filesystem. This bind mount lets you share part of the host
filesystem with the container filesystem. When the OpenSSL container generates
certificates, those are written to the /export directory of the container filesystem.
Because we have a bind mount, everything inside the /export directory of the con-
tainer filesystem is also accessible from the appendix-g/sample01/ directory of the
host filesystem.

\> docker run -it -v $(pwd):/export prabath/openssl

When you run this command for the first time, its execution can take a couple of min-
utes. It ends with a command prompt, where you can execute your OpenSSL com-
mands to create the CA. Use the command in the following listing to generate a
private key for the CA.

openssl genrsa -aes256 -passout pass:"manning123" \
-out /export/ca/ca_key.pem 4096

Generating RSA private key, 4096 bit long modulus

The generated key file is stored in the /export/ca directory of the Docker container
(as specified by the –out argument). Then again, because you mapped the appendix-
g/sample01/ directory of the host filesystem to the /export directory, the generated
key file is also available inside the appendix-g/sample01/ca directory of the host
machine. In listing G.2, the genrsa command generates a private key of 4,096 bits
and encrypts it with AES-256 and the provided passphrase. We use manning123 as the
passphrase, which is passed to the genrsa command under the –passout argument.

NOTE The value of the passphrase must be prefixed with pass: and must be
defined within double quotes.

Next, use the command (req –new) in the following listing to generate a public key
that points to the already generated private key (–key) with an expiration time of 365
days (-days).

openssl req -new -passin pass:"manning123" -key /export/ca/ca_key.pem \
-x509 -days 365 -out /export/ca/ca_cert.pem -subj "/CN=ca.ecomm.com"

Listing G.1 Running OpenSSL in a Docker container

Listing G.2 Generating a private key for the certificate authority

Listing G.3 Generating a public key for the certificate authority

472 APPENDIX G Creating a certificate authority and related keys with OpenSSL
While creating the public key, OpenSSL needs to know the details related to the orga-
nization behind the CA (country, state, organization name, and so on). Of those
details, what matters most is the common name (CN). You need to provide something
meaningful. The CN may not be important here, but when a client application talks to
a TLS-secured endpoint, the client validates whether the hostname of the endpoint
matches the value of the CN in the certificate; if not, it rejects the certificate.

 In listing G.3, we provide the value of the CN under the –subj argument; make
sure the corresponding value starts with a /. (OpenSSL requires the forward slash.)
The –out argument specifies where to store the generated public key. Now you can
find two files in the appendix-g/sample01/ca directory: ca_cert.pem, which is the
public key, and ca_key.pem, which is the private key of the certificate authority.

G.2 Generating keys for an application
In this section, we discuss how to create a public/private key pair for an application
and get those keys signed by the CA you created in section G.1. This application can be
a microservice, a web server, a client application, and so on. To generate the public/
private key pair for an application, you’re going to use the same OpenSSL Docker con-
tainer started in section G.1. Run the command in the following listing to generate a
private key for the application.

openssl genrsa -aes256 -passout pass:"manning123" \
-out /export/application/app_key.pem 4096

This code generates the private key file (app_key.pem) inside the appendix-g/
sample01/application directory. When you have the private key for the application, to
get it signed by the CA, you need to create a certificate-signing request (CSR) first.
Run the command in the following listing in the OpenSSL Docker container com-
mand prompt. It produces a file named csr-for-app, which you have to share with your
CA to get a signed certificate.

openssl req -passin pass:"manning123" -new \
-key /export/application/app_key.pem \
-out /export/application/csr-for-app \
-subj "/CN=app.ecomm.com"

The OpenSSL command in listing G.6 gets the CSR generated in listing G.5, signed by
the CA. The output of the command in the following listing is the signed certificate of
the application (app_cert.pem). You can find it inside the appendix-g/sample01/
application directory.

Listing G.4 Generating a private key for the application

Listing G.5 Generating a certificate-signing request for the application

473Generating keys for an application

openssl x509 -req -passin pass:"manning123" \
-days 365 -in /export/application/csr-for-app \
-CA /export/ca/ca_cert.pem -CAkey /export/ca/ca_key.pem \
-set_serial 01 -out /export/application/app_cert.pem

Now we have a private key and signed certificate for the application. For some Java
applications (for example, Spring Boot microservices), we need to have this key
stored in a Java KeyStore (JKS), which is Java-specific key storage.

 In listing G.7, we generate a JKS from the application’s private key and the public
certificate. In the first command of the listing, we remove the passphrase of the pri-
vate key (app_key.pem), and in the second command, we create a single file
(application_keys.pem) with both the private key and the public certificate. With the
third command, we create a keystore of type PKCS with these keys. At the end of the
third command, you can find the PKCS keystore (app.p12) inside the appendix-g/
sample01/application directory. Finally, in the last command, we use the Java Keytool
to create a JKS file from the app.p12 PKCS keystore. There we pass the passphrase of
the source (app.p12) keystore under the argument srcstorepass, and the pass-
phrase of the destination (app.jks) keystore under the argument deststorepass.
For app.p12, we used manning123 as the keystore passphrase. For simplicity, we use
the same passphrase for the destination keystore (app.jks) as well.

openssl rsa -passin pass:"manning123" \
-in /export/application/app_key.pem \
-out /export/application/app_key.pem

cat /export/application/app_key.pem /export/application/app_cert.pem \
>> /export/application/application_keys.pem

openssl pkcs12 -export -passout pass:"manning123" \
-in /export/application/application_keys.pem \
-out /export/application/app.p12

keytool -importkeystore -srcstorepass manning123 \
-srckeystore /export/application/app.p12 -srcstoretype pkcs12 \
-deststorepass manning123 -destkeystore /export/application/app.jks \
-deststoretype JKS

Listing G.6 Generating the application’s CA signed certificate

Listing G.7 Creating a Java KeyStore with the application’s public/private keys

Removes the passphrase of
the private key: app_key.pem

Creates a single file
(application_keys.pem)
with both the private key
and the public certificate

Creates a keystore of type PKCS with the
keys in the application_keys.pem file

Uses the Java Keytool to
create a JKS file from the
app.p12 PKCS keystore

appendix H
Secure Production Identity

Framework for Everyone

In chapter 6, we discussed the challenges in key management, including key provi-
sioning, trust bootstrapping, certificate revocation, key rotation, and key usage
monitoring. In a typical microservices deployment, each microservice is provi-
sioned with a key pair. In chapter 6, you did that by manually copying Java keystore
files to the Order Processing and Inventory microservices.

 Doing things manually is not a neat approach in a microservices deployment with
hundreds of services, however—everything must be automated.1 Ideally, during the
CI/CD pipeline, the keys should be generated and provisioned to the microservices.
In chapter 11, we discussed how to deploy and secure microservices in a Kubernetes
environment, and then in chapter 12, we discussed how to secure a microservices
deployment with Istio service mesh. In both cases, we relied on Kubernetes and Istio
to provision and manage keys of our microservices. This appendix assumes that you
have good knowledge of Kubernetes and Istio service mesh, so we recommend you
first go through appendixes J and K, and chapters 11 and 12.

 When the keys are provisioned to all the microservices, next we have to bootstrap
trust, or initialize trust, among them. In chapter 6, we bootstrapped trust by manu-
ally sharing the public certificates (or the public certificate of the corresponding
certificate authority) of the trusted client microservices with the recipient microser-
vice. When a microservice authenticates with mTLS and sends a request to the
recipient microservice, the recipient microservice can check whether it can trust
the client microservice’s certificate.

1 Provisioning and managing keys manually is a poor practice since it’s easy for these files to be accidentally
or deliberately leaked, thus allowing an attacker to assume the privileges of the corresponding workloads/
microservices.
474

475What is SPIFFE?
 In chapter 12, with Istio service mesh, we used an Istio authentication Policy
and a set of DestinationRules to enforce mTLS among microservices. Then we
used ISTIO_MUTUAL as the tls mode in our DestinationRules. With ISTIO_
MUTUAL, Istio uses the keys and certificates provisioned to each Pod by Istio itself, and
by default all the Pods trust the certificate authority, which issues those keys and cer-
tificates.

 In addition to bootstrapping trust among microservices, after we provision keys to
each microservice, the provisioned keys must be rotated before they expire. If we pro-
vision keys manually to our microservices, we have to manually rotate the keys as well.
If Istio provisions the keys, Istio itself can rotate the keys. In section 12.6, we discussed
how Istio manages keys. In this appendix, we discuss how SPIFFE helps to address key
provisioning, trust bootstrapping, and key rotation problems.

H.1 What is SPIFFE?
Secure Production Identity Framework for Everyone (SPIFFE) is a project that defines a
framework and a set of open standards for a software system (a microservice, in the
context of this book) to establish an identity and then communicate with other sys-
tems in a secure way. Under the SPIFFE terminology, the microservice, or the software
system, is known as a workload. In this appendix, we use the words microservice and work-
load interchangeably. However, a workload in SPIFFE can be anything (a microservice,
an API, an application server, a gateway, a database, a message broker, a security token
service, and so on), not necessarily a microservice, and to use SPIFFE it is not a must
to run your workload on Kubernetes. SPIFFE has an open source reference imple-
mentation called the SPIFFE Runtime Environment (SPIRE). Istio too implements the
SPIFFE specification.

Istio vs. SPIRE
Istio is designed to run within a Kubernetes cluster, and thus has a particularly opin-
ionated view of workload identity based on service accounts and Kubernetes
namespaces. SPIRE has a much more flexible model of what can be considered a
workload, that can include other orchestration frameworks (like Hadoop), provenance
from CI/CD pipelines, and clusters of physical or virtual machines.

Istio also includes an out-of-the-box data plane (Envoy proxy) that can enforce authen-
tication, encryption and authorization policies automatically across a cluster,
whereas SPIRE requires you to integrate Envoy (or other proxies) yourself.

At the time of this writing, work is ongoing to make different implementations of the
SPIFFE specification cross-compatible, such that workloads that have identities pro-
vided by one implementation (say, SPIRE) can authenticate, encrypt, and authorize
traffic from another implementation (say, Istio).

476 APPENDIX H Secure Production Identity Framework for Everyone
While helping to establish an identity for each microservice in a given deployment,
SPIFFE also solves the trust bootstrap problem, and provides node attestation (verify-
ing the identity and integrity of the machine(s) a workload is running on) and process
attestation (verifying the identity and integrity of a specific process running on a given
machine) of the workload. In the introduction to this appendix, we defined trust
bootstrapping. In general, attestation means the evidence or proof of something.

 With SPIFFE, you can provision keys (that confer a particular identity) to a given
microservice (or workload) only if the corresponding attestation policies are satisfied:
our microservice and the node where the microservice runs (figure H.1) must provide
enough evidence that they satisfy the corresponding attestation policies, before any
keys are provisioned to them. In section H.4, we discuss a couple of sample attestation
policies.

 The key highlight of SPIFFE is that the keys provisioned to a microservice never
leave the node that runs it. A node can be a physical server or a virtual machine, which
runs one or more microservices. Figure H.1 shows two nodes in a Kubernetes environ-
ment; each node hosts a set of Pods, and each Pod runs a microservice.

Figure H.1 In a Kubernetes deployment, we run microservices in Pods. A given Pod carries one or more
microservices. A Kubernetes node hosts one or more Pods. The private key provisioned to a microservice
via SPIFFE never leaves the node.

One common way to provision keys to a microservice is, during the continuous deliv-
ery phase, to embed a set of long-lived credentials to the microservice. These long-
lived credentials can be a username/password pair, an OAuth key, or even a key pair

Worker node

Pod

Worker node

Kubernetes Cluster

Pod

Pod

Pod

In Kubernetes, we run a
microservice in a Pod.

A node in Kubernetes can
be a physical machine or
a virtual machine.

SPIFFE helps provision keys to each
Pod, but the private key associated
with a Pod never leaves the
corresponding worker node.

477SPIFFE ID
with a long expiration. Then, the microservice uses these long-lived credentials to
authenticate to a key server and get short-lived credentials—and it will repeat this pro-
cess every time the short-lived credentials expire. However, SPIFFE does not require
your microservice to have long-lived credentials and doesn’t worry about certificate
revocation; it relies on short-lived credentials and takes care of key rotation.

H.2 The inspiration behind SPIFFE
The inspiration behind SPIFFE came from three projects at Netflix, Facebook, and
Google. Metatron, the Netflix project that we discussed in chapter 6, solves the creden-
tial-provisioning problem by injecting long-lived credentials into each microservice
during the continuous delivery phase. Facebook’s internal public key infrastructure
(PKI) project helps bootstrap trust among systems that are secured with mTLS.
Google’s project, Low Overhead Authentication Services (LOAS), is a cryptographic-
key distribution system that helps establish an identity for all the jobs running on the
Google infrastructure.

H.3 SPIFFE ID
The SPIFFE ID is the unique identifier that SPIFFE provides for each microservice, or
workload, in a given deployment. It is a URI in the format of spiffe://trust-domain/path.
The SPIFFE ID specification at https://github.com/spiffe/spiffe/blob/master/
standards/SPIFFE-ID.md shares further details.

 A trust domain in SPIFFE could represent an organization, a department, an envi-
ronment (dev, staging, production), and so on. In practice, a SPIRE server (the open
source reference implementation of SPIFFE) runs in each trust domain and issues
SPIFFE IDs to the microservices running in the corresponding trust domain. For
example in the SPIFFE ID spiffe://foo.com/retail/order-processing, foo.com reflects
the trust domain, and retail/order-processing is the associated path, and the SPIFFE ID
as a whole represents the Order Processing microservice that is running in the trust
domain foo.com. However, you can construct the SPIFFE ID in any way you want. But
it’s always better to make it meaningful and logical.

 While constructing a SPIFFE ID, you can create a logical hierarchy that corre-
sponds to how authorization policies might be applied. This makes it easier to write
authorization policies later. For example, one might write a policy that says, any work-
load with the identity spiffe://foo.com/retail/order-processing/* can connect to any other
identity with an ID that matches spiffe://foo.com/retail/order-processing/*. Let’s go
through a few SPIFFE IDs:

 If you have a database server running with the Order Processing microservice,
you could name the database server as spiffe://foo.com/retail/order-processing
/mysql. To have the name be more meaningful, you may use spiffe://dev.foo
.com/retail/order-processing/mysql for the database server running in the
development environment, and spiffe://prod.foo.com/retail/order-processing/
mysql for the database server running in the production environment.

https://github.com/spiffe/spiffe/blob/master/standards/SPIFFE-ID.md
https://github.com/spiffe/spiffe/blob/master/standards/SPIFFE-ID.md

478 APPENDIX H Secure Production Identity Framework for Everyone
 If you run your microservices in Kubernetes, which we discussed in appendix J
and chapter 11, you run each microservice in a Kubernetes Pod. If you are not
familiar with Kubernetes, you may revisit this bullet point later, after you go
through appendix J and chapter 11. A Pod in Kubernetes runs under a service
account, and by default Kubernetes provisions a JSON Web Token to each Pod,
which carries the identity of the corresponding service account. For example, the
sub claim in the JWT, corresponding to the default service account under the
default Kubernetes namespace, looks like system:serviceaccount:default:default. So if
you group your microservices by Kubernetes service accounts, where a given
microservice runs under a specific service account, then rather than going by the
service name, you can construct the SPIFFE ID with the service account name.
For example, in the SPIFFE ID spiffe://foo.com/ns/prod/sa/mysql, foo.com is
the Kubernetes cluster, ns/prod is the Kubernetes namespace, and sa/mysql is
the service account name corresponding to your MySQL Pod.

 A given SPIFFE ID has a maximum length of 2,048 bytes. If we want a SPIFFE ID
to be self-contained (to carry all the information corresponding to it in the
identifier itself), we may find the maximum length to be an obstruction. To
overcome such situations, we can use an opaque SPIFFE ID. For example, an
opaque SPIFFE ID would look like spiffe://foo.com/0a42aabb-6c87-41c6-9b37-
b796983dcbda—and the recipient of the SPIFFE ID can query a metadata end-
point with 0a42aabb-6c87-41c6-9b37-b796983dcbda to find further details.

Let’s expand the second bullet point a little. There we encoded a set of attributes cor-
responding to the workload into the SPIFFE ID itself. This allows you to write authori-
zation policies later based on those attributes. For example, one might write a policy
that says, allow any workload from the prod namespace. This can be desirable and flexible,
but comes with some caveats as listed here:

 You should take care to declare only attributes that have actually been verified
by your SPIFFE implementation.

 SPIFFE doesn’t provide (at the time of this writing) any formal definition of the
attributes (for example, ns is for the kubernetes namespace) or how they are
encoded, so you'll need to make one up.

 The length of the SPIFFE ID limits the number of attributes that can be encoded.

H.4 How SPIRE works
SPIRE is the reference implementation of SPIFFE. The best way to learn how SPIFFE
works is to see how SPIRE works. The SPIRE architecture has two main components:
the SPIRE agent (also known as the node agent) and the SPIRE server.

 The SPIRE agent runs on the same node where the workload (or the microservice)
is running. If you run your microservice on an Amazon EC2 machine, for example,
the SPIRE agent runs on the same EC2 node. If you run your microservice in a Docker
container, the SPIRE agent runs on the same host machine that runs the Docker
container. If you run your microservice on Kubernetes, the SPIRE agent runs on the

479How SPIRE works
same Kubernetes node. In other words, the SPIRE agent shares the OS kernel with the
workload, and a given SPIRE agent can serve multiple workloads running on the same
OS kernel or the node.

 The following list walks you through the steps defined in figure H.2 to explain how
SPIRE works and sets forth its design principles:

1 The SPIRE node agent authenticates to the SPIRE server.
Authentication happens via a component called a node attester. A node attester

runs on both the SPIRE server and the SPIRE node agent. If the workload is run-
ning on an Amazon EC2 node, for example, the node attester at the SPIRE node
agent’s end picks the corresponding AWS instance identity document2 (https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents
.html) and passes it to the SPIRE server for authentication. When the document
is passed to the SPIRE server, the AWS node attester at the server side validates
the signature of the document by using Amazon’s public key.

2 The AWS instance identity document is a document signed by Amazon that includes the metadata related to
the corresponding EC2 instance. Within a given EC2 instance, you can get only the AWS instance identity doc-
ument corresponding to that node.

Workload (Microservice)

Node SPIRE
Server

Workload Agent

Workload API

SPIRE Node Agent

Registration API

Identity
Registry

Node API1

63

5

4

2

Who am I?

SPIRE node agent
includes a node
attester component

SVID of the corresponding
workload and the corresponding
trust bundles Node agent generates a key pair and sends the

corresponding certificate-signing request (CSR)
to the SPIRE server if it is requesting an X509
SVID. If the node agent is requesting a JWT
SVID, then it sends a JWT Signing Request (JSR).

Returns the SVID for
the node agent and a
set of valid SPIFFE IDs
and the correspond-
ing selectors—along
with a set of trust
bundles

SPIRE server includes a
node attester component

SVID (JWT
or X509)

Node agent
authenticates
to the SPIRE
server

Figure H.2 In this communication between the SPIRE node agent and the SPIRE server, the workload gets either
an X.509-SVID or a JWT-SVID via the SPIRE node agent. Both the workload and the SPIRE node agent share the
same operating system kernel.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-identity-documents.html

480 APPENDIX H Secure Production Identity Framework for Everyone
The node attester is an extension point. If your workload runs in a Kuber-
netes environment, the node agent that runs in the same Kubernetes node
(which also runs a Pod carrying the microservice) uses a JWT provisioned to it
by the Kubernetes cluster to prove its identity to the SPIRE server. This JWT
uniquely identifies the node agent.3

During the attestation process, if required, the SPIRE server will look up
additional node metadata based on what is attested. If you take the same AWS
example we discussed before, the node attester will tell the SPIRE server that it
has authenticated the corresponding node with a particular AWS instance ID,
but must then talk to AWS to find whether that instance ID is assigned to a par-
ticular AWS security group.

2 Once the node authentication completes, the SPIRE server issues a SPIFFE
Verifiable Identity Document (SVID) to the node agent.

At a high level, this SVID carries the SPIFFE ID of the node agent in a crypto-
graphically verifiable manner. An owner of a SPIFFE ID can prove the ownership
of the corresponding SVID. An SVID can be in multiple formats; at the time of
this writing, it can be an X.509 certificate or a JWT. In the case of an X.509-SVID,
you get a signed certificate corresponding to the CSR that the SPIRE agent sub-
mitted in step 1. We discuss SVID in detail in section H.5.

In addition to the SVID for the node agent, the SPIRE server finds all the
SPIFFE IDs corresponding to the node on which the node agent is running,
and returns those to the node agent along with a set of selectors.

The process completed with steps 1 and 2 is known as node attestation. A registry
in the SPIRE server keeps a set of attestation policies that defines the criteria
under which a given SPIFFE ID can be assigned to a workload. A registry entry,
for example, may say that the SPIFFE ID spiffe://foo.com/retail/order-
processing can be issued only to a node running under the AWS security group
sg-e566bb82 and a workload with the user ID (UID) 1002. Another registry entry
may say that the SPIFFE ID spiffe://foo.com/retail/delivery can be issued only to
a node running under the AWS security group sg-e566bb82 and a workload with
the UID 1003. In that case, step 2 returns both SPIFFE IDs to the node agent, if
the corresponding node runs under the AWS security group sg-e566bb82.4

You can define a selector in several other ways, but typically, you use at least
two mechanisms: one at the infrastructure level (such as a security group) and
the other at the workload level (UID).

Along with the set of SPIFFE IDs and the corresponding selectors, the SPIRE
server returns a map of trust bundles. A trust bundle carries certificates corre-
sponding to all the CAs (root and intermediary CAs) a given workload can

3 The SPIRE agent runs in Kubernetes in a Pod. Each Pod in Kubernetes runs under a service account. Kuber-
netes provisions a JWT to each Pod, based on the corresponding service account. It’s always better to run the
Pod that carries the SPIRE agent under its own service account.

4 There’s no requirement that the SPIFFE ID needs to encode the attributes of the policy that was used to issue
it, and in this way allows you to decouple the logical identity of the workload (used to determine authorization
policy) from the physical infrastructure that hosts it.

481How SPIRE works
trust, and in the map, each bundle is stored against the corresponding trust
domain. In section H.6, we discuss trust bundles in detail.

3 The workload talks to the workload API of the SPIRE node agent and asks for
its identity.5 The workload API is node-local. In the UNIX operating system, for
example, it’s exposed via UNIX domain sockets.6 The workload doesn’t need to
know where it’s running. It can be on Amazon EC2, Kubernetes, or any other
platform. It simply asks the workload API, “Who am I?”

Each workload (or microservice) can optionally have a SPIRE workload agent,
which knows how to talk to the workload API exposed by the SPIRE node agent,
on behalf of the workload. In a Kubernetes deployment, this workload agent
runs in the same Pod along with the corresponding microservice (or the work-
load). Strictly speaking, the workload agent directly represents the workload. It
might be an agent (like a proxy) acting on behalf of the actual workload, but it
must match the preceding attestation policies (step 2), and thus counts as the
workload. For convenience, we are repeating figure H.2 as figure H.3 here.

Figure H.3 In this communication between the SPIRE node agent and the SPIRE server, the workload gets either
an X.509-SVID or a JWT-SVID via the SPIRE node agent. Both the workload and the SPIRE node agent share the
same operating system kernel.

5 SPIFFE defines the workload API in the specification at https://github.com/spiffe/spiffe/blob/master/
standards/SPIFFE_Workload_API.md.

6 A UNIX domain socket is a data communications endpoint for exchanging data among processes executing
on the same host operating system.

Workload (Microservice)

Node SPIRE
Server

Workload Agent

Workload API

SPIRE Node Agent

Registration API

Identity
Registry

Node API1

63

5

4

2

Who am I?

SPIRE node agent
includes a node
attester component

SVID of the corresponding
workload and the corresponding
trust bundles

Node agent generates a key pair and sends the
corresponding certificate-signing request (CSR)
to the SPIRE server if it is requesting an X509
SVID. If the node agent is requesting a JWT
SVID, then it sends a JWT Signing Request (JSR).

Returns the SVID for
the node agent and a
set of valid SPIFFE IDs
and the correspond-
ing selectors—along
with a set of trust
bundles

SPIRE server includes a
node attester component

SVID (JWT
or X509)

Node agent
authenticates
to the SPIRE
server

https://github.com/spiffe/spiffe/blob/master/standards/SPIFFE_Workload_API.md
https://github.com/spiffe/spiffe/blob/master/standards/SPIFFE_Workload_API.md

482 APPENDIX H Secure Production Identity Framework for Everyone
Since the workload API is node-local, the workload does not need to explicitly
authenticate to the API. With the attributes attached to the request, the node
agent should be able to figure out who the caller is. SPIRE has implemented the
workload API as server-side streaming RPC in gRPC. If you are new to gRPC,
please check appendix I, where we discuss gRPC fundamentals. With server-side
streaming RPC, the workload—or the workload agent—sends a request to the
node agent and gets a stream to read a sequence of messages. The workload will
keep reading the stream until it finds no more unread messages.

The SPIFFE workload API specification recommends that the workload main-
tain an open connection with the node agent as long as possible, so it can receive
events from the node agent. If the connection drops, the workload should estab-
lish a new connection with the node agent as soon as possible. This open con-
nection is used to not only get the corresponding SVID to the workload, but also
to enable the node agent to keep the SVID and the trust bundle at the workload
updated, before the current ones expire. So, it is the responsibility of the node
agent to keep track of the expiration time and to rotate the keys when required.

4 Once the SPIRE node agent receives the request in step 3 from the workload
agent, it validates the request and tries to identify the workload.

If the node agent exposes the workload API via UNIX domain sockets, it can
find the metadata related to the workload via the OS kernel. This way, the
SPIRE node agent can find out the UID and PID related to the workload and
can scan all the selectors it got from the SPIRE server in step 2 to find a match.
If a match is found, the node agent knows the SPIFFE ID related to the corre-
sponding workload. If you’re on Kubernetes, the node agent can also talk to the
kubelet on the same node to find out whether the PID related to the workload
is scheduled by itself (the kubelet). If all goes well, and if the node agent wants
to use X.509-SVIDs, then it generates a key pair for the corresponding work-
load, creates a CSR, and sends the CSR to the SPIRE server. If the node agent
wants to use a JWT-SVID, it generates a JWT Signing Request (JSR), which
includes the intended audience of the JWT-SVID—or in other words, an identi-
fier corresponding to the recipient microservice that this workload wants to
authenticate with the JWT-SVID.

5 The SPIRE server validates the CSR or the JSR from step 4 and returns an SVID
to the SPIRE agent. As we discussed before, an SVID can be in multiple formats;
it can be an X.509 certificate or a JWT.

6 If step 5 returns an X.509-SVID, the node agent will pass the X.509-SVID and cor-
responding private key to the workload. If step 5 returns a JWT-SVID, the node
agent will pass the JWT-SVID itself to the workload. Then the workload can use
the SVID to authenticate to other workloads. If it is an X.509-SVID, the commu-
nications among workloads can be protected over mTLS, and if it is a JWT-SVID,
the workload can pass the JWT-SVID as a bearer token to the recipient workload
it wants to talk to. In other words, X.509-SVIDs allow workloads to establish

483SPIFFE Verifiable Identity Document
channel authentication and integrity between two workloads, assuming the net-
work infrastructure permits this, while JWT-SVIDs allow for individual messages
to be authenticated.

H.5 SPIFFE Verifiable Identity Document
The SPIFFE Verifiable Identity Document (SVID) is the identity document defined under
the SPIFFE specification. It has three basic components: a SPIFFE ID, a public key that
represents the workload, and a valid signature by the SPIRE server, which issues the
SVID. The SPIFFE ID and the signature are a must, while the public key is optional.
The SVID carries the SPIFFE ID in a way the owner of the SPIFFE ID can cryptograph-
ically prove the procession of the corresponding SPIFFE ID. An SVID can be in two
formats at the time of this writing: X.509-SVID and JWT-SVID.

H.5.1 X.509-SVID

The X.509-SVID provides a signed X.509 certificate corresponding to the CSR that the
SPIRE node agent submits to the SPIRE server (step 4 in figure H.4).7 While issuing
an X.509-SVID, the SPIRE server acts as a CA, and all the issued certificates must have
the corresponding SPIFFE ID in the X.509 Subject Alternate Name (SAN) field. Also
the SPIRE server can delegate the certificate-issuing part to an upstream CA.

Figure H.4 When the SPIRE node agent requests an X.509-SVID, it creates a CSR and sends it to the SPIRE server.

7 SPIFFE defines the X.509-SVID in the specification available at https://github.com/spiffe/spiffe/blob/
master/standards/X509-SVID.md.

Workload (Microservice)

Node SPIRE
Server

Workload Agent

Workload API

SPIRE Node Agent

Registration API

Identity
Registry

Node API1

63

5

4

2

Who am I?

SPIRE node agent
includes a node
attester component

X509 SVID of the corresponding
workload and the corresponding
trust bundles

Node agent generates a key pair
and sends the corresponding
certificate-signing request (CSR)
to the SPIRE server

Returns the X509
SVID for the node
agent and a set of
valid SPIFFE IDs and
the corresponding
selectors—along with
a set of trust bundles

SPIRE server includes a
node attester component

X509 SVID and
the corresponding
private key

Node agent
authenticates
to the SPIRE
server

https://github.com/spiffe/spiffe/blob/master/standards/X509-SVID.md
https://github.com/spiffe/spiffe/blob/master/standards/X509-SVID.md

484 APPENDIX H Secure Production Identity Framework for Everyone
In a PKI ecosystem, we find both the root CAs and intermediary CAs. Either CA can
sign an X.509 certificate issued to a workload. Both the root CAs and intermediary
CAs have their own X.509 certificate as well. The certificate of an intermediary CA is
signed by either a root CA or another intermediary CA, while the root CA signs its
own certificate. As you can imagine, this builds a chain, or hierarchy, of certificates. At
the bottom is the leaf certificate, which you have for your workload, and on top of that,
you will find a set of certificates signed by intermediary CAs, and finally the chain ends
with a root certificate. The following are some of the key points with respect to using
an X.509 certificate as an SVID, but we still recommend you go through the X.509-
SVID specification if you plan to do any SPIFFE implementations:

 Each X.509 certificate, whether it belongs to a workload or an intermediary
CA or a root CA, must have an SPIFFE ID in the X.509 SAN field. If it is a certif-
icate that belongs to a workload, or a leaf certificate, then the SPIFFE ID must
have a nonroot path component. In the SPIFFE ID spiffe://foo.com/retail/order-
processing, for example, retail/order-processing is the nonroot path. If the X.509
certificate belongs to an intermediary CA or a root CA, the SPIFFE ID must not
have a path component.

 Each X.509 certificate must carry the Key Usage property and must be marked
as critical.

 Any X.509 certificate that belongs to an intermediary CA or a root CA must
have the Key Cert Sign set under the Key Usage property. This certificate also
should carry the Certificate Authority flag with a value of True or Yes, under the
Basic Constraints extension. This requirement is not specific to SPIFFE; figure
H.5 shows a sample root CA certificate with those extensions. The value of the
Certificate Authority flag in a leaf certificate must be False or No.

Figure H.5 The X.509 certificate of the
GlobalSign root CA. The value of the Key
Usage extension contains the value Key
Cert Sign, and the Basic Constraints
extension carries the property Certificate
Authority, with the value Yes.

485SPIFFE Verifiable Identity Document
 Only the leaf X.509 certificates are used for authentication between workloads.
 The leaf X.509 certificate must have Digital Signature as the value of the Key

Usage property, and it must not have either the Key Cert Sign or CRL Sign.
 The leaf X.509 certificate should include the Extended Key Usage property,

and it should carry the values id-kp-serverAuth and id-kp-clientAuth. These two
values indicate that the corresponding X.509 certificate can be used to authen-
ticate both the client and the server in communications over TLS.

 During the validation process of an X.509 leaf certificate, the recipient must val-
idate the certificate path to check whether a trusted CA has issued the certifi-
cate. SPIFFE uses a CA trust bundle to distribute trusted CA certificates. Usually,
the node agent updates the corresponding workloads with these trust bundles.
In section H.6, we discuss trust bundles in detail.

H.5.2 JWT-SVID

The JWT-SVID provides a signed JWT corresponding to the JSR that the SPIRE node
agent submits to the SPIRE server (step 4 in figure H.6).8 A signed JWT is a compact
serialized JSON Web Signature (JWS). In appendix B, we discuss JWS in detail. The
following are some of the key points with respect to a JWT-SVID, but we still

8 SPIFFE defines the JWT-SVID in https://github.com/spiffe/spiffe/blob/master/standards/JWT-SVID.md.

Workload (Microservice)

Node SPIRE
Server

Workload Agent

Workload API

SPIRE Node Agent

Registration API

Identity
Registry

Node API1

63

5

4

2

Who am I?

SPIRE node agent
includes a node
attester component

SVID of the corresponding
workload and the corresponding
trust bundles

Node agent generates a JWT
Signing Request (JSR), which
includes the expected audience
for the JWT, and sends it
across to the SPIRE server

Returns the SVID for
the node agent and a
set of valid SPIFFE IDs
and the correspond-
ing selectors—along
with a set of trust
bundles

SPIRE server includes a
node attester component

JWT SVID

Node agent
authenticates
to the SPIRE
server

Figure H.6 When the SPIRE node agent requests a JWT-SVID, it creates a JSR and sends it to the SPIRE server.

https://github.com/spiffe/spiffe/blob/master/standards/JWT-SVID.md

486 APPENDIX H Secure Production Identity Framework for Everyone
recommend you go through the JWT-SVID specification if you plan to do any SPIFFE
implementations:

 One key element in a JWT is the value of the aud attribute, or the audience
attribute. It defines the intended recipient of the token. The value of the aud
attribute can be any string or a URI that’s known to the recipient of the JWT.
Each workload (or the microservice) that receives a JWT from another work-
load (or a microservice) during the authentication process as a bearer token
must check the value of the aud parameter to see whether it’s known before
accepting the JWT as valid. In figure H.6, step 3, when the workload requests a
JWT-SVID, it passes the intended audience of the token to the workload API of
the node agent, and the node agent passes the same to the node API in step 4.

 Each JWT-SVID has an attribute called sub. The sub attribute—also known as
the subject attribute—defines the owner of the JWT-SVID or carries the SPIFFE
ID of the workload, which owns the corresponding JWT-SVID. As per figure
H.6, the JWT-SVID issued by the SPIRE server in step 6 will carry the SPIFFE ID
of the workload (which initially asked for the SVID in step 3).

 Each JWT-SVID has an expiration time expressed with the exp attribute. The
value of the exp attribute carries the time of expiration in seconds, which is cal-
culated from 1970-01-01T0:0:0Z as measured in Universal Coordinated Time
(UTC). Any recipient of a JWT must make sure that the time represented by the
exp attribute is not in the past when accepting a JWT (that is, the token is not
expired). SPIFFE recommends using a small validity period for the JWT. When
you use a small validity period, the impact of someone stealing a JWT is limited
to only that time period. In figure H.6, step 3, when the workload requests a
JWT-SVID, it passes the intended expiration time of the token to the workload
API of the node agent, and the node agent passes the same to the node API in
step 4.

 During the validation process of a JWT-SVID, the recipient workload (or the
microservice) must validate the signature of the JWT. This workload must also
check whether the public key corresponding to the signature is in one of its
trust bundles (section H.6).

H.6 A trust bundle
As discussed in section H.3, a trust domain in SPIFFE could represent an organiza-
tion, a department, an environment (dev, staging, production), and so on. In practice,
a SPIRE server that runs in each trust domain issues SPIFFE IDs to the microservices
running in the corresponding trust domain.9 The SVIDs issued to all the workloads in
a given trust domain are signed by a common signing key, and can be verified with the
same certificate chain. A trust bundle packs the cryptographic keys of a trust domain, so

9 SPIFFE defines the trust domain and bundle in https://github.com/spiffe/spiffe/blob/master/standards/
SPIFFE_Trust_Domain_and_Bundle.md.

https://github.com/spiffe/spiffe/blob/master/standards/SPIFFE_Trust_Domain_and_Bundle.md
https://github.com/spiffe/spiffe/blob/master/standards/SPIFFE_Trust_Domain_and_Bundle.md

487A trust bundle
that any workload that carries a trust bundle can check whether any SVID it receives
from another workload is issued from an issuer it trusts.

 SPIFFE uses a JSON Web Key Set (JWKS) to represent a trust bundle. A JWK is a
JSON representation of a cryptographic key, and a JWKS is a representation of multi-
ple JWKs. RFC 7517 (https://tools.ietf.org/html/rfc7517) defines the structure and
the definition of a JWK. The following listing shows a sample trust bundle, which car-
ries a key corresponding to an X.509-SVID.

{
 "keys": [
 {
 "use": "x509-svid",
 "kty": "EC",
 "crv": "P-256",
 "x": "fK-wKTnKL7KFLM27lqq5DC-bxrVaH6rDV-IcCSEOeL4",
 "y": "wq-g3TQWxYlV51TCPH030yXsRxvujD4hUUaIQrXk4KI",
 "x5c": ["MIIBKjCB0aADAgECA..."]
 }
],
 "spiffe_refresh_hint": 600
}

Listing H.1 A sample SPIFFE trust bundle corresponding to an X.509-SVID

Defines the type of the corresponding SVID. If
it’s an X.509-SVID, the use attribute carries

the value x509-svid. If it’s a JWT-SVID, the use
attribute carries the value jwt-svid.

Defines the key type. RFC 7518 defines
the possible values, and the value EC
means the key type is Elliptic Curve.

Curve parameter. This is a parameter
specific to the Elliptic Curve key type
and identifies the cryptographic
curve used with the key.

This is a parameter specific to Elliptic
Curve key type, which identifies the x
coordinate for the Elliptic Curve point.

This is a parameter
specific to the Elliptic
Curve key type,
which identifies the
y coordinate for the
Elliptic Curve point.

Carries the certificate
chain corresponding
to the trust domain

Indicates how often the recipient of
the trust bundle should check with
the bundle publisher for updates

https://tools.ietf.org/html/rfc7517

appendix I
gRPC fundamentals

The gRPC (https://grpc.io/) is an open source remote procedure call framework
(a library), originally developed by Google. In fact, it’s the next generation of a sys-
tem called Stubby, which Google has been using internally for over a decade. gRPC
achieves efficiency for communications among systems using HTTP/2 as the trans-
port, and Protocol Buffers as the interface definition language (IDL). In chapter 8,
we discuss how to secure communications among microservices over gRPC.

 In this appendix, we discuss the fundamentals of gRPC. If you’re interested in
reading more about gRPC, we recommend Practical gRPC by Joshua Humphries,
David Konsumer, et al. (Bleeding Edge Press, 2018), or gRPC: Up and Running by
Kasun Indrasiri and Danesh Kuruppu (O’Reilly Media, 2020).

I.1 What is gRPC?
Many of us are familiar with functions in computer programs. A function in a pro-
gram performs a specific task. A software program usually has a main function
that’s called by the underlying operating system when the program starts to run. A
function in a typical program is invoked and executed by another function (or the
main function) running within the same program.

 RPC stands for remote procedure call. As its name implies, RPC is a protocol whereby
a program can execute a function that’s running on a remote host/computer on the
network. RPC typically involves generating method stubs at the client side that make
it look like a local function invocation, as the following example shows, but it’s actu-
ally remote:

Registry registry = LocateRegistry.getRegistry(serverIP, serverPort);
Products products = (Products) registry.lookup(name);
int count = products.getCount();

In the preceding example, the object Products is a local variable; its getCount
method does a remote procedure call over the network to a method running on a
488

https://grpc.io/

489What is gRPC?
remote server identified by serverIP
and serverPort. The getCount

method on the server is where the
actual business logic of the function
resides. The method on the client
application is simply a surrogate for
the same method on the server appli-
cation. Figure I.1 illustrates how the
client application uses a stub to com-
municate with the server application.

 gRPC has now become the method
of choice for communications that
happen among microservices. This is
primarily because of the performance
optimizations it offers compared to
other common mechanisms, such as
JSON over HTTP. As mentioned in previous chapters, a microservice-driven applica-
tion has many interactions that happen among microservices over the network.
Therefore, whatever optimizations we can achieve at the network layer are realized in
several orders of magnitude in real-world applications. Figure I.2 shows interactions
among microservices to complete a given user operation.

As you can see, when a user places an order, many interactions happen among various
microservices. The Order Processing microservice talks to the Inventory microservice
to update the stock information. It also talks to the Shipping microservice for delivery.

Client

Application

Client Stub

Transport

Server

Application

Server Stub

Transport

1

2

6

8

9

10

7

3

5

4

Figure I.1 When communicating over RPC, the
client and server both use stubs to interface with
each other.

Client
Application Purchase

History
Service

Order
Processing

Service

Shipping
Service

Inventory
Service

Customer
Service

A
P

I G
at

ew
ay

Figure I.2 In a typical
microservices architecture, a
single user operation results
in many network interactions
that happen among various
microservices.

490 APPENDIX I gRPC fundamentals
The Shipping microservice talks to the Customer microservice for getting delivery
information. The Order Processing microservice also updates the customer purchase
history by talking to the Purchase History microservice.

 Four interactions happen among various microservices to serve a single order
operation requested by a user. In this particular use case, because four interactions
happen among different microservices, any benefits we gain over JSON/HTTP (mea-
sured by time) are realized by an order of magnitude of 4. Similarly, the advantages we
gain with much larger applications that can have hundreds of microservices become
much more significant. gRPC performs better for microservices compared to JSON/
XML over HTTP for two primary reasons:

 gRPC uses Protocol Buffers, also known as Protobuf.
 gRPC uses the HTTP/2 transport protocol as opposed to HTTP/1.1.

I.2 Understanding Protocol Buffers
In this section, we introduce Protocol Buffers and explain how these have been essen-
tial in the development of gRPC. We also talk about the benefits provided in terms of
efficiency in data transfer.

 When using JSON over HTTP for communicating messages between clients and
servers, the whole JSON message is transmitted in plaintext form. The payload is
repetitive and sometimes unnecessary. This is because formats such as JSON/XML
have been designed to be human readable. But, in practice, only machines process
these messages. While JSON/XML formats make it easier to understand the message
structures being passed along the network, when it comes to the application runtime,
this isn’t necessarily important. Protocol Buffers are a flexible, efficient, and auto-
mated mechanism for serializing structured data. You can think of it as JSON or XML
but with the following exceptions:

 Much smaller size for representing a given message
 Much shorter time duration for processing a given message
 Much simpler to understand, given its resemblance to programming languages

Google created Protocol Buffers in 2001 to deal with an index server request-response
protocol. It was publicly released in 2008. The current version of the language is ver-
sion 3 (known as proto3). The examples in this appendix use this version.

 With Protocol Buffers, you first need to define how your data needs to be structured.
These structures are defined in files having a .proto extension. The following listing
shows what a simple .proto file looks like when defining a simple Customer object.

syntax = "proto3";

message Customer {
 string name = 1;
 int32 id = 2;
 string email = 3;

Listing I.1 A simple .proto file

491Understanding Protocol Buffers
 enum PhoneType {
 MOBILE = 0;
 HOME = 1;
 WORK = 2;
 }

 message PhoneNumber {
 string number = 1;
 PhoneType type = 2;
 }

 repeated PhoneNumber phone = 4;
}

As you might observe from listing I.1, each message type consists of one or more
unique typed (string, int) fields. Each field has a unique number to identify it.
Each typed field in a message has a default value. You can read more about default val-
ues at https://developers.google.com/protocol-buffers/docs/proto3#default.

 You can also organize your data structure in a hierarchical fashion by using mes-
sage types within other message types, similar to the way we used the PhoneNumber
message within the Customer message in listing I.1. The Protobuf compiler then uses
these structures to autogenerate source code that can be used to read data from
streams and populates these structures. The compiler also converts data in these struc-
tures to streams. The generated code can be made available in a variety of program-
ming languages supported by the Protobuf compiler.

 Let’s look at a quick example to understand what this code generation looks like.
Before we begin, check out the samples for this appendix in https://github.com/
microservices-security-in-action/samples/tree/master/appendix-i/. We’re going to
generate Java code from a .proto file by using the Spring Boot gRPC module. The fol-
lowing example has been tested on Java versions 8 and 11. You need to have Java 8+ and
Maven version 3.2+ installed on your machine to try this. Navigate to the appendix-i/
sample01 directory by using your command-line tool and execute this command:

\> mvn compile

You should see a success message if the compilation is successful, and a target direc-
tory as well. Navigate to the newly created target/generated-sources/protobuf/java/
com/manning/mss/appendixi/sample01 directory. You should see a file named
Customer.java. If you inspect its methods, you’ll notice that it has the functions get-
Name, setName, and so on, which perform the manipulation of the fields we declared
in the .proto file. The Java programs we implement will use these autogenerated func-
tions to exchange data between clients and servers using gRPC. You can find the com-
piled form of the Customer class in the target/classes directory.

 Let’s also look at the .proto file we just compiled. Open the appendix-i/sample01/
src/main/proto/customer.proto file by using a text editor or an IDE. The syntax =
"proto3"; statement at the top of the file instructs the compiler that we’re using proto-
buf version 3. The package statement, com.manning.mss.appendixi.sample01;

https://developers.google.com/protocol-buffers/docs/proto3#default
https://github.com/microservices-security-in-action/samples/tree/master/appendix-i/
https://github.com/microservices-security-in-action/samples/tree/master/appendix-i/

492 APPENDIX I gRPC fundamentals
specifies the Java package name that should be included in the Java code being auto-
generated. You should see the same package statement in the generated Customer.java
file. The option java_multiple_files = true; statement instructs the compiler to
generate separate Java source files for each parent message type. In this example, we
have only one parent message type (Customer). However, this statement becomes
handy when we have multiple messages to build code for, because it neatly breaks the
source into multiple files instead of one large file.

I.3 Understanding HTTP/2 and its benefits over HTTP/1.x
In this section, we talk about HTTP/2 and how gRPC has benefitted from it to
become much more performant, compared to JSON/XML over HTTP. One reason
for gRPC’s growth in popularity is the performance gains it provides compared to sim-
ilar alternatives such as JSON over HTTP. gRPC uses HTTP/2 as its transport layer
protocol. HTTP/2 provides request multiplexing and header compression, which
increase its performance significantly. It also employs binary encoding of frames,
which makes the data being transferred much more compact and efficient for pro-
cessing. Let’s take a closer look at request/response multiplexing and binary framing.

I.3.1 Request/response multiplexing and its performance benefits

In this section, we introduce the concept of request multiplexing, which is used in the
HTTP/2 protocol for efficient data exchange among communicating parties. We first
introduce the problem with HTTP/1.x, and then look at how request multiplexing
solves that problem.

 In a client-server communication happening over HTTP/1.x, if the client wants to
make multiple requests to the server (in parallel) to improve performance, multiple
TCP connections have to be used.1 This is a consequence of the HTTP/1.x delivery
model, where responses are sequential. By default, HTTP/1.x requests that happen
over a single TCP connection are sequential as well. However, HTTP/1.x allows a cli-
ent to send multiple requests to the server on a single TCP connection, using HTTP
pipelining,2 but it involves lots of complexity and has been known to cause a lot of
problems. It’s therefore rarely in use; sequential requests are the default.

 Regardless of whether the client application uses HTTP pipelining or not, only a
single response can be sent back from the server at a given time on a single TCP con-
nection. This can cause lots of inefficiencies, which forces applications using HTTP/
1.x to use multiple TCP connections even for requesting data from a single host. Fig-
ure I.3 illustrates a scenario where HTTP pipelining is in use to make parallel requests
to a server over a single TCP connection and shows the sequential nature of responses
being sent back.

1 TCP enables two hosts to establish a connection and exchange streams of data. TCP guarantees delivery of
data and guarantees that the packets will be delivered in the same order in which they were sent.

2 Pipelining is the process whereby a client sends successive requests over a single persistent TCP connection to
a server without waiting for responses.

493Understanding HTTP/2 and its benefits over HTTP/1.x
Figure I.3 A client application making two parallel requests to the server over a single TCP connection. The server
processes the requests in parallel. Even though the server completes processing the second request first, it needs
to wait until the response to the first request is sent before sending the response to the second request.

As you can see, a client application makes two parallel requests to the server over a sin-
gle TCP connection to render a web page. The server processes the GET /HTML

request first and the GET /javascript request next. Preparing the first response
takes 100 milliseconds (ms), and preparing the second response takes 50 ms. Given
the nature of the HTTP/1.x protocol, responses must be delivered to the client in
sequential order. Therefore, even though the server completes preparing the second
response much earlier than preparing the first response, it needs to wait until the first
response is sent before the second response can be sent. This causes the client appli-
cation to wait longer than is ideal before it can render the full web page it requested.

 This problem is also known as the head-of-line blocking problem. As we mentioned
earlier, this limitation has forced client applications to use multiple TCP connections
in parallel. Figure I.4 illustrates how client applications work around the head-of-line
blocking problem by using multiple TCP connections in parallel.

 As illustrated in figure I.4, the GET /HTML request and the GET /javascript
requests are sent from the client to the server using two different TCP connections.
Because the request with lower overhead (GET /javascript) completes first, the
server can now send back the response to it without waiting for the other request to
complete. This allows the client application to start rendering the web page much ear-
lier than in the previous case (figure I.3), where only a single TCP connection was used.

Client

GET/HTML

GET/javascript

Response for request 1

Response for request 2

Server

Two parallel HTTP requests made
on the same TCP connection

Request 1 takes 100 ms
to complete.

Request 2 takes 50 ms
to complete.

Response to request 2
can be sent only after
the response for request 1
has been sent.

494 APPENDIX I gRPC fundamentals
Figure I.4 A client application making two parallel requests to the server on two distinct TCP connections. The
server processes the requests in parallel. Responses to requests are sent back to the client in the order of request
completion.

Using multiple concurrent TCP connections may sound like the solution to the head-
of-line blocking problem. However, when applied in practice, there’s a limit on the
number of TCP connections that can be created between communicating parties.
This is mainly due to the resource limitations including CPU, file I/O, and network
bandwidth. A web browser would typically create a maximum of six concurrent TCP
connections to a given host (web domain). Therefore, in the context of a web
browser, the maximum level of concurrency we can achieve is six. All communications
within a given single TCP connection is still sequential.

 This is where request and response multiplexing in the HTTP/2 protocol becomes
useful. The binary framing layer in HTTP/2 removes the aforementioned limitation
in HTTP/1.x by allowing an HTTP message to be broken into individual frames, inter-
leaved, and then reassembled on the other side. Let’s take a look at figure I.5 for a bet-
ter understanding of this capability.

 As you can see, with the HTTP/2 protocol, we can transmit multiple messages con-
currently. The sending party breaks each HTTP message into multiple frames of dif-
ferent types (DATA frames, HEADER frames, and so on) and assigns them to a
stream. The receiving party reassembles the messages based on the streams and starts
processing each message as soon as each message completes reassembly. This gets rid
of the head-of-line blocking problem with HTTP/1.x that we discussed earlier in this

Client

GET/HTML

GET/javascript

Response for request 2

Response for request 1

Server

Request 1 takes 100 ms
to complete.

Request 2 takes 50 ms
to complete.

Request 1 sent
on connection 1

Request 2 sent
on connection 2

495Understanding HTTP/2 and its benefits over HTTP/1.x
section. The multiplexing capability in HTTP/2 gives us numerous benefits compared
to HTTP/1.x as listed here:

 Interleaving of multiple requests in parallel without blocking on any one
 Interleaving of multiple responses in parallel without blocking on any one
 Using a single TCP connection between client and server, which massively

reduces our resource utilization and also reduces operational costs
 Improving the efficiency of client applications and servers by reducing idle time

waiting on one another
 Avoiding underusing our network bandwidth and improving the application

efficiency

Binary framing and streaming are the two fundamental concepts that allow HTTP/2
to multiplex requests and responses. Let’s take a brief look at what they are and how
they have helped the HTTP/2 protocol.

I.3.2 Understanding binary framing and streams in HTTP/2

In this section, we look at the fundamental differences in the way messages are
encoded and exchanged between the HTTP/1.x and HTTP/2 protocols. We discuss
in brief the concepts of binary framing and how frames get assigned to streams to
allow multiplexing of requests and responses.

 HTTP messages are composed of textual information. As the name HTTP itself
implies (Hypertext Transfer Protocol), it includes textual information that is encoded
in ASCII and spans over multiple lines with newline delimiters included. With HTTP/
1.x, these messages were openly transmitted over the network. However, with HTTP/2,
each message is now divided into HTTP frames.3 Figure I.6 shows how an HTTP mes-
sage is usually broken into frames.

3 A frame is the smallest unit of communication that carries a specific type of data; for example, HTTP headers,
message payload, and so on.

Client Server

Stream 7
Data

Stream 5
Headers

Stream 7
Data

Stream 1
Data

Stream 3
Headers

Stream 5
Data

Single TCP Connection

Figure I.5 A client and server communicating using the HTTP/2 protocol. The requests and
responses are multiplexed over a single TCP connection so that multiple messages can be
transmitted concurrently without a message having to block over another message.

496 APPENDIX I gRPC fundamentals
Figure I.6 An HTTP/1.x message is broken into multiple frames. The first
chunk of headers is put into a frame typed HEADERS, and the consequent
header chunks are put into frames typed CONTINUATION. The request
body is broken into frames typed DATA.

As shown in figure I.6, an HTTP message is broken into multiple frames. Each frame
has a type associated with it, which helps the receiver of the frame interpret the data
in it accordingly. HTTP headers are transmitted in a frame typed HEADERS. Conse-
quent headers of the same sequence are transmitted in a frame typed CONTINUA-
TION. The request payload is transmitted in a frame typed DATA. A frame can hold a
maximum of 16 megabytes of data. The HTTP/2 standards set the size of DATA
frames to 16 kilobytes, by default, and allow the communicating parties to negotiate
on higher values if necessary. When initiating a communication channel, a set of
events takes place as listed here:

1 The client first breaks the request message into binary frames and then assigns
the stream ID of the request to the frames. This way, each frame containing the
binary data of the particular request gets associated with a single stream.

2 The client then initiates a TCP connection with the server and starts sending
the frames over this connection.

3 Once the server receives the frames, it starts assembling them to form the
request message, and then starts processing the request.

4 Once the server is ready to respond back to the client, the server breaks down
the response into frames and assigns them the same stream ID as the request
frames. Although frames can be transmitted in parallel on a single TCP connec-
tion, the stream ID in each frame allows the receiver to identify the proper mes-
sage each frame belongs to. This scenario was illustrated previously in figure I.5.

You may have noticed in figure I.5 that all stream IDs were odd numbers. This didn’t
happen coincidentally. The HTTP/2 protocol supports bidirectional streaming,
which we talk about in section I.4.6. This basically means that the client and server can
both initiate the transmission of frames, unlike in HTTP/1.x, where only the client
can initiate a transmission to the server.

HTTP/1.1 Request HTTP/2 Frames

POST /order HTTP/1.1
Host: manning.com
Connection: Keep-Alive
Content-Type: application/json
Transfer-Encoding: chunked

{"orderId": "1",
"date": "2019-08-20",
"items": 10,
"total_price": "$125.8"
} type=DATA

type=DATA

type=CONTINUATION

type=HEADERS

497The different types of RPC available in gRPC
 Client-initiated frames are assigned to streams with odd-numbered IDs, and server-
initiated frames are assigned to even-numbered stream IDs. This prevents the possibil-
ity of the client and server both initiating a stream with the same ID. The occurrence
of such a scenario would have made it impossible for the receiver to properly identify
the message a particular frame belongs to.

I.4 The different types of RPC available in gRPC
In this section, we look at the different types of RPC available in the gRPC protocol
and the types of scenarios in which each one of them become useful. These include
the following:

 Channels
 Metadata
 Unary RPC
 Server streaming RPC
 Client streaming RPC
 Bidirectional streaming RPC

I.4.1 Understanding channels

A gRPC channel represents a connection made from a client application to a host and
port on a remote gRPC server. A channel has five legal states: CONNECTING,
READY, TRANSIENT_FAILURE, IDLE, and SHUTDOWN.4 Each state represents a
particular behavior in the connection between client and server at that moment in
time. Clients can specify channel arguments, such as disabling message compression
and so on, to modify gRPC’s default behavior.

I.4.2 Understanding request metadata

Metadata contains particular information about an RPC call, such as authentication
details and so on. Metadata is provided in the form of a list of key-value pairs; keys are
usually strings, and the values can be of string or binary types, though in most cases,
values are provided as strings. Metadata helps the client provide information about
RPC messages to the server, and vice versa. You can think of metadata as similar to
headers in HTTP.

I.4.3 What is unary RPC?

Unary RPC represents a typical request-response pattern between client and server.
gRPC supports this traditional model in which requests and responses are exchanged
in a sequential pattern. In this pattern, the client first calls the stub/client method,
which invokes the particular method on the server. The server processes the messages
and prepares and sends the response back to the client. In this model, the number of
messages exchanged between client and server is equal (one response per request).

4 For the gRPC Connectivity Semantics and API, see https://github.com/grpc/grpc/blob/master/doc/
connectivity-semantics-and-api.md.

https://github.com/grpc/grpc/blob/master/doc/connectivity-semantics-and-api.md
https://github.com/grpc/grpc/blob/master/doc/connectivity-semantics-and-api.md

498 APPENDIX I gRPC fundamentals
I.4.4 What is server streaming RPC?

In the server-streaming model, the server sends a stream of responses for a single client
request. Server streaming can be used when it makes sense to send multiple responses
for a single client request.

 Imagine a scenario in which you place an order in our retail store, and the server
starts processing the order by verifying the payment and completing the shipping
request. The payment processing and shipping operations can be done in two parallel
microservices on the server. Through server streaming, the server now sends an
update to the client as soon as each step completes. Once the server has sent all of its
response messages to the client, it sends its status details (status code) and optional
trailing metadata. The client uses this information to identify the end of the stream
from the server.

I.4.5 What is client streaming RPC?

Similar to server streaming RPC, gRPC also supports client-streaming RPC. In this sce-
nario, the client sends a stream of requests to the server, and the server typically (but
not necessarily) sends back a single response. The server waits for the client to send its
status details along with any optional trailing metadata before the server starts sending
back the responses. Client streaming is useful when the client needs to submit multi-
ple inputs to the server over a period of time before the server can perform its pro-
cessing or calculations and provide the output.

 Imagine that you take a metered taxi ride. The taxi (client) will upload its location
data every few seconds or so. The server, upon receiving the location details, calcu-
lates the taxi fare based on the distance traveled and pushes an update to the client
once every few minutes.

I.4.6 What is bidirectional streaming RPC?

In bidirectional streaming RPC, again the client initiates the call. The client application
starts sending a stream of requests to the server, and the server begins sending a stream
of responses to the client. The order in which the data is exchanged is application
dependent. The server can decide to wait until it has received all the client request mes-
sages before sending back the responses, or the server could send responses while the
client is still sending request messages to the server.

appendix J
Kubernetes fundamentals

Kubernetes is the most popular container orchestration framework as of this writ-
ing.1 A container is an abstraction over the physical machine, while the container
orchestration framework is an abstraction over the network. Container orchestration
software like Kubernetes lets you deploy, manage, and scale containers in a highly
distributed environment with thousands of nodes, or even more.

 Kubernetes has its roots at Google as an internal project called Borg. Borg helped
Google developers and system administrators manage thousands of applications
across large data centers in multiple geographies. Borg became Kubernetes in 2014.

 A detailed discussion on Kubernetes is beyond the scope of this book. For any
readers interested in learning more, we recommend Kubernetes in Action (Manning,
2018) by Marko Lukša. Also, Kubernetes Patterns: Reusable Elements for Designing Cloud
Native Applications (O’Reilly Media, 2019) by Bilgin Ibryam and Roland Huß is a
good reference to learn how to use Kubernetes in a production deployment.

 In chapter 11, we discuss how to deploy and secure microservices in a Kuber-
netes environment. If you’re new to Kubernetes, this appendix lays the right foun-
dation for following along in chapter 11.

J.1 Kubernetes high-level architecture
Kubernetes follows the client-server architecture. A Kubernetes cluster consists of
one or more master nodes and one or more worker nodes (see figure J.1). When
we want to deploy a microservice in a Kubernetes environment, we directly interact
with a Kubernetes master node, which is also known as the Kubernetes control plane.
To connect to the Kubernetes master node, we have to run a Kubernetes client on

1 The word Kubernetes with ten characters is a little lengthy. In its shorter form, we call it k8s, as there are
eight characters between K and S.
499

500 APPENDIX J Kubernetes fundamentals
our local machine; that’s the third component in a Kubernetes environment (in addi-
tion to the master nodes and the worker nodes).

J.1.1 Master nodes

A master node in Kubernetes takes care of almost all the functions in a Kubernetes clus-
ter. A Kubernetes master node consists of four main components: an API server, a con-
troller manager, a scheduler, and an etcd (see figure J.1). In a multimaster deploy-
ment, where you have multiple master nodes, each master node will have its own copy
of an API server, a controller manager, a scheduler, and an etcd.

 The communications among all these components happen via the API server. For
example, to deploy a container in Kubernetes, we need to talk to the API server via a
Kubernetes client application, which is called a kubectl. We discuss all four components
in a master node in detail later in the appendix.

J.1.2 Worker nodes

Kubernetes runs workloads (containers) on worker nodes. When we instruct the master
node to run a container (with a microservice) on Kubernetes, the master node then
picks a worker node and instructs it to spin up and run the requested container. A
worker node consists of three main components: a kubelet, a kube-proxy, and the
container runtime (see figure J.1). We discuss these three components in detail later
in the appendix.

Master
Node

API Server

Client

kubectl

Scheduler

Cluster

Controller
Manager etcd

Worker
Node

kubelet

Container
Runtime

kube-
proxy

Worker
Node

kubelet

Container
Runtime

kube-
proxy

Developers or DevOps use a
kubelet to connect to the
API server to work with the
Kubernetes cluster.

Master nodes run
on the Kubernetes
control plane.

A node in Kubernetes
can be a physical
machine or a virtual
machine.

Figure J.1 A Kubernetes cluster consists of multiple master nodes and multiple worker nodes.

501Basic constructs
J.2 Basic constructs
To start working with Kubernetes, we need to understand some of its basic constructs.
This section covers the most used constructs, but by no means provides a comprehen-
sive list.

J.2.1 A Pod: The smallest deployment unit in Kubernetes

A Pod is the smallest deployment unit in a Kubernetes environment (see figure J.2).
It’s an abstraction over a group of containers, so a given Kubernetes Pod can have
more than one Docker container. (In appendix E, we discuss Docker containers in
detail.) But in a Kubernetes environment, we can’t deploy a container as-is; we need
to wrap it in a Pod. For example, if we’re deploying the Order Processing microservice
in Kubernetes, we need to follow these steps:

1 Create a Docker image for the Order Processing microservice.
2 Publish the Docker image to a Docker registry, which is accessible from the

Kubernetes cluster.

Figure J.2 A Pod groups one or more containers, and a worker node runs one or more Pods.

Cluster

Worker
Node

Container Runtime

kubelet kube-proxy

Container Container

Container Container

Worker
Node

Container Runtime

kubelet kube-proxy

Container Container

Container Container

Worker
Node

Container Runtime

kubelet kube-proxy

Container Container

Container Container

Each worker
node has one
or more Pods.

Each Pod can
run one or more
containers.

502 APPENDIX J Kubernetes fundamentals
3 Write a YAML file to describe the Pod. This file tells Kubernetes which Docker
images it needs to pull from the Docker registry to create the Pod. To be precise,
we have a Pod within a Deployment. A Deployment is a Kubernetes object, which
we discuss in section J.3.4; and in section J.14, we discuss Kubernetes objects.

4 Use the kubectl command-line tool to instruct the Kubernetes master node to
create the Pod.

Let’s have a look at a sample YAML file, which describes a Pod. There, to create the
Pod, Kubernetes has to pull the Docker image of the Order Processing microservice
from the Docker Hub (a public Docker registry), with the image name prabath/
manning-order-processing.

apiVersion: v1
kind: Pod
metadata:
 name: order-processing
 labels:
 app: order-processing
spec:
 containers:
 - name: order-processing
 image: prabath/manning-order-processing
 ports:
 - containerPort: 8080

J.2.2 A node: A VM or physical machine in a Kubernetes cluster

A node in Kubernetes is a VM or a physical machine in a cluster. In other words, a
Kubernetes cluster is a collection of Kubernetes nodes. When we instruct the Kuber-
netes master node to create a Pod with one or more containers, it picks the most
appropriate worker node and instructs it to run the Pod.

 A given Kubernetes cluster has multiple nodes, but all the containers in a given
Pod run in the same worker node. We can also instruct the Kubernetes master node to
create multiple replicas of the same Pod, and in that case, these replicas could run on
different nodes of the Kubernetes cluster. But still, for a given Pod, all its containers
run in the same node.

Defining constructs in Kubernetes
Kubernetes uses YAML files to represent various constructs. According to the YAML
specification (https://yaml.org/spec/1.2/spec.html), YAML is a human-friendly,
cross-language, Unicode-based data serialization language designed around the com-
mon native data types of Agile programming languages. It’s (broadly) useful for pro-
gramming needs ranging from configuration files to internet messaging to object
persistence to data auditing.

Listing J.1 Defining a Kubernetes Pod in YAML

Describes a
Pod object

A given Pod can have
multiple containers.

Name of the Docker container
that Kubernetes will pull from
the Docker Hub registry

Sets the listening port of the
container. If we run multiple
containers on the same Pod, they
must have different ports.

https://yaml.org/spec/1.2/spec.html

503Basic constructs
J.2.3 A Service: an abstraction over Kubernetes Pods

Pods in Kubernetes are ephemeral, or short-lived. They can come and go at any time
(Kubernetes can start and stop a Pod at any time). For example, when we create a
Pod, we can instruct Kubernetes to launch five instances (or replicas) of a Pod to run
all the time, but if the load (or the number of requests) coming to those Pods goes
beyond a certain threshold value, to increase the number of Pods to eight. This is how
autoscaling works in Kubernetes.

 With autoscaling, Kubernetes creates more Pods when the load crosses a given
threshold and stops certain Pods when the load falls below the threshold. Also, we can
ask Kubernetes to run a minimal set of Pods all the time (no matter what), and then, if
a Pod goes down by itself (crashes), Kubernetes still makes sure it spins up a new one
to maintain the minimal number of Pods we asked it to run.

 Because Pods are ephemeral, the IP address assigned to a Pod can change over
time, and at the same time, we can’t exactly predict in an autoscaling environment
how many Pods will be running at a given time and what those are. For these reasons,
communications between a client application and a Pod, or communications among
Pods, should not be using the IP address assigned to a Pod; instead, use a Service. A
Service is an abstraction over a set of Pods (see figure J.3). You can create a Kubernetes
Service pointing to a set of Pods, and you can think of a Service as a way to route
requests to a Pod.

Figure J.3 A Service groups one or more Pods and exposes Pods outside the Kubernetes cluster. Not all the
Services are accessible from outside a Kubernetes cluster, however.

Service

Container

Pod

Container

Pod

Container

Pod

A Service provides a way to
expose a Pod to the external
world and is an abstraction
over a set of Pods.

When there are multiple Pods behind
a given Service, the Service will also act
as a load balancer to the Pods behind it.

A Service helps exposing a
microservice running in
a Pod to the outside world.
Not all the Services are
accessible from outside
of a Kubernetes cluster,
however.

Each Pod has an IP address,
which is accessible within
the cluster.

One Pod in a Kubernetes cluster can talk to another Pod in the same Kubernetes
cluster using the IP address of that Pod, without using Network Address Translation
(NAT). These two Pods can be in the same Kubernetes node or in different nodes.

Each Service has an IP address,
which is accessible within
the cluster.

504 APPENDIX J Kubernetes fundamentals
If the Pod IP address changes over time and if a Pod can come and go at any time,
how do we bind a Service to a Pod or to a set of Pods? When we create a Service
against a set of Pods, we don’t create a static binding between them. We don’t tell the
Service that these are the IP addresses of the Pods you need to work with. Instead, we
use a label to define a filtering criterion so that Kubernetes can filter out the Pods that
have to work with a given Service.

 If you look at the sample YAML in listing J.2, you’ll find the label app:order-
processing is assigned to a Pod. A label is a key-value pair (in this example, app is the
key, and order-processing is the value). All the replicas created from this Pod def-
inition will carry the same label. If we want to create a Service pointing to all the repli-
cas of that Pod, we can use the corresponding label as a filter criterion when defining
the Service.

apiVersion: v1
kind: Pod
metadata:
 name: order-processing
 labels:
 app: order-processing
spec:
 containers:
 - name: order-processing
 image: prabath/manning-order-processing
 ports:
 - containerPort: 8080

Kubernetes assigns a virtual IP address for each Service. It is interesting to understand
how a Service works: unlike a Pod, there is no running thing called a Service. A Service
in Kubernetes carries a set of configurations that each node can read in order to set
up its own iptables rules, so that when a request destined to a Service IP address (and
the port) reaches a node, it can be dispatched to one of the Pods behind that particu-
lar Service.2 At the point you create a Service, Kubernetes updates the iptables rules of
its nodes.

CLUSTERIP SERVICE

When you create a Service in Kubernetes without specifying any type (or setting the
type as ClusterIP), Kubernetes creates a Service of ClusterIP type; ClusterIP is
the default Service type in Kubernetes. A Service of ClusterIP type is reachable only
within a Kubernetes cluster. The following listing shows a sample YAML of a Kuber-
netes Service of ClusterIP type.

Listing J.2 Defining a Kubernetes Pod in YAML (same as listing J.1)

2 Iptables are used to set up, maintain, and inspect the tables of the IP packet filter rules in the Linux kernel
(https://linux.die.net/man/8/iptables).

https://linux.die.net/man/8/iptables

505Basic constructs

apiVersion: v1
kind: Service
metadata:
 name: order-processing-service
spec:
 type: ClusterIP
 selector:
 app: order-processing
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

NODEPORT SERVICE

A Kubernetes cluster has multiple nodes. When we want to expose a microservice run-
ning in multiple Pods as a NodePort Service, Kubernetes opens a port (which is called
the nodePort) on each node, which carries the same port number, and binds that
port to the corresponding Service. To access a NodePort Service from a client outside
the cluster, we need to use a node IP address (each node in the cluster has its own IP
address) and the port number (nodePort) assigned to the Service.

 When a request destined to a node IP address and a port corresponding to a Service
reaches a node, the node can figure out the Service behind it and dispatch the request
to that Service. In fact, looking at the iptables rules, the node will directly dispatch the
request to one of the Pods behind that particular Service. So, the NodePort Service is
accessible from outside the Kubernetes cluster, using the IP address of any of the nodes,
and the nodePort of the Service. If a given node is down, the client must detect the fail-
ure and switch to a different node. That’s one disadvantage in this approach.

 If you want to access a NodePort Service within the Kubernetes cluster, you need to
use the cluster IP address (not a node IP) of the Service and the corresponding Ser-
vice port (port, not nodePort). The following listing shows a sample YAML of a
Kubernetes Service of NodePort type.

apiVersion: v1
kind: Service
metadata:
 name: order-processing-service
spec:
 type: NodePort
 selector:
 app: order-processing
 ports:
 - protocol: TCP
 port: 80

Listing J.3 Defining a ClusterIP Service in YAML

Listing J.4 Defining a NodePort Service in YAML

An optional attribute, “type” defines
the type of the Service. If no type is
specified, it’s a ClusterIP service.

Selects the set of Pods in the
Kubernetes cluster by matching labels

The client applications access the Service
via this port, along with the ClusterIP.

Each Pod corresponding
to this Service listens
on the targetPort.

An optional attribute,
“type” defines the type
of the Service

Selects the set of Pods in
the Kubernetes cluster by
matching labels Within a cluster, the client

applications access the Service via
this port, along with the cluster IP.

506 APPENDIX J Kubernetes fundamentals
 targetPort: 8080
 nodePort: 30200

This YAML creates a Service pointing to all the Pods carrying the label app:order-
processing. Each Service has an internal IP address (the cluster IP), which is acces-
sible only within the cluster. In this example, the Service listens on port 80, at the
internal cluster IP address. Any Pod wanting to access the Service within the cluster
can use the Service’s internal IP address and the port (80). The nodePort (30200) is
the port every node in the cluster listens to for any incoming traffic on the node IP
address (not the cluster IP), and routes the request to port 8080 (the targetPort) of
the corresponding Pod. If we don’t specify a nodePort when creating the Service,
Kubernetes internally picks an appropriate port.

LOADBALANCER SERVICE

The LoadBalancer Service type is an extension of the NodePort Service type. If there
are multiple replicas of a given Pod, the LoadBalancer Service acts as a load balancer.
Usually it’s an external load balancer provided by the Kubernetes hosting environment.
If the Kubernetes hosting environment doesn’t support LoadBalancer services, a Ser-
vice defined as a LoadBalancer will still run fine, but as a Service of the NodePort type.
The following listing shows a sample YAML of a Kubernetes LoadBalancer Service.

apiVersion: v1
kind: Service
metadata:
 name: order-processing-service
spec:
 type: LoadBalancer
 selector:
 app: order-processing
 ports:
 - protocol: TCP
 port: 80
 targetPort: 8080

This YAML creates a Service pointing to all the Pods carrying the label app:order-
processing. The Service listens on port 80 (the load balancer port) and reroutes
traffic to port 8080 of the corresponding Pod. Here, the rerouting works via a node-
Port (which we discussed in section J.2.2). Even though we don’t define a nodePort
in listing J.5, Kubernetes automatically generates one.

 The way routing works is that the external load balancer listens on port 80 and
routes the traffic it gets to the nodePort of any node in the Kubernetes cluster. Then
the iptables of that node reroutes the traffic to port 8080 of a corresponding Pod.
Multiple Services can listen on the same port on the load balancer, but each Service

Listing J.5 Defining a LoadBalancer Service in YAML

Each Pod corresponding
to this Service listens
on the targetPort.

Each node in the
cluster listens on
the same nodePort.

An optional attribute, “type”
defines the type of the Service.

Selects the set of Pods
in the Kubernetes cluster
by matching labels

507Basic constructs
has its own public IP address pointing to the load balancer. Then again, this can vary
from one Kubernetes implementation to another, especially in the cloud.

J.2.4 Deployments: Representing your application in Kubernetes

Although the Pod concept is fundamental to Kubernetes, in practice, we don’t deal
with Pods directly (but Kubernetes does). We discussed Pods in section J.2.1. We, as
developers (or DevOps), deal with Kubernetes Deployments. A Deployment represents
your application, which carries multiple replicas of a given Pod. A Deployment is a
Kubernetes object that helps with managing Pods. A given Deployment can manage
only one Pod definition, however. There can be multiple replicas, but only one Pod
definition.

 We can use a Deployment to create and scale a Pod. It also helps you migrate your
application from one version to another, following a migration strategy that you pick
(blue/green, canary, and so on). To create a Pod, instead of using the YAML file in list-
ing J.1, we can use the YAML file in the following listing, which creates a Deployment.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: order-processing-deployment
 labels:
 app: order-processing
spec:
 replicas: 5
 selector:
 matchLabels:
 app: order-processing
 template:
 metadata:
 labels:
 app: order-processing
 spec:
 containers:
 - name: order-processing
 image: prabath/manning-order-processing
 ports:
 - containerPort: 8080

J.2.5 A namespace: Your home within a Kubernetes cluster

A Kubernetes namespace is a virtual cluster within the same physical Kubernetes cluster.
One Kubernetes cluster can have multiple namespaces. In practice, organizations have
one Kubernetes cluster with different namespaces for different environments. For
example, one namespace may be used for development, one for testing, one for stag-
ing, and another for production. Also, some organizations use two Kubernetes clusters:
one for production environments and another for preproduction. The production
Kubernetes cluster has one namespace for staging and another for production. The

Listing J.6 Defining a Kubernetes Deployment in YAML

Instructs Kubernetes to run five
replicas of the matching Pods

An optional section that has multiple
labels. This Deployment carries a
matching Pod as per the selector.

Describes how each Pod in the Deployment
should look. If the Deployment defines a
matchLabels selector, the Pod definition must
carry a matching label under the labels element.

508 APPENDIX J Kubernetes fundamentals
preproduction cluster has namespaces for development and testing. The following
YAML file represents a Kubernetes namespace:

apiVersion: v1
kind: Namespace
metadata:
 name: manning

A Kubernetes namespace has these characteristics:

 The Kubernetes object names (for example, the name of a Pod, a Service, or a
Deployment) must be unique within a namespace, but not across namespaces.
In section J.13, we discuss Kubernetes objects in detail.

 The names of namespaces, nodes, and persistent volumes must be unique
across all the namespaces in a cluster. A persistent volume (Persistent-
Volume) in Kubernetes provides an abstraction over storage.

 By default, a Pod in one namespace can talk to another Pod in a different
namespace. To prevent this, we use Kubernetes plugins to bring in network iso-
lation by namespaces.

 Each namespace can have its own resource allocation. For example, when you
share the same Kubernetes cluster for development and production with two
namespaces, you can allocate more CPU cores and memory to the production
namespace.

 Each namespace can have a limited number of objects. For example, the devel-
opment namespace can have up to 10 Pods and 2 Services, while the produc-
tion namespace can have up to 50 Pods and 10 Services.

J.3 Getting started with Minikube and Docker Desktop
Minikube provides a single-node Kubernetes cluster that can run on your local machine.
It has certain limitations related to scalability, but is one of the easiest ways to get started
with Kubernetes. The online Kubernetes documentation provides all the necessary
steps in setting up Minikube (see https://kubernetes.io/docs/setup/minikube/).

 Docker Desktop is an alternative to Minikube that also provides a single-node Kuber-
netes cluster that you can easily set up on your local machine. The details on setting
up Docker Desktop are available at https://docs.docker.com/desktop/.

J.4 Kubernetes as a service
Instead of running Kubernetes on your own servers and maintaining the hardware
yourself, you can look for a cloud vendor that provides Kubernetes as a service. Multiple
cloud vendors offer this service, and most new Kubernetes deployments rely on cloud-
hosted Kubernetes deployments. Some popular Kubernetes-as-a-service providers are
as follows:

 Google—Google Kubernetes Engine (GKE)
 Amazon—Amazon Elastic Kubernetes Service (EKS), which runs on AWS
 Microsoft—Azure Kubernetes Service (AKS)

https://kubernetes.io/docs/setup/minikube/
https://docs.docker.com/desktop/

509Getting started with Google Kubernetes Engine
 Red Hat—OpenShift Container Platform (OCP)
 Pivotal—Pivotal Container Service (PKS)
 IBM—IBM Cloud Kubernetes Service
 Oracle—Container Engine for Kubernetes
 VMware—VMware Cloud PKS

Each of these cloud platforms has its own pros and cons, but the fundamental con-
cepts around Kubernetes remain unchanged. In this book, we use GKE for all the
samples, except for a few in chapter 12.

J.5 Getting started with Google Kubernetes Engine
Google Kubernetes Engine (GKE) is a Kubernetes-as-a-service implementation managed
by Google. To get started, you need to have a valid Google account, which gives you a
$300 credit to try out the Google Cloud Platform. That’s more than enough to try out
all the samples in this book.

 You can sign up for the free trial at https://cloud.google.com/free/ (or search
Google for “GKE free trial”). Then follow the straightforward instructions to get
started with GKE at http://mng.bz/WPVw. The instructions may change over time, so
we avoid repeating them here; always refer to the GKE online documentation to get
started.

J.5.1 Installing gcloud

Google Cloud Platform (GCP) provides a command-line tool to interact with your GKE
running on the cloud from your local machine. Follow the instructions corresponding
to your operating system to install gcloud, which are available at https://cloud.google
.com/sdk/docs/quickstarts. In fact, what you install is the Google Cloud SDK, and
gcloud is part of it. Once you have successfully installed gcloud, run the following
command to make sure everything is working fine:

\> gcloud info

Google Cloud SDK [290.0.1]
Python Version: [2.7.10 (default, Feb 22 2019, 21:17:52)
[GCC 4.2.1 Compatible Apple LLVM 10.0.1 (clang-1001.0.37.14)]]
Installed Components:
 core: [2020.04.24]
 gsutil: [4.49]
 bq: [2.0.56]
Account: [prabath@wso2.com]
Project: [manning-ms-security]
Current Properties:
 [core]
 project: [manning-ms-security]
 account: [prabath@wso2.com]
 disable_usage_reporting: [False]
 [compute]
 zone: [us-west1-a]

https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/sdk/docs/quickstarts
https://cloud.google.com/free/
https://shortener.manning.com/WPVw

510 APPENDIX J Kubernetes fundamentals
This output shows only some important parameters. When you run the same com-
mand in your local setup, you’ll get a different result with more parameters.

J.5.2 Installing kubectl

To interact with the Kubernetes environment running on Google Cloud, you also
need to install kubectl as a component of the gcloud tool, which you installed in sec-
tion J.5.1. This command-line tool, kubectl, runs on your local computer and talks to
the Kubernetes API server running on Google Cloud to perform certain operations.
The following command installs kubectl as a component of the gcloud tool:

\> gcloud components install kubectl

To verify the kubectl installation, run the following command, which should result in
meaningful output, with no errors:

\> kubectl help

J.5.3 Setting up the default setting for gcloud

The gcloud command-line tool has an option to remember certain settings, so each
time you run a gcloud command, you do not need to repeat them. The following
example sets the default GKE project ID, an identifier associated with a GKE project
that you create from the web-based console. When you set up your GKE account, you
also created a project. You need to replace [PROJECT_ID] in the following command
with your own project ID:

\> gcloud config set project [PROJECT_ID]

When you create a Kubernetes cluster in GKE, you need to specify under which
region, or compute zone, you want to create it. This region indicates the geographical
location. All the resources associated with that Kubernetes cluster live in that particu-
lar region. The following command sets the default region:

\> gcloud config set compute/zone us-west1-a

Here, we set the default compute zone to us-west1-a (the Dalles, Oregon, US
region). In fact, us-west1 is the region, and a is the zone. A zone is a location within
a region that defines the capacity and the type of available resources. For example, the
us-west1 region has three zones: a, b, and c; and zone a has the Intel Xeon E5 v4
(Broadwell) platform by default, with up to 96 vCPU machine types on the Skylake plat-
form. More details on GKE regions and zones are documented at http://mng.bz/EdOj.

J.5.4 Creating a Kubernetes cluster

Before we do anything on Kubernetes, we need to create a cluster. You won’t do this
frequently. The following command uses the gcloud command-line tool to create a
Kubernetes cluster with the name manning-ms-security:

\> gcloud container clusters create manning-ms-security

Creating cluster manning-ms-security in us-west1-a...
Cluster is being configured...

http://mng.bz/EdOj

511Creating a Kubernetes Deployment
Creating cluster manning-ms-security in us-west1-a...
Cluster is being deployed
...
Creating cluster manning-ms-security in us-west1-a...
Cluster is being health-checked (master is healthy)...done.
Created [https://container.googleapis.com/v1/projects/kubetest-
232501/zones/us-west1-a/clusters/manning-ms-security]

After we successfully create the Kubernetes cluster, we need to configure the kubectl
command-line tool to work with the cluster. The following command fetches the
authentication credentials to connect to the cluster (manning-ms-security) and
configures kubectl:

\> gcloud container clusters get-credentials manning-ms-security

Now let’s use the following kubectl command to find the version of the Kubernetes
client and server. All the commands we run with kubectl aren’t specific to GKE, but
common across all Kubernetes deployments:

\> kubectl version

J.5.5 Deleting a Kubernetes cluster

You can use the following gcloud command to delete a Kubernetes cluster (in our
example, manning-ms-security) created on GKE, but let’s not do that until we fin-
ish the examples in this book:

\> gcloud container clusters delete manning-ms-security

J.5.6 Switching between multiple Kubernetes clusters

If you have set up your kubectl tool to work with multiple clusters, you also need to
know how to switch between those clusters. Probably you’ll connect to GKE and run a
local cluster with Docker Desktop or Minikube. The following command lists all the
Kubernetes clusters available in your environment:

\> kubectl config get-contexts

To find the current active cluster, you can use the following command:

\> kubectl config current-context

To switch the current active cluster to something else, you can use the following com-
mand. This command switches the current active cluster to docker-desktop:

\> kubectl config use-context docker-desktop

J.6 Creating a Kubernetes Deployment
There are two ways to create a Kubernetes Deployment: using a YAML file or using the
kubectl command-line tool. Even if we use the YAML file, we’ll still use kubectl to
communicate with the Kubernetes cluster running in the cloud.

 In a production deployment, we use YAML files to maintain a Kubernetes Deploy-
ment configuration. In most cases, these files are versioned and maintained in a Git

512 APPENDIX J Kubernetes fundamentals
repository. A detailed discussion on a Kubernetes Deployment is beyond the scope of
this book, so for any readers interested in learning more, we recommend Kubernetes in
Action and Kubernetes Patterns: Reusable Elements for Designing Cloud Native Applications, as
noted previously.

 In chapter 11, we use YAML files in all the examples to create Kubernetes Deploy-
ments, but in this appendix, we use the command-line options. Let’s use the following
kubectl run command to create a Kubernetes Deployment with the Docker image
gcr.io/google-samples/hello-app. If you run the same command again and
again, you’ll get an error:

Error from server (AlreadyExists): deployments.apps "hello-server"
already exists.

In that case, you need to delete the Deployment before running the kubectl run
command again (check the end of this section for information on the delete
command):

\> kubectl run hello-server --image gcr.io/google-samples/hello-app:1.0 \
--port 8080

deployment.apps/hello-server created

When you run this command, Kubernetes fetches the Docker image from the gcr.io
Docker registry and runs it as a container on the Kubernetes cluster we just created.
The port argument in the kubectl command specifies that the process running in
the container should be exposed over port 8080. Now, if you run the following get
command, it shows you all the Deployments in the current Kubernetes cluster (under
the default Namespace):

\> kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-server 1 1 1 1 13s

If you’d like to see the YAML representation of the Kubernetes Deployment, we can
use the following command, which carries the value yaml for the o (output) argu-
ment. This results in a lengthy output, but carries all the details related to the hello-
server Deployment:

\> kubectl get deployments hello-server -o yaml

In section J.2.1, we discussed that a Pod is the smallest deployment unit in a Kuber-
netes environment. When we create a Deployment, the related Pods get created auto-
matically, and the containers run inside a Pod. We can use the following kubectl
get command to list all the Pods running in our Kubernetes cluster (under the
default namespace):

\> kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-server-5cdf4854df-q42c4 1/1 Running 0 10m

513Behind the scenes of a Deployment
If you’d like to delete the Deployment we just created, you can use the following
delete command. But let’s not do it until we finish this appendix.

\> kubectl delete deployments hello-server

J.7 Behind the scenes of a Deployment
When we create a Deployment, it internally creates another object called ReplicaSet.
For simplicity, we skipped this discussion when we introduced the Deployment object
in section J.2.4. As DevOps, we don’t directly deal with ReplicaSet, but Kubernetes
does internally. In a Deployment, the Pods are created and managed by a ReplicaSet
object. The following kubectl command lists all the ReplicaSets in the Kubernetes
cluster (under the default Namespace):

\> kubectl get replicasets

NAME DESIRED CURRENT READY AGE
hello-server-5cdf4854df 1 1 1 11m

The kubectl get command in the following listing gets more details corresponding
to the hello-server-5cdf4854df ReplicaSet object and prints the output in YAML
format.

\> kubectl get replicasets hello-server-5cdf4854df -o yaml

apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
 labels:
 run: hello-server
 name: hello-server-5cdf4854df
 namespace: default
 ownerReferences:
 - apiVersion: apps/v1
 kind: Deployment
 name: hello-server
 uid: c7460660-7d38-11e9-9a8e-42010a8a014b
spec:
 replicas: 1
 selector:
 matchLabels:
 run: hello-server
 template:
 metadata:
 labels:
 run: hello-server
 spec:
 containers:
 - image: gcr.io/google-samples/hello-app:1.0
 name: hello-server

Listing J.7 Defining a ReplicaSet in YAML

Defines the Pod that
this ReplicaSet controls

514 APPENDIX J Kubernetes fundamentals
 ports:
 - containerPort: 8080
 protocol: TCP
status:
 availableReplicas: 1
 replicas: 1

The truncated output shows some important sections and attributes. The spec/
template section defines the Pod, which this ReplicaSet manages.

J.8 Creating a Kubernetes Service
The hello-server Deployment (which we created in section J.6) listens on port
8080. It’s not accessible outside the Kubernetes cluster (it doesn’t have an IP address
that’s accessible outside the cluster). In Kubernetes, a container that carries a
microservice (or in our case, hello-server) is deployed in a Pod, and Pods can
communicate with each other. One Pod can talk to another Pod. Each Pod in a Kuber-
netes environment has a unique IP address. You can run the following kubectl com-
mands to list out all the Pods running in your Kubernetes namespace and then get
more information about a specific Pod running within a Deployment:

\> kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-server-5cdf4854df-q42c4 1/1 Running 0 10m

\> kubectl describe pod hello-server-5cdf4854df-q42c4

Name: hello-server-5cdf4854df-q42c4
Namespace: default
Status: Running
IP: 10.36.0.6

The command shows all the details related to the provided Pod (hello-server-
5cdf4854df-q42c4), but for clarity, only a few important parameters are shown in
the output (most important, the IP address). This IP address assigned to a Pod by
Kubernetes is accessible only within the same cluster.

 In a typical Kubernetes environment for a given microservice (or a container), we
run multiple instances of the same Pod to address scalability requirements; each Pod
in a Kubernetes cluster has multiple replicas. This helps Kubernetes distribute the
requests coming to a given microservice among all the corresponding Pods, or to do
load balancing. Remember, Pods in Kubernetes are short-lived. They can come and go
at any time, so even the internal IP address assigned to a Pod can change from time to
time. This is one requirement for having a Kubernetes Service (see section J.2.3).

 A Kubernetes Service provides an abstraction over a set of Pods that matches the
given criteria. You don’t talk to a Pod directly, but always go through a Service. Let’s
use the following command to create a Kubernetes Service:

\> kubectl expose deployment hello-server --type LoadBalancer \
--port 80 --target-port 8080

515Behind the scenes of a Service
This command creates a Kubernetes Service over all the Pods running in the hello-
server Deployment. Here, we create a Service of the type LoadBalancer. Let’s use
the following command to discover all the Services running in our Kubernetes cluster
(under the default namespace):

\> kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
hello-server LoadBalancer 10.39.243.41 35.233.245.242 80:30648/TCP 6h8m
kubernetes ClusterIP 10.39.240.1 <none> 443/TCP 8h

The output shows that the hello-server Service has two IP addresses. When we
access a Service from within a Kubernetes cluster, we use the cluster IP. And for access-
ing a Service from an external client, we use the external IP. Kubernetes can take a few
minutes to assign an external IP address to a Service. If you don’t see an IP address
assigned to your Service, repeat the command in a few minutes. We can use the follow-
ing curl command to test the hello-server Service with its external IP address:

\> curl http://35.233.245.242

Hello, world!
Version: 1.0.0
Hostname: hello-server-5cdf4854df-q42c4

If you run this sample in your local Kubernetes setup, either with Docker Desktop or
Minikube, you won’t see an external IP address assigned to it. That is because there is
no load balancer associated with your local Kubernetes environment. As you learned
in section J.2.3, if we create a Service of NodePort type, we should be able to access it
by using the IP address of a node and the nodePort. The following command shows
how to create a Service of NodePort type:

\> kubectl expose deployment hello-server --name hello-server-local \
--type NodePort --port 80 --target-port 8080

If you are running a local single-node Kubernetes setup, your node IP address would
be 127.0.0.1, and the following command finds the nodePort of the Service:

\> kubectl describe service hello-server-local

To test the Service in your local setup, use the following command, where 31587 is the
nodePort:

\> curl http://127.0.01:31587

J.9 Behind the scenes of a Service
When we create a Service, Kubernetes internally creates an Endpoints object corre-
sponding to the Service. Before we delve deep into why we need Endpoints, let’s use
the following kubectl command to list all the Endpoints objects in the Kubernetes
cluster (under the default namespace):

516 APPENDIX J Kubernetes fundamentals
\> kubectl get endpoints

NAME ENDPOINTS AGE
hello-server 10.36.0.6:8080 5d18h

Each Endpoints object carries a set of Pod IP addresses and the corresponding con-
tainer ports, with respect to the Pods associated with a given Service. Listing J.8 shows
more details of the hello-server Endpoints object. The truncated output shows the
definition of an Endpoints object with respect to a Service associated with three repli-
cas of a given Pod.

apiVersion: v1
kind: Endpoints
metadata:
 name: hello-server
 namespace: default
subsets:
- addresses:
 - ip: 10.36.0.6
 nodeName: gke-manning-ms-security-default-pool-6faf40f5-5cnb
 targetRef:
 kind: Pod
 name: hello-server-5cdf4854df-q42c4
 - ip: 10.36.1.36
 nodeName: gke-manning-ms-security-default-pool-6faf40f5-br1m
 targetRef:
 kind: Pod
 name: hello-server-5cdf4854df-5z8hj
 - ip: 10.36.2.28
 nodeName: gke-manning-ms-security-default-pool-6faf40f5-vh0x
 targetRef:
 kind: Pod
 name: hello-server-5cdf4854df-bdgdc
ports:
 - port: 8080
 protocol: TCP

As we discussed in section J.9, a Service finds the associated Pods by matching the cor-
responding labels. At runtime, for a Service to route traffic to a Pod, it has to know the
Pod’s IP address and port. To address this need, after we find all the Pods associated
with a given Service, Kubernetes creates an Endpoints object to carry all the Pod’s IP
addresses and the corresponding container ports associated with that Service. The
Endpoints object gets updated when there’s a change in a corresponding Pod.

J.10 Scaling a Kubernetes Deployment
In our hello-server Deployment so far, we have only one Pod. We can use the fol-
lowing kubectl command to ask Kubernetes to create five replicas of the Pod within
the same Deployment. Kubernetes will make sure it always maintains five replicas of
the Pod, and if one Pod goes down, it will spin up a new one:

Listing J.8 The truncated definition of an Endpoints object

IP address
pointing to a Pod

Name of the node that runs the
Pod. Here we can see each Pod

runs on a different node.

Name of
the Pod

517Creating a Kubernetes namespace
\> kubectl scale --replicas 5 deployment hello-server

deployment.extensions/hello-server scaled

\> kubectl get pods

NAME READY STATUS RESTARTS AGE
hello-server-5cdf4854df-c9b4j 1/1 Running 0 52s
hello-server-5cdf4854df-fs6hg 1/1 Running 0 53s
hello-server-5cdf4854df-hpc7h 1/1 Running 0 52s
hello-server-5cdf4854df-q42c4 1/1 Running 0 7h24m
hello-server-5cdf4854df-qjkgp 1/1 Running 0 52s

J.11 Creating a Kubernetes namespace
As you learned in section J.3.6, a Kubernetes namespace is a virtual cluster within the
same physical Kubernetes cluster. Kubernetes comes with its own set of namespaces.
Let’s use the following kubectl command to view the available Kubernetes
namespaces:

\> kubectl get namespaces

NAME STATUS AGE
default Active 23h
kube-public Active 23h
kube-system Active 23h

Each object we create in Kubernetes belongs to a namespace. All the objects created
by the Kubernetes system itself belong to the kube-system namespace. An object
belonging to one namespace isn’t accessible from another namespace. If we want to
have some objects accessible from any namespace, we need to create them in the
kube-public namespace. When we create an object with no namespace, those
objects belong to the default namespace. Let’s use the following kubectl command
to create a custom namespace called manning:

\> kubectl create namespace manning

namespace/manning created

The following kubectl command shows how to create a Deployment in the manning
namespace. If we skip the --namespace argument in the command, Kubernetes
assumes it’s the default namespace.

\> kubectl run manning-hello-server \
--image gcr.io/google-samples/hello-app:1.0 --port 8080 --namespace=manning

The following kubectl command shows all the Deployments in the default
namespace. It doesn’t show the manning-hello-server Deployment, which we cre-
ated from the previous command under the manning namespace:

\> kubectl get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hello-server 5 5 5 5 22h

518 APPENDIX J Kubernetes fundamentals
To view all the deployments under the manning namespace, let’s use the following
kubectl command (instead of --namespace, you can use –n):

\> kubectl get deployments --namespace manning

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
manning-hello-server 1 1 1 1 36s

J.12 Switching Kubernetes namespaces
If we work on multiple Kubernetes namespaces, sometimes it’s a pain to switch
between them. The kubectx tool lets you switch between multiple Kubernetes clusters
and namespaces quite easily.

 Installation of kubectx is straightforward when you follow the instructions at
https://github.com/ahmetb/kubectx. Once the installation is done, we can use the
following kubens command (which comes with kubectx) to set manning as the
default namespace so we don’t need to pass the --namespace argument with each
and every kubectl command:

\> kubens manning

Context "gke_kubetest-232501_us-west1-a_manning-ms-security" modified.
Active namespace is "manning".

J.13 Using Kubernetes objects
Kubernetes has a rich object model to represent different aspects of an application
running in a distributed environment. Using a YAML file, we can describe each of
these Kubernetes objects and create, update, and delete them by using an API, which
is exposed by the Kubernetes API server and persists in etcd.3 For example, a Pod, a
Service, and a Namespace are basic Kubernetes objects, as we discussed in section J.2.
Each object has two top-level attributes called apiVersion and kind, and another set
of attributes under three main categories: metadata, spec, and status:

 apiVersion—Defines the versioned schema of the object representation. This
helps to avoid any conflicts in version upgrades.

 kind—A string that represents the object type; for example, the value of the
kind attribute can be Pod, Deployment, Namespace, Volume, and so on.

 metadata—Includes the name of the object, a unique identifier (UID), the
object’s namespace, and other standard attributes.

 spec—Describes the desired state of a Kubernetes object at the time you create
(or update) it.

 status—Represents the actual state of the object at the runtime.

3 etcd is a highly available key-value store that Kubernetes uses to persist cluster data. The API server persists
the data related to the Kubernetes objects in etcd.

https://github.com/ahmetb/kubectx

519Using Kubernetes objects
The difference between spec and status might not be clear, so let’s go through an
example. Let’s revisit the command we used in section J.6 to create a Kubernetes
Deployment with the Docker image:

gcr.io/google-samples/hello-app

This is an example of an imperative command. With an imperative command, we tell
Kubernetes exactly what to do and give it all the required parameters as command-
line arguments to manage a given Kubernetes object (in section J.13.1, you learned
about creating Kubernetes objects using a declarative configuration as opposed to
imperative commands):

\> kubectl run hello-server --image gcr.io/google-samples/hello-app:1.0 \
--port 8080

deployment.apps/hello-server created

This command creates a Deployment object in the Kubernetes cluster. We can use
the following kubectl command to get the definition of it (the example shows only
truncated output):

\> kubectl get deployment hello-server -o yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: hello-server
spec:
 replicas: 1
status:
 availableReplicas: 1

Here, we can see that the number of replicas under the spec category is 1, which is
the required number of replicas, and the availableReplicas under the status cat-
egory is also 1. Let’s use another kubectl imperative command to increase the num-
ber of replicas to 100. Once again, this is exactly what happens when we use imperative
commands: we need to tell Kubernetes how to do everything, not just what we need:

\> kubectl scale --replicas 100 deployment hello-server

deployment.extensions/hello-server scaled

This command creates 100 replicas of the Deployment, which would probably take a
few seconds. We can use the kubectl command in the following listing a few times,
waiting just a second after issuing the previous command, to get the definition of the
Deployment (only a truncated output is shown).

\> kubectl get deployment hello-server -o yaml

apiVersion: extensions/v1beta1

Listing J.9 The truncated definition of the hello-server Deployment object

520 APPENDIX J Kubernetes fundamentals
kind: Deployment
metadata:
 name: hello-server
spec:
 replicas: 100
status:
 availableReplicas: 1

\> kubectl get deployment hello-server -o yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: hello-server
spec:
 replicas: 100
status:
 availableReplicas: 14

Here, we can see that the number of replicas under the spec category is 100 all the
time, while availableReplicas under the status category is 1 initially. When we
run the same command for the second time, availableReplicas under the
status category has increased to 14. Attributes under the spec category represent
the requirements, while the attributes under the status category represent the
actual runtime status of a Kubernetes object.

J.13.1 Managing Kubernetes objects

We can use kubectl to manage Kubernetes objects in three ways: imperative com-
mands, imperative object configurations, and declarative object configurations. In the
previous section, we used imperative commands. That’s a great way to get started, but
in a production environment, we shouldn’t use those commands. Imperative com-
mands change the state of the Kubernetes objects in a cluster with no tracing. For
example, if we want to revert a change we made, we need to do it manually by remem-
bering the command we executed.

IMPERATIVE OBJECT CONFIGURATIONS

With imperative object configuration, we use a YAML file to represent a Kubernetes
object (instead of passing all required attributes as command-line arguments), and
then use kubectl to manage the objects. For example, let’s look at the content of the
hello-server.yaml file in the following listing, which represents the hello-server
Deployment.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: hello-server
spec:

Listing J.10 Defining a hello-server Deployment object

521Using Kubernetes objects
 replicas: 1
 selector:
 matchLabels:
 run: hello-server
 template:
 metadata:
 labels:
 run: hello-server
 spec:
 containers:
 - image: gcr.io/google-samples/hello-app:1.0
 name: hello-server
 ports:
 - containerPort: 8080

Let’s use the following kubectl command to create a Deployment using the object’s
configuration (from listing J.10). If you ran the previous examples in this appendix,
you already have the hello-server Deployment. In that case, change the metadata
:name: in the configuration to another name. You can find the hello-server.yaml file
inside the appendix-j/sample01 directory of the samples repo of the book at https://
github.com/microservices-security-in-action/samples/:

\> kubectl create -f hello-server.yaml

deployment.extensions/hello-server created

To update a Kubernetes object, use the following kubectl command with the
updated object configuration:

\> kubectl replace -f hello-server.yaml

One drawback here is the updated hello-server.yaml must carry all the attributes that
are necessary to replace the object. You can’t do a partial update.

DECLARATIVE OBJECT CONFIGURATIONS

With declarative object configuration, we don’t need to tell Kubernetes how to do
things, but only what we need. To create a Deployment, first we need to have a YAML
file (just as in the imperative object configuration).

 Let’s use the same hello-server.yaml as in listing J.10 and the following kubectl
command to create a Deployment using the object configuration in that listing. If you
ran the previous examples in this appendix, you already have the hello-server
Deployment. In that case, change the metadata:name in the configuration to
another name:

\> kubectl apply -f hello-server.yaml

When we run the command, we don’t ask Kubernetes to create or update the Deploy-
ment; we just specify the characteristics of the Deployment we need, and Kubernetes
automatically detects the required operations and executes those. Whether we want to
create a new object or update an existing one, we use the same apply command.

https://github.com/microservices-security-in-action/samples/
https://github.com/microservices-security-in-action/samples/

522 APPENDIX J Kubernetes fundamentals
J.14 Exploring the Kubernetes API server
The Kubernetes API server runs on the Kubernetes control plane. Let’s see how to
directly connect to the API server and discover what APIs are hosted there. The fol-
lowing kubectl command opens a connection to the API server. It, in fact, spins up a
proxy server on your local machine and, by default, listens in on port 8001.

\> kubectl proxy &

Starting to serve on 127.0.0.1:8001

We can run the curl command in the following listing to find all the API paths
hosted on the API server (here too, output is truncated).

\> curl http://localhost:8001/

{
 "paths": [
 "/api",
 "/api/v1",
 "/apis",
 "/apis/",
 "/apis/apps",
 "/apis/apps/v1",
 "/apis/authentication.k8s.io",
 "/apis/authorization.k8s.io/v1",
 "/apis/authorization.k8s.io/v1beta1",
 "/apis/autoscaling",
 "/apis/batch",
 "/apis/batch/v1",
 "/apis/batch/v1beta1",
 "/apis/certificates.k8s.io",
 "/apis/certificates.k8s.io/v1beta1",
 "/apis/cloud.google.com",
 "/apis/extensions",
 "/apis/extensions/v1beta1",
 "/apis/metrics.k8s.io",
 "/apis/metrics.k8s.io/v1beta1",
 "/apis/networking.gke.io",
 "/apis/policy",
 "/apis/policy/v1beta1",
 "/apis/rbac.authorization.k8s.io",
 "/apis/rbac.authorization.k8s.io/v1",
 "/apis/scheduling.k8s.io",
 "/healthz",
 "/logs",
 "/metrics",
 "/openapi/v2",
 "/swagger-2.0.0.json",
 "/swagger-2.0.0.pb-v1",
 "/swagger-2.0.0.pb-v1.gz",

Listing J.11 Listing the APIs hosted in the Kubernetes API server

523Exploring the Kubernetes API server
 "/swagger.json",
 "/swaggerapi",
 "/version"
]
}

We can use the curl command in the following listing to list all the resources sup-
ported by a given Kubernetes API version (output is truncated).

\> curl http://localhost:8001/api/v1

{
 "kind": "APIResourceList",
 "groupVersion": "v1",
 "resources": [
 {
 "name": "configmaps",
 "singularName": "",
 "namespaced": true,
 "kind": "ConfigMap",
 "verbs": [
 "create",
 "delete",
 "deletecollection",
 "get",
 "list",
 "patch",
 "update",
 "watch"
],
 "shortNames": [
 "cm"
]
 },
 {
 "name": "pods",
 "singularName": "",
 "namespaced": true,
 "kind": "Pod",
 "verbs": [
 "create",
 "delete",
 "deletecollection",
 "get",
 "list",
 "patch",
 "update",
 "watch"
],
 "shortNames": [
 "po"

Listing J.12 Listing the resources available in the Kubernetes API v1

524 APPENDIX J Kubernetes fundamentals
],
 "categories": [
 "all"
]
 }
]
}

J.15 Kubernetes resources
A resource is an instance of a Kubernetes object, which is accessible by a unique URL; in
other words, it’s a REST resource. We can access the same Kubernetes object via multi-
ple resource URLs. For example (assuming that you have the hello-server Deploy-
ment still running), the following kubectl command retrieves the definition of the
hello-server Deployment as YAML output:

\> kubectl get deployment hello-server -o yaml

The following shows the truncated output of the previous command, which includes
only some important attributes:

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 name: hello-server
 namespace: default
 resourceVersion: "1137529"
 selfLink: /apis/extensions/v1beta1/namespaces/default/
 deployments/hello-server
 uid: c7460660-7d38-11e9-9a8e-42010a8a014b
spec:
 replicas: 1
status:
 availableReplicas: 1

The selfLink attribute in the output is the resource that represents the hello-
server Deployment. As we discussed in section J.14, we can start a proxy locally and
issue a curl command to this resource URL to get the complete representation of the
hello-server Deployment resource:

\> kubectl proxy &

Starting to serve on 127.0.0.1:8001

\> curl \
 http://localhost:8001/apis/extensions/v1beta1/namespaces/default/\
deployments/hello-server

J.16 Kubernetes controllers
In section J.13, we discussed spec and status as two attribute categories of a Kuber-
netes object. The spec attribute defines the desired status of the Kubernetes object,
while the status attribute defines the actual status of the object.

525Ingress
 The role of the Kubernetes controllers is to maintain the status of the Kubernetes
cluster at its desired state. Controllers always observe the status of the Kubernetes clus-
ter. For example, when we ask Kubernetes to create a Deployment with five replicas,
it’s the responsibility of the Deployment controller to understand that request and
create the replicas. In section J.18, we discuss this in detail.

J.17 Ingress
In this appendix so far, we have discussed two ways of exposing a Kubernetes Service
outside a Kubernetes cluster: NodePort Service and LoadBalancer Service; Ingress is
the third way.

 Ingress is a Kubernetes object that routes traffic from outside the cluster to a
Kubernetes Service over HTTP or HTTPS. It helps to expose one or more Kubernetes
Services (say, of the NodePort type) through a single IP address. You can think of
Ingress as a level of abstraction over one or more Services (just as a Service is an
abstraction over one or more Pods). The following listing defines a sample Kubernetes
Ingress object.

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: manning-ingress
spec:
 rules:
 - http:
 paths:
 - path: /orders
 backend:
 serviceName: order-processing-service
 servicePort: 80
 - path: /customers
 backend:
 serviceName: customer-service
 servicePort: 80

This YAML defines an Ingress object that routes traffic to two backend Kubernetes Ser-
vices based on the URL pattern of the request. If the request comes to the /orders
URL, Kubernetes routes the request to order-processing-service. If the request
comes to the /customers URL, Kubernetes routes it to customer-service.

 When you create an Ingress resource, it gets associated with an Ingress controller. In
fact, you can’t have just an Ingress resource; there has to be an Ingress controller too.
You can use NGINX as an Ingress controller, for example. GKE uses its own Ingress
controller called GKE Ingress. You can read more about GKE Ingress at https://cloud
.google.com/kubernetes-engine/docs/concepts/ingress.

Listing J.13 Defining an Ingress object in YAML

Routes a request with the /orders context
to the order-processing-service Service.
This is a nodePort Service listening on port
80 on its internal cluster IP address.

https://cloud.google.com/kubernetes-engine/docs/concepts/ingress
https://cloud.google.com/kubernetes-engine/docs/concepts/ingress

526 APPENDIX J Kubernetes fundamentals
 If you are running Kubernetes locally, with a single-node cluster, either with
Docker Desktop or Minikube, the Ingress controller is not enabled by default. You can
see how to set up NGINX as the Ingress controller under Docker Desktop and Mini-
kube at https://kubernetes.github.io/ingress-nginx/deploy/.

J.18 Kubernetes internal communication
In section J.2, we discussed Kubernetes master and worker nodes. Each node has its
own set of components, so let’s see how these components communicate with each
other. To check the status of the components running in the Kubernetes master node,
or the control plane, let’s use the following kubectl command:

\> kubectl get componentstatuses

NAME STATUS MESSAGE ERROR
scheduler Healthy ok
etcd-0 Healthy {"health": "true"}
etcd-1 Healthy {"health": "true"}
controller-manager Healthy ok

When we run the command with kubectl running on our local machine, it simply talks
to an API running on the Kubernetes API server, running within the control plane.
The API server internally checks the status of all the control plane components and
sends back the response. All the kubectl commands we used in this appendix work in
a similar manner.

J.18.1 How kubectl run works

The best way to understand how Kubernetes internal communication happens is to go
through one simple command and see how it works end to end (see figure J.4). In sec-
tion J.6, we used the following kubectl command to create a Kubernetes Deploy-
ment with the Docker image gcr.io/google-samples/hello-app:

\> kubectl run hello-server --image gcr.io/google-samples/hello-app:1.0 \
--port 8080

When we run this command from kubectl running on our local machine, it creates a
request with the provided parameters and talks to an API running on the Kubernetes
API server. The communications among all the components in the Kubernetes con-
trol plane happens via the API server.

 The following lists the sequence of events in figure J.4 that happen in a Kubernetes
cluster after the API server receives a request from kubectl:

1 All the requests coming to the API server are intercepted by an authentication
plugin deployed in the API server. This plugin makes sure that only legitimate
clients can talk to the API server.

2 Once done with authentication, an authorization plugin deployed in the API
server intercepts the request and checks whether the authenticated user has
permissions to perform the intended action (not all users are allowed to create
Pods).

https://kubernetes.github.io/ingress-nginx/deploy/

527Kubernetes internal communication
3 The authorized API request now goes through a set of Admission Controller
plugins. The Admission Controller plugins can perform multiple tasks on the
API request. For example, the EventRateLimit plugin can limit the number
of API requests by the user.

4 The API server validates the API request and persists the corresponding objects
(corresponding to the API request) in a key-value store, which is etcd. Kuber-
netes uses this highly available key-value store to persist cluster data.

5 Once the API server performs any operations on an object, it notifies a set of
registered listeners. The scheduler, another component running in the control
plane and registered with the API server, receives a notification when the API
server, as per the API request, creates the new Pod object in etcd.

6 The scheduler finds a node to run the Pod and again updates the Pod definition
stored in etcd with node information via the API server. Neither the API server
nor the scheduler actually creates the Pod.

7 Once again, the update action performed in step 6 triggers another event. The
kubelet component running in the corresponding worker node (where the Pod
is supposed to run) picks that event (or gets notified) and starts creating the
Pod. Each worker node has a kubelet, and it keeps listening to the API server to
capture any events.

8 While creating the Pod, kubelet asks the container runtime (for example,
Docker), which is running in the same worker node, to pull the corresponding
container images from the registry and start them. At the time of this writing,

Scheduler

Worker
Node

kubeletClient

kubectl Container
Runtime

kube-
proxy

etcd

Admission Controller Plugins

Authentication
Plugins Authorization

Plugins

API Server

1

26

6

8

7

3

5
4

4

Figure J.4 A request generated by kubectl passes through the authentication, authorization, and admission
controller plugins of the API server. It’s validated and then stored in etcd. The scheduler and kubelet respond to
events generated by the API server.

528 APPENDIX J Kubernetes fundamentals
Kubernetes uses Docker as its default container runtime, but with the introduc-
tion of the container runtime interface (CRI), Kubernetes makes container
runtimes pluggable.

Once all the containers in the Pod start running, kubelet keeps monitoring their sta-
tus and reports to the API server. If the kubelet receives an event to terminate a Pod, it
terminates all the containers in the corresponding Pod and updates the API server.

 We discussed Kubernetes controllers in section J.16. While the Kubernetes cluster
is up and running, the responsibility of these controllers is to make sure the desired
state of the cluster matches the actual state. For example, the ReplicationSet con-
troller watches the API server to find the status of the Pods it controls. If the desired
number of Pods requested at the time we create the Deployment is less than the actual
number of Pods running in the cluster, it creates the missing number of Pods by talk-
ing to the API server. Then it follows the same flow as explained: the scheduler will
pick the Pod creation event and will schedule new Pods to run on a set of nodes.

J.18.2 How Kubernetes routes a request
from an external client to a Pod

We discussed three ways to open a Pod running in a Kubernetes cluster to an external
client. Let’s summarize those ways:

 A Service of NodePort type (section J.3.3)
 A Service of LoadBalancer type (section J.3.3)
 An Ingress controller with a NodePort Service type (section J.17)

For simplicity, let’s take the second scenario, assuming that we have a Service of Load-
Balancer type, and see the sequence of events that happen in the Kubernetes cluster
when it receives a request from an external client. The following lists the actions that
take place when you create a Service in Kubernetes:

 Each worker node in a Kubernetes cluster runs a component called a kube-
proxy. When Kubernetes creates a Service, either of NodePort or of Load-
Balancer type, the kube-proxy gets notified, and it opens up the corresponding
port (nodePort) in the local node. Each kube-proxy component in each
worker node does the same. For a Service of ClusterIP type, no nodePort is
involved.

 A kube-proxy operates in one of three modes: userspace, iptables, and ipvs (we
keep the ipvs mode out of this discussion).

 If the kube-proxy operates in the userspace mode (figure J.5), it installs iptables
rules on the node. This routes the traffic that comes to the nodePort (for the
Services of LoadBalancer and NodePort type) of the node (via the IP of the
node) to the proxy port of the kube-proxy. It also updates the iptables rules to
route any traffic that is destined to the cluster IP (for any service type) on a ser-
vice port to the proxy port of the kube-proxy. The cluster IP is a virtual IP
address that Kubernetes creates for all the Services.

529Kubernetes internal communication
 If the kube-proxy operates in iptables mode, it installs an iptables rule that
routes any traffic directed to the nodePort (for the Services of LoadBalancer
and NodePort type) of the node to a randomly picked Pod IP address from the
Endpoints object corresponding to the Service object and to the corresponding
container port. Also, the kube-proxy updates the iptables rules to do the same
even if it receives traffic for a Service destined to a cluster IP on a service port to
a randomly picked Pod IP address from the Endpoints object corresponding to
the Service object and to the corresponding container port.

Figure J.5 A kube-proxy operating in the userspace mode routes the requests to an appropriate Pod, which
corresponds to the Service.

The following lists the actions that take place when you send a request to a Service of
LoadBalancer type:

 The client application, which is outside the Kubernetes cluster, sends a request
with the IP address pointing to the load balancer. The load balancer runs out-
side the Kubernetes cluster and can be an F5, Netscaler, or any other load bal-
ancer. When we run the command kubectl get service against a Service,
the EXTERNAL-IP column represents the IP address of the load balancer. Each
Service has its own external IP address on the load balancer. Then again, this
implementation varies by cloud vendor. On GKE, it generates a different exter-
nal IP address for each Service.

 Once the request hits the load balancer, and based on the IP address in the
request, the load balancer knows the corresponding Service; hence, it can fig-
ure out the nodePort associated with that Service.

kube-proxy operating in userspace mode
routes requests to the appropriate Pod,
corresponding to the Service.

External load
balancer can be
an F5, Netscaler,
or others.

Each node has an
open port (nodePort)
corresponding to each
NodePort/LoadBalancer
Service.

Load Balancer

kube-proxy

Node
Port

Node
Port

Pod Pod

kube-proxy

Pod Pod

Worker Node Worker Node

1

2

3

530 APPENDIX J Kubernetes fundamentals
 Based on the load-balancing algorithm, the load balancer picks a node from
the Kubernetes cluster and routes the request to the corresponding nodePort
via the corresponding node IP (step 1 in figure J.5).

 If the kube-proxy operates in the userspace mode, the request routed to the
node from the load balancer goes through the kube-proxy, and it finds the cor-
responding Service by the nodePort (each Service has its own nodePort) and
the appropriate Pod (by default, using a round-robin algorithm) and reroutes
the request to that Pod (to the Pod IP address and port). This Pod can come
from a totally different node (steps 2 and 3 in figure J.5). The kube-proxy finds
the IP address of the Pod by looking at the Endpoints object attached to the
corresponding Service.

 If the kube-proxy operates in the iptables mode (figure J.6), the request won’t
route through the kube-proxy, but according to the corresponding iptables
rules in that node, the request is rerouted to one of the Pods associated with the
corresponding Service (steps 2 and 3 in figure J.6).

 Once the request hits a Pod, it’s dispatched to the corresponding container by
looking at the port. In a given Pod, multiple containers can’t be running on the
same port.

Figure J.6 A kube-proxy operating in iptables mode routes requests to an appropriate Pod, which corresponds to
the Service using iptables.

J.19 Managing configurations
In a typical Kubernetes environment, configuration data you use within some contain-
ers changes from environment to environment. For example, a Pod deployed in the
production Kubernetes cluster will have different certificates, database connection

kube-proxy operating in iptables mode
routes requests to the appropriate Pod,
corresponding to the Service using iptables.

External load
balancer can be
an F5, Netscaler,
or others.

Each node has an open
port (nodePort)
corresponding to each
NodePort/LoadBalancer
Service.

Load Balancer

iptables

Node
Port

Node
Port

Pod Pod

kube-proxy

Pod Pod

Worker Node Worker Node

1
2

3

531Managing configurations
details, and so on from the same Pod deployed in a preproduction cluster. First, let’s see
various ways of carrying out configuration data in a Kubernetes cluster and then see
how to decouple the configuration data from the Kubernetes Deployment definition.

J.19.1 Hardcoding configuration data in the Deployment definition

The straightforward way to carry configuration data in a Kubernetes Deployment is to
hardcode the data into the definition of the Deployment as environment variables.
For example, we can modify the command we used in section J.6 to create a Deploy-
ment to pass some configuration data as environment variables in the command line:

\> kubectl run hello-server --env="name1=value1" --env="name2=value2" \
--image gcr.io/google-samples/hello-app:1.0 --port 8080

When you run the command, you’ll get an error if the deployment already exists. In
that case, you can use the following command to delete the Deployment and rerun
the previous command:

\> kubectl delete deployment hello-server

Let’s run the command in the following listing to get the definition of the hello-
server Deployment in YAML format. You’ll notice that the two environment vari-
ables we passed in the previous command under the --env argument are added to
the Deployment definition. The actual code or the process corresponding to the
hello-server container, which runs inside a Pod within the hello-server Deploy-
ment, can read the value of the environment variable. For example, if the server wants
to connect to a database, it can read the database connection details from these envi-
ronment variables.

\> kubectl get deployment hello-server -o yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 run: hello-server
 name: hello-server
spec:
 replicas: 1
 selector:
 matchLabels:
 run: hello-server
 template:
 metadata:
 labels:
 run: hello-server
 spec:
 containers:
 - env:

Listing J.14 Defining a hello-server Deployment in YAML

Lists all the environment variables
 passed in the command line

532 APPENDIX J Kubernetes fundamentals
 - name: name1
 value: value1
 - name: name2
 value: value2
 image: gcr.io/google-samples/hello-app:1.0
 name: hello-server
 ports:
 - containerPort: 8080
 protocol: TCP

When we create a Deployment as in listing J.14, we couple the configuration data to
the Deployment object itself. As we discussed previously, in a typical production
deployment, we don’t use imperative commands to create a Deployment; instead, we
use declarative object configurations (see section J.13). In case of a declarative config-
uration model, we maintain the definition of the Deployment object (in this case,
along with all hardcoded environment variables) in a YAML file and then use the
command kubectl apply to create the Deployment.

 All the examples we use in chapter 11 follow the declarative configuration model.
When we hardcode the environment variables into the Deployment definition, we need
to duplicate that definition with different environment values for each production and
preproduction environment. Basically, we need to maintain multiple YAML files for the
same Deployment! That’s not a good approach, and one that’s not recommended.

J.19.2 Introducing ConfigMaps

A ConfigMap is a Kubernetes object that helps to decouple configuration data from a
Deployment. In section 11.2, we use a comprehensive example of ConfigMap. In this
section, we discuss various ways of using ConfigMap in a Kubernetes Deployment. If we
take the same example as in section J.19.1, we can define a ConfigMap to carry the con-
figuration data as follows.

apiVersion: v1
kind: ConfigMap
metadata:
 name: hello-server-cm
data:
 name1: value1
 name2: value2

This creates a ConfigMap object with a text representation. The following listing
shows how to create a ConfigMap with binary data. Here, the value of the key
(image1) must be base64 encoded.

apiVersion: v1
kind: ConfigMap

Listing J.15 Defining a ConfigMap object that carries text data

Listing J.16 Defining a ConfigMap object that carries binary data

Name of the
Docker image

Name of the container
that runs inside the Pod

Name of the
ConfigMap

Lists data as name/value pairs,
where the value is treated as text

533Managing configurations
metadata:
 name: hello-server-cm
binaryData:
 image1: /u3+7QAAAAIAAAABAAAAAQAGand0..

To create a ConfigMap object in Kubernetes following the declarative configuration
model, we use the following command, assuming that the hello-server-cm.yaml file
carries the complete definition of the ConfigMap:

\> kubectl apply –f hello-server-cm.yaml

J.19.3 Consuming ConfigMaps from a Kubernetes Deployment
and populating environment variables

In this section, we discuss how to consume the configuration data defined in a Config-
Map object from a Kubernetes Deployment and populate a set of environment vari-
ables. The Kubernetes Deployment reads the configuration data from a ConfigMap
and updates a set of environment variables. In the following listing, you can find the
updated hello-server Deployment, and the code annotations explain how it works.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 run: hello-server
 name: hello-server
spec:
 replicas: 1
 selector:
 matchLabels:
 run: hello-server
 template:
 metadata:
 labels:
 run: hello-server
 spec:
 containers:
 - env:
 - name: name1
 valueFrom:
 configMapKeyRef:
 name: hello-server-cm
 key: name1
 - name: name2
 valueFrom:
 configMapKeyRef:
 name: hello-server-cm
 key: name2
 image: gcr.io/google-samples/hello-app:1.0
 name: hello-server
 ports:
 - containerPort: 8080
 protocol: TCP

Listing J.17 Defining a hello-server Deployment to read data from a ConfigMap

Lists binary data as name/value pairs,
where the value is base64-encoded

Name of the environment variable.
The corresponding container reads
the value of the environment
variable using this name as the key.

Instructs Kubernetes to
look for a ConfigMap
object to read the value of
the environment variable

Name of the
ConfigMap

object
Name of the key
defined in the
ConfigMap object

534 APPENDIX J Kubernetes fundamentals
With this approach, we’ve completely decoupled the configuration data from our
Kubernetes Deployment. You can have one single Deployment definition and multi-
ple different ConfigMap objects for each production and preproduction environment
with different values.

J.19.4 Consuming ConfigMaps from a Kubernetes
Deployment with volume mounts

In this section, we discuss how to read a configuration file from a ConfigMap object
and mount that file to a container filesystem from a Deployment. The following listing
shows how we can represent a configuration file in a ConfigMap.

apiVersion: v1
kind: ConfigMap
metadata:
 name: properties-file-cm
data:
 application.properties: |
 [
 server.port: 8443
 server.ssl.key-store: /opt/keystore.jks
 server.ssl.key-store-password: ${KEYSTORE_SECRET}
 server.ssl.keyAlias: spring
 spring.security.oauth.jwt: true
 spring.security.oauth.jwt.keystore.password: ${JWT_KEYSTORE_SECRET}
 spring.security.oauth.jwt.keystore.alias: jwtkey
 spring.security.oauth.jwt.keystore.name: /opt/jwt.jks
]

The following listing shows how to consume the ConfigMap defined in listing J.18 and
mount it to the corresponding container filesystem. The code annotations explain
how this works.

apiVersion: extensions/v1beta1
kind: Deployment
metadata:
 labels:
 run: hello-server
 name: hello-server
spec:
 replicas: 1
 selector:
 matchLabels:
 run: hello-server
 template:
 metadata:
 labels:

Listing J.18 Defining a ConfigMap object that carries a config file

Listing J.19 Defining a hello-server Deployment with volume mounts

Name of the
ConfigMap entry

The name of the config file,
which carries the content
within the square brackets

535Managing configurations

 run: hello-server
 spec:
 containers:
 - image: gcr.io/google-samples/hello-app:1.0
 name: hello-server
 volumeMounts:
 - name: application-properties
 mountPath: "/opt/application.properties"
 subPath: "application.properties"
 ports:
 - containerPort: 8080
 protocol: TCP
 volumes:
 - name: application-properties
 configMap:
 name: properties-file-cm

Defines
properties

corresponding
to each

volume mount

Name of the volume, which refers to
the volumes/name element toward
the end of the configuration file

Sets the location in the
container filesystem (or
where to mount the file)

A sub path from the mountPath, so the
root of the mountPath can be shared
among multiple volumeMounts. If
we don’t define a subPath here, when
we have another volumeMount under
the opt directory (the same directory),
it would create issues.

Defines a set of volumes that are
referred to by name from the
containers/volumeMounts section

Name
of the

volume

Name of the ConfigMap
object from listing J.18

appendix K
Service mesh and

Istio fundamentals

One key aspect of microservices architecture is the single responsibility principle, or
SRP (https://en.wikipedia.org/wiki/Single_responsibility_principle), which indi-
cates that a microservice should perform only one particular function. In chapter
3, we discussed how to use the API Gateway pattern to take most of the burden
from microservices and to delegate security processing at the edge to an API gate-
way. The API gateway works mostly with north/south traffic—the traffic between
applications (or consumers) and APIs. But still, in the examples we discussed in
chapter 6 and chapter 7, most of the processing while securing inter-microservice
communications (or east/west traffic) with mTLS and JWT was carried out by the
microservices themselves.

 Service Mesh is an architectural pattern with multiple implementations. It deals
with east/west traffic (the traffic among microservices) to take most of the burden off
of the microservices, with respect to security processing and other nonfunctional
requirements. A service mesh brings in the best practices of resiliency, security,
observability, and routing control to your microservices deployment, which we dis-
cuss in detail in the rest of this appendix. This appendix lays the foundation for
chapter 12, which focuses on securing a microservices deployment with the Istio
service mesh. To follow this appendix, it is a prerequisite that you have some under-
standing of Kubernetes, which we discuss in appendix J.

K.1 Why a service mesh?
A service mesh is the result of the gradual progress in implementing the SRP in
microservices architecture. If you look at a framework like Spring Boot, it tries to
implement some of the key functionalities we see in a typical service mesh today, at
the language level as a library. As a microservices developer, you don’t need to
536

https://en.wikipedia.org/wiki/Single_responsibility_principle

537Why a service mesh?
worry about implementing those functionalities; instead, you’d simply use the corre-
sponding libraries in your microservice implementation. This is the approach we fol-
lowed in chapter 6 and chapter 7 while securing inter-microservice communications
with mTLS and JWT. You can even call this model an embedded service mesh (figure K.1)
or an in-process service mesh.

Figure K.1 In an embedded service mesh, each microservice by itself implements security processing
with a set of embedded libraries.

The embedded service mesh approach has several drawbacks. For example, if you
want to use Spring Boot / Java libraries to implement security, observability, and resil-
iency features, your microservices implementation must be in Java. Also, if you dis-
cover any issues with the Spring Boot libraries, you need to redeploy your entire
microservice. At the same time, when there’s an API change in the Spring Boot librar-
ies, you need to make the corresponding change in your microservice implementa-
tion. All in all, the embedded service mesh approach doesn’t quite fit well into the
microservices architecture.

 In the rest of this appendix when we talk about the service mesh, we mean the out-
of-process service mesh. In contrast to the embedded service mesh approach, the out-of-
process service mesh (figure K.2) runs apart from your microservice, and transpar-
ently intercepts all the traffic coming into and going out of your microservice.

Security Token Service
(STS)

Microservice
Va

lid
at

e
to

ke
ns

Access

mTLS

mTLS
Microservice

Microservice

API Gateway

Client applications talk
to microservices via APIs
exposed by the API
gateway (north-south
traffic). All the functionality-related to JWT verification

and the mTLS handshake are handled by libraries
embedded in the microservice itself.

JWT
JWT

JWT

JWT

mTLS
JWT

JWT

538 APPENDIX K Service mesh and Istio fundamentals
Figure K.2 The out-of-process service mesh, which does security processing via a proxy,
intercepts all the requests going in and coming out of the corresponding microservice.

K.2 The evolution of microservice deployments
In practice, microservice deployments are at different maturity levels. Some run their
services with an embedded lightweight application server (for example, Spring Boot)
on a physical machine or a virtual machine. This approach is OK if you have just a few
microservices and only a few people working on them.

 When the number of services increases and more teams start working on those, it
becomes harder to live without automation. This is when people start fretting about
deploying microservices in containers. It’s common for those who are just getting
started with containers to begin without a container orchestration framework like
Kubernetes. This is now changing with more and more cloud providers starting to
provide Kubernetes as a service. When the number of containers increases, the man-
agement of those becomes a nightmare unless you have a container orchestration
framework (see appendix J).

 The next natural step after moving to Kubernetes is to use a service mesh. Kuber-
netes helps with managing a large-scale microservices deployment, but it lacks in pro-
viding application-level, quality-of-service (QoS) features for microservices. This is
where the Service Mesh pattern comes in: Kubernetes is like an operating system that
has the service mesh (a product that implements the Service Mesh pattern) running
on top of it to provide a set of QoS features for microservices on a large scale.

Identity Provider
(STS)

Va
lid

at
e

to
ke

ns

Access

mTLS

API Gateway

All the functionality-related to JWT verification and
the mTLS handshake are handled by an out-of-process
component, or a proxy, that intercepts all the requests
going in and coming out of the microservice.

JWT JWT

JWT

JWT

mTLS
JWT

P
ro

xy

M
ic

ro
se

rv
ic

e

P
ro

xy

M
ic

ro
se

rv
ic

e

P
ro

xy

M
ic

ro
se

rv
ic

e

mTLS

JWT

539The evolution of microservice deployments
K.2.1 The Service Mesh architecture

The Service Mesh architecture consists primarily of two planes: a data plane and a
control plane (figure K.3). These planes coordinate with each other to bring in the
best practices in resiliency, security, observability, and routing control to your
microservices deployment. We’ll first look at the data plane.

Figure K.3 A typical service mesh consists of a control plane and a data plane.

DATA PLANE

In our Spring Boot examples (in chapters 6 and 7), where we implemented an embed-
ded service mesh with Spring Boot libraries, a Spring Boot handler intercepts all the
requests coming to your microservice. In the same way, an out-of-process service mesh
uses a proxy that intercepts all the requests coming in and going out of your micro-
service. We call this a service proxy (figure K.3). Because the service proxy is in the
request/response path of a microservice, it can enforce security, do monitoring, man-
age traffic, perform service discovery, and implement patterns like a circuit breaker or
bulkhead to support resiliency for all inbound and outbound traffic. The service
proxy plays the role of a policy enforcement point (PEP).

NOTE In this book, we focus only on security in a service mesh. If you’d like to
read about other features of a service mesh, such as observability, resiliency,

Proxy

Certificate
Management

Control
Plane

Data
Plane

Authorization
Policies

Logging
Monitoring

Routing
Rules

Microservice

Proxy

In
gr

es
s

G
at

ew
ay E

gress
G

atew
ay

Microservice

Proxy

mTLS

Microservice

All the incoming traffic to
the service mesh first goes
through the Ingress gateway.

The service proxy plays
the role of a policy
enforcement point (PEP).

All the outgoing traffic from
the service mesh goes
through the Egress gateway.

540 APPENDIX K Service mesh and Istio fundamentals
traffic management, and so on, we recommend that you check out Istio in
Action by Christian Posta (Manning, to be published in 2021) and Istio: Up and
Running by Lee Calcote and Zack Butcher (O’Reilly Media, 2019).

In a typical service mesh architecture, each microservice has its own service proxy, and
in-and-out traffic from a microservice flows through the service proxy in a transparent
manner. The microservice implementation doesn’t need to fuss about the existence of
the service proxy. The service proxies that coordinate traffic in a microservices deploy-
ment and act as PEPs build the data plane of the service mesh architecture.

 In addition to the service proxies, two other components are in a data plane: an
Ingress gateway and an Egress gateway. All the traffic entering into the microservices
deployment first flows through the Ingress gateway, and it decides where (or to which
service proxy) to dispatch traffic. All the traffic leaving the microservices deployment
flows through the Egress gateway. In other words, all north-south traffic goes through
Ingress/Egress gateways, while all east-west traffic goes through service proxies.

CONTROL PLANE

The control plane in the Service Mesh architecture acts as a policy administration point
(PAP). It defines all the control instructions to operate service proxies in the data
plane and never touches any data packets at runtime. A typical control plane imple-
mentation provides an API or a UI portal, or both, to perform administrative tasks
and runs an agent in each service proxy to pass control instructions.

K.2.2 Service mesh implementations

The Service Mesh architectural pattern has multiple implementations. Of all of these,
Istio is the most popular and the one we focus on in this book. Here is a list of some of
the more popular implementations:

 Istio—An open source service mesh created by Google, Lyft, and IBM. Istio uses
Envoy developed by Lyft (written in C++) for the service proxy. In this appendix
and in chapter 12, we discuss Istio in detail.

 Linkerd—A service mesh developed by Buoyant that has both an open source
version and commercial licenses. Linkerd has its own service proxy written in
Rust. You can find out more about the Linkerd architecture at https://linkerd
.io/2/reference/architecture.

 HashiCorp Consul—A service mesh developed by HashiCorp that has both an
open source version and commercial licenses. A new feature called Connect,
introduced since HashiCorp Consul 1.2, turned Consul into a service mesh. You
can read more about HashiCorp Consul architecture at http://mng.bz/D2pa.

 Aspen Mesh—A commercial service mesh based on Istio. More details about
Aspen Mesh are available at https://aspenmesh.io/what-aspen-mesh-adds-to-
istio/.

 AWS App Mesh—A service mesh developed by Amazon Web Services. You can
read more about AWS App Mesh at https://aws.amazon.com/app-mesh.

https://aws.amazon.com/app-mesh
https://aspenmesh.io/what-aspen-mesh-adds-to-istio/
https://aspenmesh.io/what-aspen-mesh-adds-to-istio/
https://linkerd.io/2/reference/architecture
https://linkerd.io/2/reference/architecture
http://mng.bz/D2pa

541Istio service mesh
 Microsoft Azure Service Fabric—A service mesh by Microsoft on Azure. You can
read more about Azure Service Fabric at http://mng.bz/lGrB.

 AVI Networks—A service mesh by AVI Networks, based on Istio. VMware
acquired AVI Networks in June 2019. You can find more about the AVI Networks
service mesh implementation at https://avinetworks.com/universal-service
-mesh.

 Red Hat OpenShift Service Mesh—A service mesh by Red Hat on OpenShift that’s
based on Istio. You can read more at https://www.openshift.com/learn/topics/
service-mesh.

Even though many service mesh implementations are based on Istio, you’ll find some
differences when you dig deeper into the details. For example, “Comparing Service
Mesh and Istio” (http://mng.bz/B2gr) explains the differences between the upstream
Istio project and the Red Hat OpenShift Service Mesh. Also, if you’re interested in
learning the differences between Istio, Linkerd, and Consul, here’s a good reference:
http://mng.bz/dyZv. All these service mesh implementations are increasingly evolving
projects, so you need to look for the most up-to-date information all the time.

K.2.3 Service mesh vs. API gateway

In chapter 3, we discussed the role of an API gateway in a microservices deployment.
The API gateway primarily handles north/south traffic—the communication between
the client applications and the APIs. In contrast, in a typical microservices deployment,
the service mesh predominantly handles east/west traffic, or the communications
among microservices. Then again, we also see some evolving service mesh implemen-
tations that handle north/south traffic as well, where some components in the service
mesh also play the role of an API gateway.

K.3 Istio service mesh
Istio is a service mesh implementation developed by Google, Lyft, and IBM. It’s open
source and the most popular service mesh implementation at the time of this writing.
The project started in 2016, using Envoy as the service proxy that runs in the data
plane.1 The control plane components are developed in the Go programming lan-
guage. The Istio code base is available on GitHub at https://github.com/istio/istio.

 One of the key metrics when finding the popularity and the adoption of an open
source project is the number of GitHub stars. At the time of this writing (May 2020),
Istio has almost 22,600 stars. In this appendix, we explain Istio to lay the foundation
for what you’ll find in chapter 12, where we discuss securing microservices in an Istio
environment.

1 For more information, see the Google Cloud whitepaper, “The Service Mesh Era: Architecting, Securing and
Managing Microservices with Istio” at http://mng.bz/8pag.

https://shortener.manning.com/lGrB
http://mng.bz/B2gr
http://mng.bz/dyZv
http://mng.bz/8pag
https://avinetworks.com/universal-service-mesh
https://avinetworks.com/universal-service-mesh
https://www.openshift.com/learn/topics/service-mesh
https://www.openshift.com/learn/topics/service-mesh
https://github.com/istio/istio

542 APPENDIX K Service mesh and Istio fundamentals
K.4 Istio architecture
As discussed in section K.3, a typical service implementation operates in two planes:
the data plane and the control plane (figure K.4). In the following sections, we discuss
how Istio operates in each of those planes.

Figure K.4 Istio high-level architecture with a control plane and a data plane

K.4.1 Istio data plane

The Istio data plane consists of a set of service proxies alongside each microservice, an
Ingress gateway, and an Egress gateway. In the following sections, we discuss the
responsibilities of each of those components and how they operate in a Kubernetes
deployment.

Envoy

Data
Plane

Microservice

Envoy

Is
tio

 In
gr

es
s

G
at

ew
ay

Istio E
gress

G
atew

ay

Microservice

Envoy

Microservice

All the incoming traffic to
the service mesh first goes
through the Istio Ingress
gateway.

Takes care of
precondition
checking, quota
management, and
telemetry reporting

All the outgoing traffic
from the service mesh
goes through the Istio
Egress gateway.

Data flow

Pilot Citadel Mixer

Controls instructions
between the control
plane and the data
plane

Pilot helps Istio operators
define routing rules and
configurations, which are
required in service-to-
service communications.

Maintains an identity for each
workload (or microservice) that
runs under Istio and facilitates
secure communications among
workloads

A
ut

hz
 P

lu
gi

n

Lo
gg

in
g

P
lu

gi
n

M
on

ito
rin

g
P

lu
gi

n

Control
Plane

543Istio architecture
SERVICE PROXY (ENVOY)
Istio out of the box uses Envoy as its service proxy. In a typical Kubernetes deploy-
ment, Envoy is deployed in each Pod as a sidecar along with the corresponding
microservice.2 Kubernetes makes sure all the containers in a given Pod run in the
same node.3 Istio also updates the iptables rules in the corresponding Kubernetes
node to make sure all the traffic that comes to the container that carries the microser-
vice first flows through Envoy, and in the same way, any traffic that’s initiated by the
microservice also flows through Envoy.4 That way, Envoy takes control of all the traffic
going in and coming out of the microservice. The following are the core functional-
ities Envoy supports as a service proxy:

 HTTP/2 and gRPC support—Envoy supports HTTP/2 and gRPC for both incom-
ing and outgoing connections. In fact, Envoy was one of the first HTTP/2
implementations. gRPC (https://grpc.io/) is an open source remote procedure
call (RPC) framework (or library), originally developed by Google. It’s the next
generation of a system called Stubby that Google has been using internally for
over a decade. gRPC achieves efficiency for communications among systems
using HTTP/2 as the transport and Protocol Buffers as the IDL. We discuss
gRPC in detail in appendix I.

HTTP/2 provides request multiplexing and header compression that
increases its performance significantly compared to HTTP/1.1. It also employs
binary encoding of frames, which makes the data being transferred much more
compact and efficient when processing. You can read more about HTTP/2 in
appendix I or check out HTTP/2 in Action by Barry Pollard (Manning, 2019).

 Protocol translation—Envoy is also an HTTP/1.1-to-HTTP/2 transparent proxy;
Envoy can accept an HTTP/1.1 request and proxy it over HTTP/2. You can also
send a JSON payload over HTTP/1.1, and Envoy translates that to a gRPC
request over HTTP/2 and sends it to the corresponding microservice. Further,
Envoy can translate the gRPC response it gets from the microservice to JSON
over HTTP/1.1.

 Load balancing—The Envoy proxy can act as a load balancer for upstream ser-
vices. When one microservice talks to another microservice, that request first
goes through the Envoy proxy sitting with the first microservice (figure K.5).
This envoy proxy can act as a load balancer for the second microservice, which
is called the upstream microservice. Envoy supports advanced load-balancing fea-
tures including automatic retries, circuit breaking, global rate limiting, request
shadowing, zone local load balancing, and so on. You can learn more about

2 A sidecar is a container that runs in the same Pod with the container that runs the microservice. A typical Pod
can have one main car (which runs the microservice) and multiple sidecars. A sidecar can act as proxy to the
main car or as a container that provides utility functions.

3 A Kubernetes node can be a physical machine or a virtual machine. A node runs multiple Pods.
4 Iptables is used to set up, maintain, and inspect the tables of IP packet filter rules in the Linux kernel (see

https://linux.die.net/man/8/iptables).

https://linux.die.net/man/8/iptables
https://grpc.io/

544 APPENDIX K Service mesh and Istio fundamentals
Envoy load balancing features from the Envoy documentation available at
http://mng.bz/rr1e.

 Observability—The four main pillars of observability are metrics, tracing, log-
ging, and visualization. Each of these factors is important to monitoring a
microservice effectively. In appendix D, we discuss these four pillars and the
need for observability in detail.

An Envoy proxy that intercepts all the requests (in and out) from a microser-
vice is in a great position to generate statistics in a transparent manner. It gener-
ates stats at three levels: downstream, upstream, and server. The downstream
stats are related to all the incoming connections, while the upstream stats are
related to all the outgoing connections. The server stats are related to the health
of the Envoy proxy itself; for example, CPU, memory usage, and so on. Envoy
publishes all the stats it collects to Mixer. Mixer is an Istio control-plane compo-
nent that we discuss in section K.3.3. Envoy doesn’t need to publish stats for each
request; rather, it can cache the stats and then (infrequently) push to Mixer.

Unlike in a monolithic deployment, in a typical microservices deployment
when a request spans across multiple endpoints, logs and stats are just not
enough. There should be a way to correlate logs between endpoints. When an
Envoy proxy initiates a request to an upstream service, it generates a unique
identifier to trace the request and sends it as a header to the upstream service.
When the Envoy proxy publishes its downstream stats to the Mixer, it also pub-
lishes the corresponding tracing identifiers. Also, if one upstream service wants
to talk to another upstream service, it passes through the tracing identifier it
gets from the first downstream service. With this model, when all the stats gen-
erated from Envoy proxies are collected centrally, we can build a complete pic-
ture of each request by correlating tracing identifiers.

20% of traffic goes
to v1 service, and
80% goes to v2.

Envoy

Microservice
(v1)

Envoy

Microservice
(v2)

Microservice

Envoy

20% 80%

Figure K.5 Envoy carries out load
balancing for upstream services.

https://shortener.manning.com/rr1e

545Istio architecture
In section K.4.2, you’ll learn more about how Istio handles tracing at the
control plane. You can read more about the observability support in Envoy at
http://mng.bz/Vg2W.

 Security—Envoy acts as a security checkpoint or a PEP for the microservice
behind it. One of the emerging patterns we see in the microservices security
domain is the zero-trust network pattern. In simple words, this says don’t trust
the network. If we don’t trust the network, we need to carry out all the security
screening much closer to the resource we want to protect, or in our case, the
microservice. Envoy does that in the Service Mesh architecture.

Envoy intercepts all the requests coming to the microservice it backs, makes
sure they are properly authenticated and authorized, and then dispatches those
to the microservice. Because both the Envoy and the microservice run on the
same Pod on the same node, the microservice is never exposed outside the
node—and also not outside the Pod! No request can reach the microservice
without saying hello to Envoy (see figure K.6).

An Envoy proxy supports enforcing mTLS, JWT verification, role-based
access control (RBAC), and so on. In chapter 12, we discuss all the security fea-
tures Envoy and Istio support. You can read more about the security features
Envoy supports from http://mng.bz/xW6g.

Figure K.6 The incoming requests to the service mesh can go through the Ingress gateway; any
outbound calls can go through the Egress gateway.

INGRESS GATEWAY

Ingress is a Kubernetes resource that routes traffic from outside the cluster to a Kuber-
netes Service over HTTP or HTTPS. It helps expose multiple Kubernetes Services (say,
of the NodePort type) through a single IP address. (In appendix J, we discuss how
Ingress works in a Kubernetes cluster.) In order for an Ingress resource to work, we

Envoy

Data
Plane

Microservice

Envoy

Is
tio

 In
gr

es
s

G
at

ew
ay

Istio E
gress

G
atew

ay

Microservice

Envoy

Microservice

The incoming traffic
to the service mesh
first can go through
the Istio Ingress gateway. The outgoing traffic from the

service mesh can go through the
Istio Egress gateway.

Data flow

https://shortener.manning.com/Vg2W
http://mng.bz/xW6g

546 APPENDIX K Service mesh and Istio fundamentals
also need to have an Ingress controller in place. Some Kubernetes deployments
use NGINX, Kong, and so on as the Ingress controller. Google Kubernetes Engine
(GKE) has its own open source Ingress controller (see https://github.com/kubernetes/
ingress-gce).

 When you install Istio, it introduces its own Ingress gateway (figure K.6). The Istio
Ingress gateway is, in fact, an Envoy proxy. All the traffic that enters into the service
mesh ideally should flow through this Envoy proxy, and it can centrally do monitor-
ing, routing, and security enforcement.

EGRESS GATEWAY

Similar to the Ingress gateway, Istio also introduces an Egress gateway (figure K.6). All
the traffic that leaves the Kubernetes deployment goes through an Egress gateway (if
you’d like, you can bypass the Egress gateway as well). Once again, an Envoy proxy
runs as the Egress gateway. For example, if your microservice wants to talk to an end-
point outside your Kubernetes cluster, that request goes through the Istio Egress gate-
way. You can also have your own security policies and traffic control rules enforced at
the Egress gateway.

K.4.2 Istio control plane

The Istio control plane consists mainly of four components: Pilot, Galley, Mixer, and Cit-
adel, as shown in figure K.7. In the following sections, we discuss the responsibilities of
each component and how they operate in a Kubernetes deployment.

Figure K.7 The Istio control plane consists of four components: Pilot, Galley, Mixer, and Citadel.
The Galley isn’t shown here because it’s internal to the control plane, which deals with only the
underlying infrastructure.

Takes care of precondition
checking, quota management,
and telemetry reporting

Pilot Citadel Mixer

Helps Istio operators define
routing rules and configurations,
which are required in service-to-
service communications

Maintains an identity for each
workload (or microservice) that
runs under Istio and facilitates
secure communications among
workloads

A
ut

hz
 P

lu
gi

n

Lo
gg

in
g

P
lu

gi
n

M
on

ito
rin

g
P

lu
gi

n

Control
Plane

https://github.com/kubernetes/ingress-gce
https://github.com/kubernetes/ingress-gce

547Istio architecture
PILOT

Pilot helps you define routing rules and configurations that are required in service-to-
service communications. For example, you can have a routing rule that says 20% of
the traffic goes to v1 (version 1) of the Delivery microservice and 80% goes to v2 (ver-
sion 2). You can also set up connection time-outs when your service talks to another
service, as well as the number of retry attempts. Further, you can define parameters
with respect to the circuit-breaker pattern.

 When the Order Processing microservice talks to the Delivery microservice, and if
the Delivery microservice is down, you can configure a circuit breaker to break the
connection between the Order Processing and the Delivery microservices. When the
circuit is in an open state (meaning broken), no communication happens between
the two microservices, and instead of calling the Delivery microservice, the Order Pro-
cessing microservice uses preconfigured default values to simulate the response from
the Delivery microservice. Then after n number of seconds (or minutes), the circuit
breaker tries to reconnect to the Delivery microservice, and if it works fine, it closes
the circuit (otherwise, it remains open until the next retry).

 Pilot exposes an API for Istio administrators (or operators) to define policies and
configurations, and another API for Envoy proxies running in the data plane to pull
configurations related to them. Once Envoy pulls the related policies and configura-
tions from Pilot, it creates its own Envoy-specific configuration file. The following list-
ing shows an example of how Envoy configures a circuit breaker.

"circuit_breakers": {
 "thresholds": [
 {
 "priority": "DEFAULT",
 "max_connections": 100000,
 "max_pending_requests": 100000,
 "max_requests": 100000
 },
 {
 "priority": "HIGH",
 "max_connections": 100000,
 "max_pending_requests": 100000,
 "max_requests": 100000
 }
]
 }

The following is another example of how Envoy keeps connection properties when it
wants to connect to upstream microservices:

"upstream_connection_options": {
 "tcp_keepalive": {
 "keepalive_time": 300
 }
 },

Listing K.1 Envoy configuration for a circuit breaker

548 APPENDIX K Service mesh and Istio fundamentals
GALLEY

To feed policies and configurations into Envoy, Pilot has to interact with the Kuber-
netes APIs. Galley is a component that runs in the control plane, which abstracts out
the nitty-gritty details of the platform underneath. For example, when we run Istio on
Kubernetes, the Galley knows how to talk to Kubernetes and find the information
Pilot needs, and Pilot can work in a platform-agnostic way.

MIXER

Mixer, which runs in the control plane, takes care of precondition checking, quota
management, and telemetry reporting. For example, when a request hits the Envoy
proxy at the data plane, it talks to the Mixer API to do precondition checking to see
whether it’s OK to proceed with that request. The Envoy proxy from the data plane
publishes statistics to Mixer, and Mixer can connect to an external monitoring and
distributed tracing systems like Prometheus, Zipkin, Grafana, and so on.

 Mixer has a rich plugin architecture, so you can chain multiple plugins in the pre-
condition check phase. For example, you can have a mixer plugin that connects to an
external policy decision point (PDP) to evaluate a set of access-control policies against
the incoming requests.5

 Mixer has two subcomponents: policy and telemetry. The policy component
enforces polices with respect to precondition checking and quota management. The
telemetry component handles functionality related to logging, tracing, and metrics.

CITADEL

Citadel is the Istio control plane component that maintains an identity for each work-
load (or microservice) that runs under Istio. It also facilitates secure communications
among workloads. Citadel provisions X.509 certificates to each workload and manages
them. We discuss Citadel in detail in chapter 12.

K.4.3 Changes introduced to Istio architecture since Istio 1.5.0 release

Prior to Istio 1.5.0, Citadel, Pilot, and Galley components ran as independent services.
Since Istio 1.5.0 onward, all three have been integrated into a single binary called
Istiod. A blog by Craig Box (https://istio.io/latest/blog/2020/istiod/) explains the
motivation and the benefits of this change.

 In addition, Istio 1.5.0 introduced another major change with respect to its exten-
sibility model. Up to version 1.5.0, the Istio extensibility model revolved around Mixer.
Writing a Mixer plugin that runs in the control plane helps you extend the functionality
of Istio. Since 1.5.0 onward, the extensibility model of Istio has been centered on the
Envoy proxy, where you can write WebAssembly (WASM) filters to run with Envoy.6

Envoy proxy provides SDKs to build these filters in multiple languages: C++, Rust,

5 You can find a set of available Mixer plugins for Istio at http://mng.bz/Ed8r.
6 According to Wikipedia, WebAssembly (often shortened to WASM) is an open standard that defines a porta-

ble binary-code format for executable programs, and a corresponding textual assembly language, as well as
interfaces for facilitating interactions between such programs and their host environment.

http://mng.bz/Ed8r
https://istio.io/latest/blog/2020/istiod/

549Setting up Istio service mesh on Kubernetes
Typescript, Go, and so on. If you are interested in learning more about the motivation
of bringing WASM support to Envoy, check out https://github.com/envoyproxy/
envoy/issues/4272. With this change, the role of Mixer becomes less important in Istio;
Mixer will probably become an add-on in the future that you can add to your Istio envi-
ronment only if needed.

K.5 Setting up Istio service mesh on Kubernetes
The Istio documentation (https://istio.io/docs/setup) explains how to set up Istio in
a Kubernetes environment. In this section, we discuss how to set up Istio locally with
Docker Desktop and in the cloud with GKE.

K.5.1 Setting up Istio on Docker Desktop

Docker Desktop is a popular single-node Kubernetes distribution you can easily run
on your local computer. Before you set up Istio on Docker Desktop, you should follow
the instructions at https://docs.docker.com/desktop/ to set up Docker Desktop. The
resource requirements (in terms of memory and CPU) to run Istio on Docker Desk-
top are defined at https://istio.io/docs/setup/platform-setup/docker/.

 Since the instructions to set up Istio on Docker Desktop could vary from time to
time, we have kept those instructions out of the book, and put them in the GitHub
repository under the appendix-k directory. You can read the installation instructions
from https://github.com/microservices-security-in-action/samples/blob/master/
appendix-k/install-istio-on-docker-desktop.md.

K.5.2 Setting up Istio on GKE

In this section, we assume you already have access to GKE and have a Kubernetes cluster
up and running. If you need help setting that up, check appendix J, which covers how
to create a project in GKE and then a Kubernetes cluster. If necessary, you can run the
following gcloud command to list the information related to your GKE cluster:

\> gcloud container clusters list

NAME LOCATION MASTER_VERSION MASTER_IP MACHINE_TYPE
manning-ms-security us-west1-a 1.13.7-gke.24 35.203.148.5 n1-standard-1

NODE_VERSION NUM_NODES STATUS
1.14.10-gke.27 3 RUNNING

There are two ways to add Istio support to GKE: either you can install the open source
Istio version by yourself (from the scratch on the GKE), or you can enable Istio as an
add-on for GKE. In this appendix, we follow the add-on approach. If you’d like to
install open source Istio from scratch, follow the instructions documented at http://
mng.bz/NKXX.

 To add Istio support as an add-on for an existing GKE Kubernetes cluster (in our
case, to the manning-ms-security cluster), use the following gcloud command.
Istio support in GKE is still at the beta level, so we have to use gcloud beta instead of

https://github.com/envoyproxy/envoy/issues/4272
https://github.com/envoyproxy/envoy/issues/4272
https://docs.docker.com/desktop/
https://istio.io/docs/setup/platform-setup/docker/
http://mng.bz/NKXX
http://mng.bz/NKXX
https://github.com/microservices-security-in-action/samples/blob/master/appendix-k/install-istio-on-docker-desktop.md
https://github.com/microservices-security-in-action/samples/blob/master/appendix-k/install-istio-on-docker-desktop.md
https://istio.io/docs/setup

550 APPENDIX K Service mesh and Istio fundamentals
gcloud. At the time you read this book, if the Istio support on GKE has matured to
General Availability (GA), you can skip using beta in the following commands:

\> gcloud beta container clusters update manning-ms-security \
--update-addons=Istio=ENABLED --istio-config=auth=MTLS_PERMISSIVE

Here we use MTLS_PERMISSIVE as Istio’s authentication configuration, which makes
mTLS optional for each service or, to be more precise, at each Envoy proxy. In chap-
ter 12, we discuss the authentication options Istio provides. If you want to create a new
GKE Kubernetes cluster (rather than updating an existing one) with Istio support, use
the following gcloud command:7

\> gcloud beta container clusters create manning-ms-security \
--addons=Istio --istio-config=auth=MTLS_PERMISSIVE

If you have multiple Kubernetes clusters in your GKE environment, and if you want to
switch between clusters, use the flowing gcloud command with the cluster name:

\> gcloud container clusters get-credentials manning-ms-security

The Istio version installed on GKE depends on the version of the GKE cluster. You can
find the GKE-to-Istio version mapping at http://mng.bz/D2W0. Also, Istio has multi-
ple profiles, and each profile defines the Istio features you might like to have. When
you install Istio as an add-on on GKE, you have limited flexibility to pick which Istio
features you want, unless those are officially supported by GKE. Even when you install
Istio by yourself on GKE, the recommendation still is to use the default Istio profile.
You can find Istio profiles and available features at http://mng.bz/lGez.

K.5.3 Limitations of Istio on GKE

At the time of this writing, all the samples in this appendix and most of the samples in
chapter 12 are tested on GKE cluster version 1.14.10-gke.27, which supports Istio
1.2.10. Istio 1.2.10 was released in December 2019, and at the time of this writing, the
latest Istio release is 1.6.2, which was released in June 2020. There’s always a time gap
before GKE supports the latest version of Istio. So, if you are using GKE, you won’t be
able to test the new features introduced in Istio 1.5.x or later releases. In chapter 12,
we talk about some of the new security features Istio introduced in version 1.5.0, and
you would need to switch from GKE to your local Istio installation on Docker Desktop
to test them.

K.6 What Istio brings to a Kubernetes cluster
Once you install Istio on Kubernetes, you’ll find a new namespace, a new set of cus-
tom resource definitions, a set of control plane components as Kubernetes Services
and Pods, and many others. In this section, we discuss the key changes Istio brings
into your Kubernetes cluster.

7 The list of all available options for the clusters create command are listed at http://mng.bz/Z2V5.

http://mng.bz/Z2V5
http://mng.bz/D2W0
http://mng.bz/lGez

551What Istio brings to a Kubernetes cluster
K.6.1 Kubernetes custom resource definitions

A custom resource definition, commonly known as a CRD, is a way of extending Kuber-
netes functionality. A custom resource is, in fact, an extension to the Kubernetes API.
It lets you manage and store custom resources by using the Kubernetes API via the
Kubernetes API server. For example, Istio introduces a set of custom resources like
Gateway, VirtualService, ServiceAccount, ServiceAccountBinding, Policy, and so on,
and you can use the command in the following listing to list all the CRDs that Istio
introduces. The output here shows only a few of them.

\> kubectl get crds --all-namespaces | grep istio.io

adapters.config.istio.io 2020-04-15T07:03:49Z
apikeys.config.istio.io 2020-04-15T07:03:49Z
attributemanifests.config.istio.io 2020-04-15T07:03:49Z
authorizations.config.istio.io 2020-04-15T07:03:49Z
bypasses.config.istio.io 2020-04-15T07:03:49Z
checknothings.config.istio.io 2020-04-15T07:03:49Z
circonuses.config.istio.io 2020-04-15T07:03:49Z
cloudwatches.config.istio.io 2020-04-15T07:03:49Z

Some of the CRDs shown here are deprecated from Istio 1.4.0 onward. For example,
CRDs related to ClusterRbacConfig, ServiceRole, and ServiceRoleBinding are now
deprecated and are removed from Istio 1.6.0 onward. We discuss these CRDs in chap-
ter 12.

K.6.2 The istio-system namespace

Once you install Istio in your Kubernetes cluster, it creates a new namespace called
istio-system. All the Istio components that run within the control plane (as dis-
cussed in section K.4.2) are installed under this namespace. The following command
lists all the namespaces in your Kubernetes cluster:

\> kubectl get namespaces

NAME STATUS AGE
default Active 27d
istio-system Active 14d
kube-public Active 27d
kube-system Active 27d

K.6.3 Control plane components

Let’s use the command in the following listing to list all the Istio components running
as Kubernetes Services under the istio-system namespace. You will see similar out-
put if you are on an Istio version prior to 1.5.0. From Istio 1.5.0 onward, the set of
Kubernetes Services running under the istio-system namespace is completely dif-
ferent from the following listing.

Listing K.2 Some of the custom resource definitions introduced by Istio

552 APPENDIX K Service mesh and Istio fundamentals

\> kubectl get service -n istio-system

NAME TYPE CLUSTER-IP EXTERNAL-IP
istio-citadel ClusterIP 10.39.240.24 <none>
istio-galley ClusterIP 10.39.250.154 <none>
istio-ingressgateway LoadBalancer 10.39.247.10 35.230.52.47
istio-pilot ClusterIP 10.39.243.6 <none>
istio-policy ClusterIP 10.39.245.132 <none>
istio-sidecar-injector ClusterIP 10.39.244.184 <none>
istio-telemetry ClusterIP 10.39.251.200 <none>
promsd ClusterIP 10.39.249.199 <none>

Kubernetes exposes all these Istio components as Services. In section K.4.2, we dis-
cussed the responsibilities of istio-citadel, istio-galley, and istio-pilot.
Let’s look at the others:

 The istio-policy and istio-telemetry Services are part of Mixer.
 The istio-ingressgateway Service acts as an Ingress gateway, which we dis-

cussed in section K.4.1.
 The promsd Service that’s based on Prometheus (an open source monitoring

system) is used for metrics.
 The istio-sidecar-injector Service is used to inject Envoy as a sidecar

proxy into Kubernetes Pods, which we discuss in detail in section K.8.1.

From Istio 1.5.0 onward, you won’t see separate Kubernetes Services for istio-
citadel, istio-galley, and istio-pilot. Instead, you’ll find a Service called
istiod, which aggregates the functionality of all three of those Services.

 Something missing in the istio-system namespace (listing K.3) is the Istio
Egress gateway (section K.4.1). As we discussed in section K.5, when we install Istio on
GKE as an add-on, it installs only the default profile of Istio, and the Egress gateway
isn’t part of the default profile.

 Behind each of the Services in listing K.3 is a corresponding Pod. The command in
the next listing shows all the Pods running under the istio-system namespace.
Once again, you will find similar output only if you are on an Istio version prior
to 1.5.0.

\> kubectl get pods -n istio-system

NAME READY STATUS RESTARTS
istio-citadel-5949896b4b-vlr7n 1/1 Running 0
istio-cleanup-secrets-1.1.12-7vtct 0/1 Completed 0
istio-galley-6c7df96f6-nw9kz 1/1 Running 0
istio-ingressgateway-7b4dcc59c6-6srn8 1/1 Running 0
istio-init-crd-10-2-2mftw 0/1 Completed 0
istio-init-crd-11-2-f89wz 0/1 Completed 0

Listing K.3 Istio components running as Kubernetes Services

Listing K.4 Pods related to Istio in the istio-system namespace

553What Istio brings to a Kubernetes cluster
istio-pilot-6b459f5669-44r4f 2/2 Running 0
istio-policy-5848d67996-dzfw2 2/2 Running 0
istio-security-post-install-1.1.12-v2phr 0/1 Completed 0
istio-sidecar-injector-5b5454d777-89ncv 1/1 Running 0
istio-telemetry-6bd4c5bb6d-h5pzm 2/2 Running 0
promsd-76f8d4cff8-nkm6s 2/2 Running 1

K.6.4 The istio-ingressgateway Service

Except for the istio-ingressgateway Service in listing K.4, all the Kubernetes Ser-
vices are of ClusterIP type. The ClusterIP type is the default Service type in
Kubernetes, and those Services are accessible only within a Kubernetes cluster. The
istio-ingressgateway Service, which is of LoadBalancer type, is accessible outside
the Kubernetes cluster, however. Let’s examine the istio-ingressgateway Service
a little further with the following kubectl command:

\> kubectl get service istio-ingressgateway -o yaml -n istio-system

In the output of this command, you can find the spec/clusterIP, which can be
used by the Services running inside the Kubernetes cluster to access the istio-
ingressgateway, and status/LoadBalancer/ingress/ip to access the istio-
ingressgateway from external clients outside the Kubernetes cluster. Also notice in
the output an array of ports (under spec/ports) with different names (listing K.5).
Each element in the ports array represents a different kind of a Service; for example,
one for HTTP/2 traffic, another for the HTTPS traffic, another for the TCP traffic,
and so on.

ports:
- name: http2
 nodePort: 31346
 port: 80
 protocol: TCP
 targetPort: 80
- name: https
 nodePort: 31787
 port: 443
 protocol: TCP
 targetPort: 443
- name: tcp
 nodePort: 32668
 port: 31400
 protocol: TCP
 targetPort: 31400

Under each element of the ports array, you’ll find an element called name, node-
Port, port, targetPort, and protocol. A Service of LoadBalancer type is also a
Service of nodePort type (see appendix J). Or, in other words, the LoadBalancer Ser-
vice is an extension of the NodePort Service and that’s why we see a nodePort ele-
ment defined under each element in the ports array.

Listing K.5 An array of ports with different names

554 APPENDIX K Service mesh and Istio fundamentals
 Each node in the Kubernetes cluster listens on the nodePort. For example, if you
want to talk to the istio-ingressgateway over HTTPS, you need to pick the value
of the port element corresponding to the https port, and istio-ingressgateway,
listening on that particular port, reroutes the traffic to the corresponding nodePort
(of any node the system picks) and then to the corresponding Pod, which is listening
on targetPort. The Pod behind the istio-ingressgateway runs a container with
the Envoy proxy.

 In section K.10.1, we discuss how to use istio-ingressgateway with your
microservices deployment, or how to use istio-ingressgateway to route requests
from external client applications to your microservices.

K.6.5 The istio-ingressgateway pod

Let’s dive a little deeper into the Pod behind the istio-ingressgateway Service. To
find the exact name of the Pod, you can use the following command. To filter the Pod,
we use the --selector flag, which looks for the provided label in the Pod definition.
The istio-ingressgateway Pod carries the label istio:ingressgateway:

\> kubectl get pods --selector="istio=ingressgateway" -n istio-system

NAME READY STATUS RESTARTS AGE
istio-ingressgateway-7c96766d85-m6ns4 1/1 Running 0 5d22h

Now we can log into the istio-ingressgateway Pod by using the following com-
mand with the correct Pod name:

\> kubectl -it exec istio-ingressgateway-7c96766d85-m6ns4 \
-n istio-system sh

#

In the Envoy filesystem, if you look inside the /etc/certs directory, you’ll find the
private key file (key.pem) and the corresponding public certificate chain file
(cert-chain.pem) provisioned by Istio Citadel (you’ll find these files only in Istio prior
to version 1.5.0). The Ingress gateway uses these keys to authenticate over mTLS to
the upstream service proxies. In chapter 12, we discuss how to enable mTLS between
the Ingress gateway and the service proxies. Here are the commands to list the direc-
tory’s contents:

cd /etc/certs
ls
cert-chain.pem key.pem root-cert.pem

Also, in the Envoy filesystem, run the following curl command to get the Envoy con-
figurations related to routing and upstream connections:

curl 127.0.0.1:15000/config_dump

555Setting up the Kubernetes deployment
If you want to save the Envoy configuration to a file on your local machine, you can
run the following command from your local machine. The corresponding Envoy con-
figuration will be written to the envoy.config.json file:

\> kubectl exec -it istio-ingressgateway-7c96766d85-m6ns4 \
-n istio-system curl 127.0.0.1:15000/config_dump > envoy.config.json

K.6.6 Istio’s MeshPolicy

The MeshPolicy is another important thing that Istio brings to the Kubernetes cluster
prior to the Istio 1.5.0 release. Istio introduces a MeshPolicy resource (listing K.6) that
is applicable for all the Services in your Kubernetes cluster across all the namespaces.
The MeshPolicy resource, with the name default, defines a cluster-wide authentica-
tion policy. The mtls mode of the policy is set to PERMISSIVE; this is based on the
parameters we passed to the gcloud command to add Istio support to the Kubernetes
cluster in section K.5.

 You can override the global MeshPolicy by defining an authentication policy or a
set of policies under any namespace. We discuss authentication policies in detail in
chapter 12. From Istio 1.5.0 onward, the MeshPolicy is deprecated and will be
removed from a future Istio release.

\> kubectl get meshpolicy -o yaml

apiVersion: v1
kind: List
items:
- apiVersion: authentication.istio.io/v1alpha1
 kind: MeshPolicy
 metadata:
 creationTimestamp: "2019-10-14T22:34:06Z"
 generation: 1
 labels:
 app: security
 chart: security
 heritage: Tiller
 release: istio
 name: default
 spec:
 peers:
 - mtls:
 mode: PERMISSIVE

K.7 Setting up the Kubernetes deployment
In this section, we create two deployments in a Kubernetes cluster under the default
namespace. One is for the security token service (STS) and the other for the Order
Processing microservice. These are the same microservices we discussed in chapter 11.
In section K.8, we discuss how to engage Istio in these two microservices.

Listing K.6 Defining the MeshPolicy

556 APPENDIX K Service mesh and Istio fundamentals
 The source code related to all the samples in this chapter is available in the
GitHub repository (https://github.com/microservices-security-in-action/samples) in
the appendix-k directory. If you’re interested in learning more about the YAML files
we use to create the two Deployments for the STS and the Order Processing microser-
vice, check out chapter 11.

 Run the following command from appendix-k/sample01 directory to create a
Kubernetes Deployment for STS:

\> kubectl apply -f sts.yaml

configmap/sts-application-properties-config-map created
configmap/sts-keystore-config-map created
configmap/sts-jwt-keystore-config-map created
secret/sts-keystore-secrets created
deployment.apps/sts-deployment created
service/sts-service created

Run the following command from the appendix-k/sample01 directory to create a
Kubernetes Deployment for the Order Processing microservice:

\> kubectl apply -f order.processing.yaml

configmap/orders-application-properties-config-map configured
configmap/orders-keystore-config-map configured
configmap/orders-truststore-config-map configured
secret/orders-key-credentials configured
deployment.apps/orders-deployment configured
service/orders-service configured

And run the following command to list the Deployments available in your Kubernetes
cluster under the default namespace:

\> kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
orders-deployment 1/1 1 1 2m
sts-deployment 1/1 1 1 2m

K.8 Engaging Istio to STS and the
Order Processing microservices
Engaging Istio to a microservice results in engaging Envoy with the corresponding
microservice at the data plane. Or, in other words, we need to inject the Envoy proxy
as a sidecar into each Pod in our microservices deployment so that the Envoy proxy
intercepts all the requests and responses to and from the corresponding microservice.

 There are two ways to inject Envoy as a sidecar proxy. You can do it manually by
updating your Kubernetes Deployment, or you can ask Kubernetes to inject Envoy as a
sidecar proxy each time you create a Pod in your Kubernetes Deployment. The Istio
documentation available at http://mng.bz/RAND explains the manual process.

https://shortener.manning.com/RAND
https://github.com/microservices-security-in-action/samples

557Engaging Istio to STS and the Order Processing microservices
K.8.1 Sidecar auto injection

To autoinject Envoy as a sidecar proxy, use the following kubectl command. Here we
enable autoinjection for the default namespace:

\> kubectl label namespace default istio-injection=enabled

The autoinject doesn’t do any magic; it simply adds a Kubernetes admission controller
to the request path.8 This new admission controller listens to the API calls to create
Pods in Kubernetes and modifies the Pod definition to add Envoy as a sidecar proxy. It
also adds another container as an init container to the corresponding Pod. The role
of the init container (which we discussed in chapter 11) is to carry out any initializa-
tion tasks before any of the containers start functioning in a Pod. You can use the fol-
lowing kubectl command to verify whether istio-injection is enabled for the
default namespace:

\> kubectl get namespace -L istio-injection

NAME STATUS AGE ISTIO-INJECTION
default Active 10h enabled
istio-system Active 10h disabled
kube-public Active 10h
kube-system Active 10h

When we use autoinject, it doesn’t affect any Deployment already running unless we
restart it. Kubernetes doesn’t have a command to restart a Deployment, but we can
use the following workaround. Here, we first scale down the sts-deployment to 0
replicas so Kubernetes will kill all the Pods running in that Deployment, and then in
the second command, we scale up to 1 replica (or any number of replicas you want).
We need to repeat the same for the orders-deployment as well:

\> kubectl scale deployment sts-deployment --replicas=0
\> kubectl scale deployment sts-deployment --replicas=1
\> kubectl scale deployment orders-deployment --replicas=0
\> kubectl scale deployment orders-deployment --replicas=1

Now we can use the following command to find the Pod names associated with the
orders-deployment and sts-deployment Deployments and see what changes
Istio has brought into those Pods. Looking at the output here, we can see that two
containers are running inside each Pod (Ready: 2/2). One container carries the
microservice (either the Order Processing microservice or the STS), while the other
container is the Envoy proxy:

\> kubectl get pods

NAME READY STATUS RESTARTS AGE
orders-deployment-6d6cd77c6-fc8d5 2/2 Running 0 71m
sts-deployment-c58f674d7-2bspc 2/2 Running 0 72m

8 An admission controller intercepts all the requests coming to the Kubernetes API server.

558 APPENDIX K Service mesh and Istio fundamentals
Let’s use the following command to find out more about the orders-deployment-
6d6cd77c6-fc8d5 Pod:

\> kubectl describe pod orders-deployment-6d6cd77c6-fc8d5

The command results in a lengthy output; however, we’ll pick only independent sec-
tions to understand the changes Istio integration has made. We discuss those changes
in sections K.8.2 and K.8.3.

 To disengage Istio from a given Kubernetes namespace, we can use the following
kubectl command. Note that the hyphen (-) at the end of the command is not a typo:

\> kubectl label namespace default istio-injection-

K.8.2 Setting up iptables rules

When you look at the Pod description of orders-deployment-6d6cd77c6-fc8d5
(from section K.8.1), you’ll notice the following section that defines an init container
with the proxy_init Docker image:

Init Containers:
 istio-init:
 Container ID: docker://54a046e5697ac44bd82e27b7974f9735
 Image: gke.gcr.io/istio/proxy_init:1.1.13-gke.0

As we discussed before, an init container runs before any other container in the Pod.
The responsibility of the proxy_init image is to update the iptables Pod rules so
that any traffic that comes in and goes out of the Pod will go through the Envoy
proxy.9

K.8.3 Envoy sidecar proxy

How an Envoy proxy is added into the Pod as a container is another important section
you find in the Pod description of orders-deployment-6d6cd77c6-fc8d5. This
container (istio-proxy) listens on port 15090, while the container that carries the
Order Processing microservice listens on port 8443:

Containers:
 istio-proxy:
 Container ID: docker://f9e19d8248a86304d1a3923689a874da0e8fc8
 Image: gke.gcr.io/istio/proxyv2:1.1.13-gke.0
 Image ID: docker-pullable://gke.gcr.io/istio/proxyv2@sha256:829a7810
 Port: 15090/TCP
 Host Port: 0/TCP

The way client applications reach the Order Processing microservice running in the
orders-deployment-6d6cd77c6-fc8d5 Pod is via a Kubernetes Service (we dis-
cuss this in chapter 11). You can use the following kubectl command to describe the

9 Iptables is used to set up, maintain, and inspect the tables of the IP packet filter rules in the Linux kernel (see
https://linux.die.net/man/8/iptables).

https://linux.die.net/man/8/iptables

559Running the end-to-end sample
orders-service Service (we are still not using an Istio Gateway, which we discuss in
section K.10.1.):

\> kubectl describe service orders-service

Name: orders-service
Namespace: default
Labels: <none>
Selector: app=orders
Type: LoadBalancer
IP: 10.39.249.66
LoadBalancer Ingress: 35.247.11.161
Port: <unset> 443/TCP
TargetPort: 8443/TCP
NodePort: <unset> 32401/TCP
Endpoints: 10.36.2.119:8443
Session Affinity: None
External Traffic Policy: Cluster
Events: <none>

In the output, you’ll find that the Service reroutes traffic to port 8443 of the orders-
deployment-6d6cd77c6-fc8d5 Pod. The proxy_init init container (as discussed
in section K.8.2) updates the iptables rules so that any traffic that comes to port 8443
will transparently be rerouted to port 15090, where our Envoy proxy listens.

K.9 Running the end-to-end sample
In this section, we test the end-to-end flow (figure K.8). We need to first get a token
from the STS and then use it to access the Order Processing microservice. Now we
have both microservices running on Kubernetes with Istio. Let’s use the following
kubectl command to find the external IP addresses of both the STS and Order Pro-
cessing microservice:

\> kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.39.240.1 <none> 443/TCP 10h
orders-service LoadBalancer 10.39.242.155 35.247.42.140 443:30326/TCP 9h
sts-service LoadBalancer 10.39.245.113 34.82.177.76 443:32375/TCP 9h

Let’s use the following curl command, run from your local machine, to a get a token
from the STS. Make sure you use the correct external IP address (34.82.177.76) of the
STS:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
https://34.82.177.76/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works fine, the STS returns an
OAuth 2.0 access token (access_token), which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTIzNz

560 APPENDIX K Service mesh and Istio fundamentals
YsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6I
jRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6ImFwcGxp
Y2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS0Yoc2uBuA
W5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ4uFLAP0NpZ6
BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2j-dEhBp1TvMaRKL
BDk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegBbGgyXHVak2gB7I0
7ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlveyjfKs_XIXgU5qizRm9mt
5xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

Figure K.8 The client application first talks to the STS to get an access token; then with that token, it
talks to the Order Processing microservice.

Now try to invoke the Order Processing microservice with the JWT you got from
the previous curl command. Set the same JWT we got before, in the HTTP Authori-
zation Bearer header of the request, and invoke the Order Processing microservice
by using the following curl command with the correct external IP address
(35.247.42.140). Because the JWT is a little lengthy, you can use a small trick when
using the curl command. First, export the JWT to an environment variable (TOKEN).

Client Application
(curl)

Load Balancer

Envoy

Order Processing
Microservice

Envoy

STS Microservice

STS Kubernetes
Service

Order Processing
Kubernetes Service

Load balancer
dispatches the
request to the
corresponding
Pod via
NodePort.

Invokes
Order Processing
microservice

Calls STS to get
an access token

Order Processing microservice
talks to the Envoy proxy of the
STS to fetch its public certificate
at boot time and stores it locally.

Load balancer
fetches routing
information from
the corresponding
Service definition.

1

2

561Updating the Order Processing microservice with Istio configurations
Then use that environment variable in your request to the Order Processing
microservice:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
https://35.247.42.140/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}

The way we implemented the Order Processing microservice doesn’t get the full bene-
fits of the Istio service mesh. For example, we do the mTLS validation as well as the
JWT validation at the microservice itself, using Spring Boot libraries. Rather, we can
delegate those tasks to the service mesh itself. We discuss how to do that in chapter 12.

K.10 Updating the Order Processing
microservice with Istio configurations
In this section, we update the Kubernetes Deployment we created in section K.7 with
respect to the Order Processing and STS microservices with Istio-specific configura-
tions. The only thing Istio has done so far, by engaging with the Order Processing
microservice, was to have the Envoy proxy intercept all the requests coming to and
going out of the microservice (figure K.8). Both the STS and Order Processing
microservices were deployed as Kubernetes Services of LoadBalancer type. When the
client application sends a request to the Order Processing microservice, it first hits the
external load balancer and then the Envoy proxy, which sits with the microservice.
Instead of the requests directly hitting the Envoy proxy via the external load balancer,
we want all the requests to the microservices to flow through the Istio Ingress gateway
(section K.6.4) first, as shown in figure K.9.

562 APPENDIX K Service mesh and Istio fundamentals
Figure K.9 The Istio Gateway intercepts all the traffic coming into the Order Processing and the STS
microservices.

K.10.1 Redeploying STS and the Order Processing microservices

In section K.7, we deployed the STS and Order Processing microservices as Kuber-
netes Services of LoadBalancer type. This would give the external clients the direct
access to those microservices. In this section, we are going to change the Service type
to ClusterIP, so that the external clients would need to go through the Istio Ingress
gateway to access those.

 Run the following two commands to delete the current Kubernetes Services corre-
sponding to the STS and the Order Processing microservices:

\> kubectl delete service orders-service
\> kubectl delete service sts-service

Once both the Services are deleted, run the following two commands from appendix-
k/sample01 directory to create the updated Kubernetes Services for the STS and the
Order Processing microservices:

Istio Gateway (Envoy)Gateway Resource
Ecomm Virtual

Service

Client Application
(curl)

Load Balancer

Envoy

Order Processing
Microservice

Envoy

STS Microservice

STS Kubernetes
Service

Order Processing
Kubernetes Service

Invokes
Order Processing
microservice

Calls STS to get
an access tokenThe Gateway resource

introduced by Istio carries
the configuration the load
balancer needs to know in
order to route requests to
the Istio Gateway.

The Istio installation by
default has an Istio Gateway
(istio-ingressgateway Pod)
running in the istio-system
namespace.

Istio Gateway dispatches the
request to the corresponding
Pod via NodePort.

Order Processing microservice
talks to the Envoy proxy of the
STS to fetch its public certificate
at boot time and stores it locally.

Istio Virtual Service has
references to the routing
information from the
corresponding Kubernetes
Service definitions.

Istio Virtual Service, just like the
Kubernetes Ingress resource, is
an abstraction over one or more
Kubernetes Services.

1

2

563Updating the Order Processing microservice with Istio configurations
\> kubectl apply -f sts.updated.yaml
\> kubectl apply -f order.processing.updated.yaml

And run the following command to list the Services available in your Kubernetes clus-
ter under the default namespace and make sure both the orders-service and sts-service
are of the ClusterIP Service type:

\> kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
orders-service ClusterIP 10.39.245.172 <none> 443/TCP 101s
sts-service ClusterIP 10.39.251.64 <none> 443/TCP 108s

K.10.2 Creating a Gateway resource

The Gateway resource, introduced by Istio, instructs the external load balancer of the
Kubernetes environment (when there is a load balancer) on how to route traffic to
the Istio Ingress gateway. As discussed in section K.6.4, when you install Istio on your
Kubernetes cluster, it adds an istio-ingressgateway Service and the istio-
ingressgateway Pod behind it under the istio-system namespace. This istio-
ingressgateway Service is of LoadBalancer type, and the external load balancer of
your Kubernetes environment knows how to route traffic to it (or to the Pod behind
the Service). The istio-ingressgateway Pod runs an Envoy proxy and carries
the label istio:ingressgateway. Listing K.7 shows the definition of the ecomm-
gateway (a Gateway resource) that instructs the load balancer to route any HTTPS
traffic that comes to port 443 to the istio-ingressgateway Pod.

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: ecomm-gateway
 namespace: istio-system
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 443
 name: http
 protocol: HTTPS
 tls:
 mode: PASSTHROUGH
 hosts:
 - "*"

Listing K.7 Defining the ecomm-gateway

Because the Ingress gateway is running in the
istio-system namespace, we also create the
Gateway resource in the same namespace.

Binds the Gateway resource to the istio-
ingressgateway Pod, which is an Envoy proxy
that carries the label istio:ingressgateway

Instructs the Envoy proxy that runs
as the Istio Gateway to not terminate
TLS, but just pass it through

Instructs the load balancer to route
all the traffic coming to any host
on port 443 to the Istio Gateway

564 APPENDIX K Service mesh and Istio fundamentals
To create the Gateway resource and the corresponding VirtualService resources for
the Order Processing microservice and the STS (we discuss VirtualServices in section
K.10.2), run the following command from the appendix-k/sample01 directory:

\> kubectl apply -f istio.ingress.gateway.yaml

gateway.networking.istio.io/ecomm-gateway created
virtualservice.networking.istio.io/ecomm-virtual-service created

You can use the following kubectl command to list all the VirtualService resources
available in your Kubernetes cluster under the default namespace:

\> kubectl get virtualservices

NAME GATEWAYS HOSTS AGE
ecomm-virtual-service [ecomm-gateway] [*] 6m

K.10.3 Creating a VirtualService resource for the
Order Processing and STS microservices

The VirtualService resource, introduced by Istio, instructs the corresponding Istio
Gateway on how to route traffic to the corresponding Kubernetes Service. A Kuber-
netes Service (which we discussed in detail in appendix J) is an abstraction over one
or more Pods, while an Istio VirtualService is an abstraction over one or more Kuber-
netes Services. It’s quite similar to the Kubernetes Ingress resource that we discuss in
appendix J, and the Gateway resource that we discussed in section K.10.1 is quite simi-
lar to the Kubernetes Ingress controller.

 Listing K.8 shows the definition of the ecomm-virtual-service (a Virtual-
Service resource) that instructs the Istio Gateway that we created in section K.10.1 to
route any HTTPS traffic with sni_hosts10 sts.ecomm.com that comes on port 443
to the sts-service (a Kubernetes Service), and traffic with sni_hosts

orders.ecomm.com to the orders-service (also a Kubernetes Service).

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: ecomm-virtual-service
spec:
 hosts:
 - "*"
 gateways:
 - ecomm-gateway.istio-system.svc.cluster.local

10 Server Name Indication (SNI) is a TLS extension that a client application can use before the start of the TLS
handshake. It indicates to the server which hostname it intends to talk to. The Istio Gateway can route traffic
looking at this SNI parameter.

Listing K.8 Defining ecomm-virtual-service

565Updating the Order Processing microservice with Istio configurations
 tls:
 - match:
 - port: 443
 sni_hosts:
 - sts.ecomm.com
 route:
 - destination:
 host: sts-service
 port:
 number: 443
 - match:
 - port: 443
 sni_hosts:
 - orders.ecomm.com
 route:
 - destination:
 host: orders-service
 port:
 number: 443

K.10.4 Running the end-to-end flow

In this section, we test the end-to-end flow depicted previously in figure K.9. We need
to first get a token from the STS, and then use it to access the Order Processing
microservice. Now we have both microservices fronted by the Istio Ingress gateway.
Let’s use the following two commands to find the external IP address and the HTTPS
port of the Istio Ingress gateway that runs under the istio-system namespace. The
first command finds the external IP address of the istio-ingressgateway Service
and exports it to the INGRESS_HOST environment variable; the second command
finds the HTTPS port of the istio-ingressgateway Service and exports it to the
INGRESS_HTTPS_PORT environment variable:

\> export INGRESS_HOST=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.status.loadBalancer.ingress[0].ip}')

\> export INGRESS_HTTPS_PORT=$(kubectl -n istio-system \
get service istio-ingressgateway \
-o jsonpath='{.spec.ports[?(@.name=="https")].port}')

You can use the following echo commands to make sure that we’ve captured the right
values for the two environment variables:

\> echo $INGRESS_HOST
34.83.117.171
\> echo $INGRESS_HTTPS_PORT
443

Let’s use the following curl command, run from your local machine, to a get a token
from the STS. Here, we use the environment variables that we defined before for the

If the SNI header carries the
sts.ecomm.com value, the Istio Gateway
routes the traffic to sts-service.

Name of the Kubernetes Service
corresponding to the STS Pod

The sts-service
listens on port 443.

If the SNI header carries the
orders.ecomm.com value, the Istio Gateway
routes the traffic to orders-service.

Name of the Kubernetes
Service corresponding to the
Pod that carries the Order
Processing microservice

The orders-service
listens on port 443

566 APPENDIX K Service mesh and Istio fundamentals
hostname and the port of the istio-ingressgateway Service. Because we use SNI
routing at the Istio Gateway, we also use the hostname sts.ecomm.com to access the
STS. Because there’s no DNS mapping to this hostname, we use the --resolve
parameter in curl to define the hostname-to-IP mapping:

\> curl -v -X POST --basic -u applicationid:applicationsecret \
-H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" \
-k -d "grant_type=password&username=peter&password=peter123&scope=foo" \
--resolve sts.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://sts.ecomm.com:$INGRESS_HTTPS_PORT/oauth/token

In this command, applicationid is the client ID of the web application, and
applicationsecret is the client secret. If everything works, the STS returns an
OAuth 2.0 access token (access_token), which is a JWT (or a JWS, to be precise):

{
"access_token":"eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NTEzMTIzNz
YsInVzZXJfbmFtZSI6InBldGVyIiwiYXV0aG9yaXRpZXMiOlsiUk9MRV9VU0VSIl0sImp0aSI6I
jRkMmJiNjQ4LTQ2MWQtNGVlYy1hZTljLTVlYWUxZjA4ZTJhMiIsImNsaWVudF9pZCI6ImFwcGxp
Y2F0aW9uaWQiLCJzY29wZSI6WyJmb28iXX0.tr4yUmGLtsH7q9Ge2i7gxyTsOOa0RS0Yoc2uBuA
W5OVIKZcVsIITWV3bDN0FVHBzimpAPy33tvicFROhBFoVThqKXzzG00SkURN5bnQ4uFLAP0NpZ6
BuDjvVmwXNXrQp2lVXl4lQ4eTvuyZozjUSCXzCI1LNw5EFFi22J73g1_mRm2j-dEhBp1TvMaRKL
BDk2hzIDVKzu5oj_gODBFm3a1S-IJjYoCimIm2igcesXkhipRJtjNcrJSegBbGgyXHVak2gB7I0
7ryVwl_Re5yX4sV9x6xNwCxc_DgP9hHLzPM8yz_K97jlT6Rr1XZBlveyjfKs_XIXgU5qizRm9mt5xg",
"token_type":"bearer",
"refresh_token":"",
"expires_in":5999,
"scope":"foo",
"jti":"4d2bb648-461d-4eec-ae9c-5eae1f08e2a2"
}

Now let’s invoke the Order Processing microservice with the JWT we got from the pre-
vious curl command. Set the same JWT we got in the HTTP Authorization Bearer
header using the following curl command and invoke the Order Processing
microservice:

\> export TOKEN=jwt_access_token
\> curl -k -H "Authorization: Bearer $TOKEN" \
--resolve orders.ecomm.com:$INGRESS_HTTPS_PORT:$INGRESS_HOST \
https://orders.ecomm.com:$INGRESS_HTTPS_PORT/orders/11

{
 "customer_id":"101021",
 "order_id":"11",
 "payment_method":{
 "card_type":"VISA",
 "expiration":"01/22",
 "name":"John Doe",
 "billing_address":"201, 1st Street, San Jose, CA"
 },

567Updating the Order Processing microservice with Istio configurations
 "items":[
 {
 "code":"101",
 "qty":1
 },
 {
 "code":"103",
 "qty":5
 }
],
 "shipping_address":"201, 1st Street, San Jose, CA"
}

Because the JWT is a little lengthy, we used a small trick when using the curl command.
First, we exported the JWT to an environment variable (TOKEN). Then we used that
environment variable in our request to the Order Processing microservice. Once again,
here too we used the environment variables that we defined before for the hostname
and the port of the istio-ingressgateway Service. Because we used SNI routing at
the Istio Gateway, we also used the hostname orders.ecomm.com to access the Order
Processing microservice. Because there’s no DNS mapping to this hostname, we used
the --resolve parameter in curl to define the hostname-to-IP mapping.

K.10.5 Debugging the Envoy proxy

With the Istio service mesh architecture, all the requests coming in and going out of
your microservices go through the Envoy proxy. If something goes wrong in your
microservices deployment, having access to the debug-level logs of the Envoy proxy
gives you more visibility and helps troubleshoot. By default, debug-level logs aren’t
enabled.

 You can run the following command with the correct label of the Pod to which the
Envoy proxy is attached to enable debug-level logs on the Envoy proxy. Here we use
orders as the value of the app label, which you can find in the Deployment defini-
tion of the Order Processing microservice. If you want to do the same for the Inven-
tory microservice, use app=inventory:

\> kubectl exec $(kubectl get pods -l app=orders \
-o jsonpath='{.items[0].metadata.name}') -c istio-proxy \
-- curl -X POST "localhost:15000/logging?filter=debug" -s

To view the logs, use the following command with the correct name of the Order Pro-
cessing Deployment. Here, the istio-proxy is the name of the container that runs
the Envoy proxy:

\> kubectl logs orders-deployment-6d6cd77c6-fc8d5 -c istio-proxy --follow

If you have a larger log file that takes time to load, you can use the following com-
mand to view the last 100 lines of the log file:

\> kubectl logs orders-deployment-6d6cd77c6-fc8d5 -c istio-proxy --tail 100

568 APPENDIX K Service mesh and Istio fundamentals
To enable debug-level logs at the istio-ingressgateway, you can use the following
command:

\> kubectl exec $(kubectl get pods -l app=istio-ingressgateway \
-n istio-system -o jsonpath='{.items[0].metadata.name}') \
-n istio-system -c istio-proxy \
-- curl -X POST "localhost:15000/logging?filter=debug" -s

index
Numerics

3Fun application 345
3scale, Red Hat 348

A

access control
enforcing policies at API gateway with

OPA 129–134
evaluating OPA policies 132–133
feeding OPA engine with access-control

policies 131–132
feeding OPA engine with data 130–131
running OPA as Docker container 130

key components in 448–450
role-based access control

enforcing 325–328
improvements to since Istio 1.4.0 331–333
in Kubernetes 290–294
testing end-to-end flow with 328–330

using JWT as data source for 172–173
access delegation

OAuth 2.0-based
how OAuth 2.0 fixes problem 368–369
overview 21

overview 367–368
with credential sharing 375

access tokens 369, 371
request 43–44
response 44
scoped 50–51, 382
self-contained 382–383

access_token parameter 44, 76, 192, 313, 320, 330,
464

Access-Control-Allow-Credentials 92
Access-Control-Allow-Headers 92
Access-Control-Allow-Methods 92
Access-Control-Allow-Origin 92
Access-Control-Max-Age 92
Access-Control-Request-Headers 91–92
Access-Control-Request-Method 92
ACLs (access control lists), controlling access to

Kafka topics with 217–222
defining ACLs on Kafka 220–222
enabling ACLs on Kafka and identifying

clients 219–220
active field 76
ALLOW action 332
allow.everyone.if.no.acl.found property 219
Alpine package manager (APK) 250
Amazon Elastic Compute Cloud (EC2) 8
Anchore 253
Angular 84–89

behind scenes of SPAs 85–89
building and running applications from source

code 84–85
inspecting web application code 101–102

Apache Maven, downloading and installing 34
API contract security auditor 347
API Gateway pattern 80
API gateways 57–82

edge (entry point) security 64–67
consumer landscape of microservices 64
delegating access 65–66
reasons not to use basic authentication 66
reasons not to use mTLS 66–67
reasosn for using OAuth 2.0 67
569

570
API gateways (continued)
enforcing access-control policies with OPA

129–134
evaluating policies 132–133
feeding engine with access-control

policies 131–132
feeding engine with data 130–131
running as Docker container 130

need for in microservices deployment 58–63
changes in security protocol 60–61
decoupling security from microservice 59–61
inherent complexities of deployments 62–63
rawness of microservices 63
scaling up microservice 61

proxying resource server with 93–95
role of in microservices deployment 19–20
service mesh vs. 541
Zuul

securing communication between Zuul and
microservice 79–80

setting up gateway with 68–79
throttling at gateway with 110–122

API Manager, WSO2 348
APISecurity.io 347
apiVersion attribute 518
app key 504
application_id 373, 375–376
application_secret 373, 375–376
application.properties file 144, 268–269
applicationid 169, 176, 231, 266, 272, 282, 313,

330, 559, 566
applicationsecret 169, 176, 231, 266, 272, 282,

313, 330, 420, 559, 566
apply command 521
Aspen Mesh 540
assertion 386
asset management, improper 348
asynchronous actions 198
attestation 476
attribute assertions 386–387
aud attribute 163, 383, 389, 486
aud field 76
authentication

basic, reasons not to use 66
broken 344
edge (entry point) security 20–21

certificate-based authentication 21
OAuth 2.0-based access delegation 21

federated 104–107
building trust between domains 106–107
multiple trust domains 105–106

Istio
defining permissive authentication

policy 310–311

enforcing JWT authentication 317–318
peer authentication and request

authentication 321–323
testing end-to-end flow with JWT

authentication 318–320
protection against spoofing 12–13
service-to-service communication security 23–25

JWT 25
mTLS 24–25
trust-the-network approach 23–24

See also JWT (JSON Web Token)
authentication assertion 387
authentication See also JWT (JSON Web Token)
authorities attribute 331
authorization

broken
function-level authorization 346
object-level authorization 342–344

edge (entry point) security 22
OAuth 2.0

authorization code grant type 377–380
authorization server setup 39–44
enforcing security at Zuul gateway 76–77
role of authorization server 371
service-level authorization with scopes 50–54
throttling token and authorize endpoints 121

overview 18
service-to-service communication security 26–27

authorization assertion 387
authorization code 372
authorization code grant type 377–380
Authorization header 49, 66, 75
authorization server 96, 368
authorization_code 379
AuthorizationPolicy 332–333
authorizer.class.name property 219
authserver.introspection.endpoint property 72
authz directory 96
AUTO_PASSTHROUGH mode 306
automation

dynamic analysis with OWASP ZAP 359–366
passive scanning vs. active scanning 359–360
performing penetration tests with ZAP

360–366
security testing with Jenkins 352–358

setting up and running 353–355
setting up build pipeline 355–358

static code analysis 349–352
automountServiceAccountToken element 290
autoscaling 503
availability 16–18
availableReplicas 519–520
AVI Networks 541
AWS App Mesh 540

571
Azure Container Registry (ACR) 422
Azure Container Service (ACS) 422
Azure Kubernetes Service (AKS) 422, 508
Azure Service Fabric 541

B

Basic keyword 43
bearer token 167
Berkeley Software Distribution (BSD) 410
beta command 550
bidirectional streaming RPCs 498
binaryData element 269, 280
bind mounts 433
Boomerang 466
bootstrap trust 474–476
Borg project 499
bridge networking 445–446
BSD (Berkeley Software Distribution) 410
build command 238, 241
build pipelines 352
BUILD SUCCESS message 35, 42, 68–69, 85, 143,

168, 170, 182, 187, 192, 223, 244, 392, 395,
417

bundle servers 466
busybox container 273
Buying History microservice 200, 208–210, 212,

217

C

--cacert argument 259
Cambridge Analytica/Facebook scandal 21
cap_chown 251
Cascading Style Sheets (CSS) 362, 398
Center for Internet Security (CIS) 251
centralized PDP model 26
--cert parameter 259
certificate authority (CA) 79, 210, 213, 215, 258,

484
creating 140
creating with OpenSSL 470–472

certificate revocation lists (CRLs) 154–155
certificate-signing request (CSR) 152, 336, 472
certificates

certificate-based authentication 21
creating 140–142

creating certificate authority 140
generating keys for Inventory

microservice 141
generating keys for Order Processing

microservice 141
using single script to generate all keys

141–142

creating and signing TLS keys and certificates
for Kafka 210–211

deploying TLS certificates to Istio ingress
gateway 303–308
Ingress gateway with no SDS 303–305
Ingress gateway with SDS 306–308

east/west traffic security with 137–160
certificate creation 140–142
key management challenges 151–158
key rotation 159
key usage monitoring 159–160
mTLS 138–140, 149–151
TLS, securing microservices with 142–149

generating for NGINX server and Docker
client 256–257

revocation of 153–158
certificate revocation lists 154–155
Online Certificate Status Protocol 155–156
Online Certificate Status Protocol

stapling 156–157
short-lived certificates 157–158

chown operation 250
ciphertext attribute 394
Citadel component 333–335, 548
claims set 388, 391
Clair project 253
client credentials grant type 372–374
client streaming RPCs 498
client_credentials grant type 44, 46, 72, 76
ClientInterceptor 193
CLONE_NEWIPC flag 436
CLONE_NEWNET flag 436
CLONE_NEWNS flag 436
CLONE_NEWPID flag 435
CLONE_NEWUSER flag 436
CLONE_NEWUTS flag 436
Cloud Native Computing Foundation

(CNCF) 127, 222, 406, 450
cluster-admin role 290
ClusterIP Service 504
ClusterIP type 285, 309, 528, 553, 562
ClusterRbacConfig 327–328, 551
ClusterRole objects 293–294
ClusterRoleBinding 290–292, 294, 331
CMD instruction 426
common name (CN) 147, 219, 470, 472
Community Edition (CE) version, of Docker

413–414
compact serialization 391
Compiled successfully message 85
confidentiality 14–16

data at rest 16
data in transit 15–16

572
ConfigMap objects 532–533
consuming from deployment and populating

environment variables 533–534
consuming from deployment with volume

mounts 534
creating for Order Processing

microservice 280–281
configure method 103
CONNECTING state 497
constructs, defining in Kubernetes 502
Container Engine for Kubernetes 509
Container Network Model (CNM) 443
container orchestration framework 230, 499
container runtime 500
container runtime interface (CRI) 528
container security 260
ContainerConfig element 249
containers 409, 416–417, 427, 442, 499
continuous delivery (CD) 153
continuous integration/continuous delivery pipe-

line (CI/CD) 151, 229, 253, 353, 466
control plane

Istio 546–548
changes to Kubernetes cluster 551–552
Citadel 548
Galley 548
Mixer 548
Pilot 547

overview 540
CORS (cross-origin resource sharing) 89–95

inspecting source 92–93
overview 91–92
proxying resource server with API gateways

93–95
same-origin policy vs. 89–91

CounterCache 117
-cp argument 392, 395
Created status 429
credential sharing 367
CRL distribution point 154
CRL Sign 485
cross-site scripting (XSS) 364–365, 400
@CrossOrigin annotation 92–93
curl command 36, 143, 145, 148, 168, 171, 174,

217, 236, 246–247, 266, 282, 285, 373–374,
376, 420, 439, 457–458, 460, 515, 522–523,
560

curl, downloading and installing 34
custom resource definitions (CRDs) 551

PeerAUthentication 321–322
RequestAuthentication 322–323

Customer message 491
Customer microservice 490
Customer object 490
Customize Jenkins page 354

D

-d flag 439
data element 268, 275, 277, 280
data exposure, excessive 345
data plane

Istio 542–546
Egress gateway 546
Ingress gateway 545–546

overview 539–540
DCT (Docker Content Trust) 237–244

generating keys 238–239
overview 238
protecting client applications from replay

attacks 243–244
signature verification with 241
signing with 240–241
types of keys used in 241–243
Update Framework 237

default namespace 298, 310, 515, 557
default token secret 275
delegation keys 238, 243
delete command 512–513
DELETE method 352
Delivery microservice 166, 547
denial-of-service (DoS) 17–18
DENY action 332
DestinationRule 316, 475
deststorepass argument 473
detached mode 438
developing microservices 33–39

clone samples repository 34
required software 34

Apache Maven 34
curl 34
GIT command-line tool 34
JDK 34

source code
directory 37
overview 38–39

distinguished name (DN) 219
distributed denial-of-service (DDoS) 17–18, 112,

121, 345–346
Docker 409–447

behind scenes of docker run 437–438
Docker registry 420–422

Docker cloud platforms and registries 422
Docker Hub 421
Harbor 421

high-level architecture 415–416
inspecting traffic between Docker client and

host 438–440
installing 413–414
internal architecture 434–437

573
containerd 435
containerd-shim 435
Linux cgroups 436–437
Linux namespaces 435–436
runc 435

Moby project 447
networking 443–447

bridge networking 445–446
host networking 446
networking in Docker production

deployment 447
no networking 446

overview 409–413
publishing to Docker Hub 422–423
running on non-Linux operating systems 413

Docker Bench 251–253
Docker Bench for Security 253
docker build command 426
docker command 423
Docker Compose 440–441
Docker containers 229–261

adding value to Linux containers 411
considering security beyond 260
container name and container ID 420
containerizing applications 416–420

building application 417
building Docker images 418–419
creating Dockerfile 417–418
Docker images 417
running container from Docker images

419–420
containers prior to Docker 410–411
deploying OPA as 452
Docker Content Trust 237–244

generating keys 238–239
overview 238
protecting client applications from replay

attacks 243–244
signature verification with 241
signing with 240–241
types of keys used in 241–243
Update Framework 237

life cycle 428–431
create container from an image 428–429
destroy container 431
kill container 430–431
pause running container 429–430
start container 429
stop running container 430

managing secrets in 231–237
externalizing secrets from Docker

images 233–235
managing secrets in Docker production

deployment 237

passing secrets as environment variables
235–236

persisting runtime data of 431–433
using bind mounts to persist runtime

data 433
using Docker volumes to persist runtime

data 432–433
running Docker Bench for security 251–253
running OPA as 130
running with limited privileges 247–251

dropping capabilities from root user 250–251
running container with nonroot user

248–249
securing access to Docker host 253–260

enabling mTLS at NGINX server to secure
access to Docker APIs 256–260

enabling remote access to Docker
daemon 254–256

virtual machines vs. containers 411–413
docker create command 428
Docker daemon 416
Docker Desktop 508
Docker Hub 416
Docker images

building 418–419
deleting images 431
externalizing secrets from 233–235
image layers 426–427
image name and image ID 423–426

Docker Hub official and unofficial
images 425

Docker images with no tags (or latest
tag) 423–424

Docker images with tag 424
image ID 425–426
pulling an image with image ID 426
working with third-party Docker

registries 424
overview 417
running containers from 419–420
signing and verifying 237–244

generating keys 238–239
overview of DCT 238
protecting client applications from replay

attacks 243–244
signature verification with DCT 241
signing with DCT 240–241
types of keys used in DCT 241–243
Update Framework 237

docker inspect command 249
docker kill command 430–431
docker login command 239
docker pause command 429–430
docker pull tomcat command 424

574
docker rename command 420
docker rm command 431
docker run command 142, 211, 232, 235–236,

248, 251, 257, 268, 415, 419–420, 424, 428,
433, 437–438, 446, 471

docker save command 425
docker service create command 442
docker start command 429
docker stop command 430–431
Docker Swarm 441–443
docker trust key generate command 238
Docker Trusted Registry (DTR) 421
DOCKER_CONTENT_TRUST variable 241
DOCKER_HOST variable 259
docker-compose up command 440
docker-for-desktop-binding 292
dynamic analysis, with OWASP ZAP 359–366

passive scanning vs. active scanning 359–360
penetration tests 360–366

Dynamic Client Registration Protocol 40

E

east/west traffic security over gRPC 179–195
service-to-service communications over

gRPC 180–185
with JWT 190–194
with mTLS 185–190

east/west traffic security with certificates 137–160
certificate creation 140–142

creating certificate authority 140
generating keys for Inventory

microservice 141
generating keys for Order Processing

microservice 141
using single script to generate all keys

141–142
key management challenges 151–158

certificate revocation 153–158
key provisioning and bootstrapping

trust 151–153
key rotation 159
key usage monitoring 159–160
mTLS

engaging 149–151
reasons for using 138–140

TLS, securing microservices with 142–149
running Inventory microservice over

TLS 145–146
running Order Processing microservice over

TLS 143–145
securing communication between two

microservices with TLS 146–149

east/west traffic security with JSON Web Token
(JWT) 161–178

exchanging JWT for new one with new
audience 175–177

securing microservices with JWT 170–172
securing service-to-service communication with

JWT 173–175
setting up STS to issue JWT 168–170
use cases for 162–168

nested JWTs 167–168
self-issued JWTs 166–167
sharing user context between microservices in

different trust domains 165–166
sharing user context between microservices

with shared JWT 162–163
sharing user context with new JWT for each

service-to-service interaction 163–165
using JWT as data source for access

control 172–173
edge (entry point) security 18–22, 64–67

authentication 20–21
certificate-based 21
OAuth 2.0-based access delegation 21

authorization 22
consumer landscape of microservices 64
delegating access 65–66
passing user context to upstream

microservices 22
reason for using OAuth 2.0 67
reasons not to use basic authentication 66
reasons not to use mTLS 66–67
role of API gateway in deployment 19–20

Egress gateway 546
Elastic Container Registry (ECR), Amazon 422
Elastic Container Service (ECS), Amazon 422
Elastic Container Service for Kubernetes

(EKS) 508
embedded PDPs 26
embedded service mesh 537
emptyDir volume 274
@EnableWebSecurity annotation 47
Enterprise Edition (EE) version, of Docker

413–414
entry points 5
ENTRYPOINT instruction 426
--env argument 531
ENV instruction 426
Envoy 468, 475

debugging proxy 567–568
sidecar proxy 558–559

error filter 75
EventRateLimit plugin 527
exit command 142
Exited status 430

575
exp attribute 384, 390, 486
expires_in 44
EXPOSE instruction 426
Extended Key Usage property 485
eXtensible Access Control Markup Language

(XACML) 469

F

-f argument 233, 248, 440
Facebook 21, 370
fair usage policy 113–114
Fast Identity Online (FIDO) 13
federated authentication 104–107

building trust between domains 106–107
multiple trust domains 105–106

file descriptor (FD) 254, 415
filterOrder method 117
filterType method 75, 117
firewalls 79–80
firsttopic 203–204
Flickr 370–371
FlickrAuth 368
foreground mode 438
fork flag 256, 439
FreeBSD 410
function-level authorization, broken 346

G

Galley component 548
gateway directory 115
gcloud

installing 509–510
setting up default setting for 510

gcloud beta command 549
gcloud command 511, 549–550
General Availability (GA) 550
genrsa command 471
get command 512
GET method 37, 52, 63, 98, 133, 301, 347, 352
getBooks method 88, 94
getCount method 488
getName function 491
getOrder method 50, 172
getSslContextBuilder method 188
GIT command-line tool, downloading and

installing 34
GKE (Google Kubernetes Engine) 509–511

creating clusters 510–511
deleting clusters 511
installing gcloud 509–510
installing kubectl tool 510
limitations of Istio on 550

setting up default setting for gcloud 510
setting up Istio on 549–550
switching between multiple clusters 511

Google AuthSub 368
Google Cloud Platform (GCP) 509
Google Container Registry (GCR) 422
Grafana 122–129

monitoring Order Processing
microservice 123–127

scraping data from microservices 127
time-series data 128

grant flow 369
grant types 369
grant_type parameter 379
group ID (GID) 248, 250
gRPC 543

east/west traffic security over 179–195
HTTP/2 492–497

binary framing and streams 495–497
request/response multiplexing 492–495

overview 488–490
Protocol Buffers 490–492
service-to-service communications over 180–185

securing with JWT 190–194
securing with mTLS 185–190

types of RPCs 497–498
bidirectional streaming 498
channels 497
client streaming 498
request metadata 497
server streaming 498
unary 497

H

-H parameter 49
HashiCorp Consul 540
head-of-line blocking problem 493
header attribute 391
horizontal scaling 110
Host 218
host networking 446
HOSTNAME environment variable 293
hostname-to-IP mapping 566
HTTP Authorization Bearer header 283, 560
HTTP ETags 400
HTTP frames 495
HTTP header 28
http.send function 466
HTTP/2 492–497, 543

binary framing and streams 495–497
request/response multiplexing 492–495

HTTPS 140
Hyper-V hypervisor 413

576
HyperKit 413
Hypertext Transfer Protocol (HTTP) 495
hypervisors 411, 413

I

iat attribute 384, 390
IBM Cloud Container Registry 422
IBM Cloud Kubernetes Service 422, 509
id command 248
ID token 383–384
id-kp-clientAuth value 485
id-kp-serverAuth value 485
IDLE state 497
imperative command 519
implicit grant type 380–382
import statements 352
in-process service mesh 537
Ingress gateway 545–546

deploying TLS certificates to 303–308
with no SDS 303–305
with SDS 306–308

enabling TLS termination at 302–314
defining permissive authentication

policy 310–311
deploying certificates 303–308
deploying VirtualServices 308–310
testing end-to-end flow 311–314

Ingress object 525–526
INGRESS_HOST variable 312, 318, 565
INGRESS_HTTPS_PORT variable 312, 318, 329,

565
injection 347–348
input.external package 463
insecure-sts container 248, 250, 267
Install Suggested Plugins option 354
installationName parameter 357
integrity 13–14
interceptCall method 193–194
Internet Assigned Numbers Authority (IANA) 389
--ipc argument 436
IPC namespace 436
iptables rules 558
isLoggedIn function 102
iss attribute 383, 389
Istio 296–338

architecture 542–549
changes introduced since 1.5.0 release

548–549
control plane 546–548
data plane 542–546

changes to Kubernetes cluster 550–555
control plane components 551–552
custom resource definitions 551

istio-ingressgateway Pod 554–555
istio-ingressgateway service 553–554
istio-system namespace 551
MeshPolicy 555

enabling TLS termination at ingress
gateway 302–314
defining permissive authentication

policy 310–311
deploying certificates 303–308
deploying VirtualServices 308–310
testing end-to-end flow 311–314

engaging to STS and Order Processing
microservices 556–557
Envoy sidecar proxy 558–559
setting up iptables rules 558
sidecar auto injection 557–558

integration with OPA 467–468
key provisioning and rotation 333–337

via volume mounts 333–335
with SDS 335–337

overview 541
role-based access control 324–333

enforcing 325–328
improvements to since Istio 1.4.0 331–333
testing end-to-end flow with 328–330

running end-to-end sample 559–561
securing service-to-service communications with

JWT 317–325
enforcing JWT authentication 317–318
JSON Web Key 324
peer authentication and request

authentication 321–323
testing end-to-end flow with JWT

authentication 318–320
using JWT in service-to-service

communications 323–324
securing service-to-service communications with

mTLS 314–317
setting up Kubernetes deployment 297–302,

555–556
cleaning up any previous work 299
deploying microservices 299–300
enabling Istio autoinjection 298–299
testing end-to-end flow 301–302

setting up on Kubernetes 549–550
limitations of Istio on GKE 550
setting up Istio on Docker Desktop 549
setting up Istio on GKE 549–550

vs. SPIRE 475
Istio Egress gateway 546
Istio Ingress gateway 546, 561
ISTIO_MUTUAL mode 306, 475
istio-citadel 552
istio-galley 552

577
istio-ingressgateway 318, 552, 554, 563
istio-ingressgateway Pod 554–555
istio-ingressgateway service 553–554
istio-ingressgateway-ca-certs 306
istio-ingressgateway-certs 303–304
istio-injection 557
istio-pilot 552
istio-policy 552
istio-proxy 567
istio-sidecar-injector 552
istio-system namespace 303, 305, 307, 335, 551
istio-telemetry 552
istioctl command-line utility 307

J

Jails 410
Java Database Connectivity (JDBC) 140
Java Development Kit (JDK), downloading and

installing 34
Java KeyStore (JKS) 473
Java Platform, Enterprise Edition (Java EE) 5
Java Virtual Machine (JVM) 7
JavaScript Object Notation (JSON) 398
javax.net.ssl.trustStore property 147, 149
JDBC (Java Database Connectivity) 140
Jenkins 352–358

setting up and running 353–355
setting up build pipeline 355–358

Jenkinsfile 353
JSON Object Signing and Encryption (JOSE)

388
JSON serialization 391
JSON Web Encryption (JWE) 393–396
JSON Web Key (JWK) 324
JSON Web Key Set (JWKS) 487
JSON Web Signature (JWS) 77, 383, 388, 390–392,

485
jti attribute 390
jvm_memory_max_bytes 124
jvm_memory_used_bytes 125
JWT (JSON Web Token) 11, 153, 225, 247, 276,

301, 386–396, 416, 560
east/west traffic security with 161–178

exchanging JWT for new one with new
audience 175–177

securing microservices with JWT 170–172
securing service-to-service communications

with JWT 173–175
setting up STS to issue JWT 168–170
use cases for 162–168
using JWT as data source for access

control 172–173

inner workings of 388–390
audience 389–390
expiration 390
identifier 390
issued time 390
issuer 389
nbf (not before) attribute 390
subject 389

JSON Web Encryption 393–396
JSON Web Signature 390–392
nested 167–168
OPA and 464–466
overview 386–388
securing service-to-service communications

with 317–324
enforcing JWT authentication 317–318
gRPC 190–194
JSON Web Key 324
peer authentication and request

authentication 321–323
testing end-to-end flow with JWT

authentication 318–320
using JWT in service-to-service

communications 323–324
self-issued 166–167
service-to-service communication security 25

JWT bearer grant type 107
JWT grant 344
JWT profile 107
JWT Profile for OAuth 2.0 Client Authentication

and Authorization Grants 372
JWT Signing Request (JSR) 482
jwt_access_token 174, 246
jwt_token_value 192
JWT-SVID format 485–486
JWT.IO 276, 324
jwt.jks file 268, 273
JWTClientInterceptor class 194

K

-k option 259
Kafka

access control lists 217–222
defining 220–222
enabling 219–220

configuring TLS on server 212
creating and signing TLS keys and certificates

for 210–211
developing microservice to push events to

topic 205–207
developing microservice to read events from

topic 207–210
integration with OPA 469
setting up as message broker 202–205

578
kernel-level permission checks 247
--key argument 239
Key Cert Sign 485
--key parameter 259
Key Usage property 484
key-value pairs 497
keys

certificate revocation 153–158
creating and signing TLS keys and certificates

for Kafka 210–211
generating for NGINX server and Docker

client 256–257
generating with OpenSSL 472–473
in Docker Content Trust 238–239, 241–243
Istio 333–337

key provisioning and rotation via volume
mounts 333–335

key provisioning and rotation with SDS
335–337

limitations in key provisioning and rotation
via volume mounts 335

long-lived credential generation 153
management challenges 151–158
provisioning

at enterprise level 152
at Netflix 152–153
bootstrapping trust and 151–153

rotation of 159
SPIFFE 153
usage monitoring 159–160
using single script to generate all 141–142

KEYSTORE_PASSWORD key 270
KEYSTORE_SECRET variable 268
kind attribute 518
kube-proxy 500, 529–530
kube-system namespace 517
kubectl apply command 264, 532
kubectl command 270, 272, 274, 281–282, 287,

502, 516–517, 553, 557
kubectl describe command 264
kubectl describe pod command 289
kubectl get command 512–513
kubectl get deployments command 264
kubectl get events command 264
kubectl get pods 264
kubectl get service command 529
kubectl get services command 272
kubectl logs 264
kubectl run command 512
kubectl tool

creating ConfigMap objects 270
installing 510
internal communication 526–528

Kubernetes 262–295, 499–534
API server 522–523
as service 508–509
configuration management 530–534

ConfigMaps 532–534
hardcoding configuration data in deployment

definition 531–532
constructs 501–508
controllers 524–525
deployments

creating 511–513
inner workings of 513–514
overview 507
scaling 516

Google Kubernetes Engine 509–511
creating clusters 510–511
deleting clusters 511
installing gcloud 509–510
installing kubectl tool 510
setting up default setting for gcloud 510
switching between multiple clusters 511

high-level architecture 499–500
master nodes 500
worker nodes 500

Ingress object 525–526
integration with OPA 468–469
internal communication 526–530

kubectl tool 526–528
routing requests from external clients to

Pods 528–530
Istio and

changes to cluster 550–555
setting up Istio 549–550
setting up Kubernetes deployment

555–556
Minikube and Docker Desktop 508
namespaces

creating 517–518
overview 507–508
switching 518

nodes 502
objects 518–521

declarative object configurations 521
imperative object configurations 520–521
managing 520–521

Pods 501–502
resources 524
role-based access control in 290–294

associating service account with
ClusterRole 293–294

talking to Kubernetes API server from
STS 292–293

running Inventory microservice in 284–286

579
running Order Processing microservice in
278–283
creating ConfigMaps/Secrets for Order Pro-

cessing microservice 280–281
creating deployment for Order Processing

microservice 281
creating Service for Order Processing

microservice 282
testing end-to-end flow 282–283

running STS on 263–267
creating STS deployment 263–264
defining deployment for STS in YAML 263
exposing STS outside Kubernetes

cluster 265–267
troubleshooting deployment 264–265

service accounts 287–290
benefits of running Pod under custom service

account 289–290
creating service account and associating it

with Pod 288–289
services

ClusterIP Service 504
creating 514–515
inner workings of 515–516
LoadBalancer Service 506–507
NodePort Service 505–506
overview 503–507

setting up deployment for Istio 297–302
cleaning up any previous work 299
deploying microservices 299–300
enabling Istio autoinjection 298–299
redeploying Order Processing and STS as

NodePort Services 300
testing end-to-end flow 301–302

Kubernetes LoadBalancer Service 506
Kubernetes Secrets 267–278

ConfigMap objects
consuming from deployment 271–272
creating by using kubectl client 270
defining for application.properties file

268–269
defining for keystore credentials 270
defining for keystore.jks and jwt.jks files 269
using to externalize configurations 268

creating for Order Processing
microservice 280–281

exploring default token secret in every
container 275–276

how Kubernetes stores 278
loading keystores with init containers 272–274
updating STS to use 276–278

Kubernetes Stack Overflow channel 265
kubeval 264

L

latest tag 424
leaf certificate 484
Lemur 152–153, 158–159
Linkerd 406, 540
Linux Containers (LXC) 410, 434
Linux-VServer 410
load balancing 543
LoadBalancer Service 265, 506–507
loadBooks function 89, 102
Location header 98, 378
log-vol volume 432
logging 159

insufficient 348–349
observability and 407–408

login function 102
long-lived credentials 66, 158, 476
Low Overhead Authentication Services

(LOAS) 477

M

main function 39
manager nodes 442
Manual Explore option 362
mass assignment 346–347
matchLabel 331
MeshPolicy 555
metadata attribute 193, 518
Metatron 152–153
metrics 9, 128, 159, 407
Minikube 508
Mixer component 467–468, 544, 546, 548
Moby project 447
monolithic application security 5–7
Monzo 8
mount (MNT) namespace 436
--mount argument 235, 246
--mount option 432–433
mTLS (mutual Transport Layer Security)

enabling at NGINX server to secure access to
Docker APIs 256–260
configuring Docker client to talk to secured

Docker daemon 259–260
generating keys and certificates for NGINX

server and Docker client 256–257
protecting NGINX server with mTLS

257–259
engaging 149–151
protecting and deploying OPA servers

with 453–455
reasons for using 138–140

building trust between client and server 138

580
mTLS (mutual Transport Layer Security)
(continued)
helping client and server identify each

other 138–140
HTTPS 140

reasons not to use for edge (entry point)
security 66–67

securing reactive microservices 214–217
service-to-service communication security

24–25, 314–317
between API gateway and microservices 80
gRPC 185–190

MTLS_PERMISSIVE 550
multifactor authentication (MFA) 13
multiple-page applications (MPAs) 397, 399–400
MUTUAL mode 306
mvn clean verify sonar:sonar command 352

N

--name argument 246, 420, 553
--namespace argument 517–518
NATS 222–225
nbf attribute 390
nested JWTs 167–168
--net argument 246
NET namespace 436
Netflix 19, 67–68

key provisioning 152–153
short-lived certificates and 157–158

Netflix’s Security Monkey 347
network argument 443, 446
Network Information Service (NIS) 436
network-accessible functions 37
ng serve command 85, 94
NGINX servers, enabling mTLS at 256–260

configuring Docker client to talk to secured
Docker daemon 259–260

generating keys and certificates for NGINX
server and Docker client 256–257

protecting NGINX server with mTLS 257–259
NGRESS_HOST variable 328
Nimbus Java library 395
no credential-sharing model 367–368
node agent 478
node attester 479–480
NodePort Service 505–506
nodePort type 553
nodes 441
none value 446
nonrepudiation 14
north/south traffic security 57–82

edge (entry point) security 64–67
consumer landscape of microservices 64

delegating access 65–66
reasons not to use basic authentication 66
reasons not to use mTLS 66–67
reasosn for using OAuth 2.0 67

need for API gateways in microservices
deployment 58–63
decoupling security from microservice 59–61
inherent complexities of microservice

deployments 62–63
rawness of microservices 63

securing communication between Zuul and
microservice 79–80
preventing access through firewall 79–80
securing communication between API gate-

way and microservices using mutual
TLS 80

setting up API gateways with Zuul 68–79
compiling and running Order Processing

microservice 68–69
compiling and running Zuul proxy 69–70
enforcing OAuth 2.0-based security at Zuul

gateway 71–79
Notary 237

O

OAuth 2.0 45–48, 367–385
access delegation 21

how OAuth 2.0 fixes problem 368–369
overview 367–368

actors in flow 369–371
role of authorization server 371
role of client application 371
role of resource owner (or end user) 371
role of resource server 370–371

authorization server setup 39–44
access token request 43–44
access token response 44
interactions with server 39–41
running server 42–43

edge (entry point) security 67
enforcing security at Zuul gateway 71–79

enforcing token validation 74–75
OAuth2.0 token introspection profile 76
pitfalls of self-validating tokens 78–79
self-validation of tokens without integrating

with an authorization server 76–77
grant types 371–382

authorization code grant type 377–380
client credentials grant type 372–374
implicit grant type 380–382
refresh token grant type 376–377
resource owner password grant type 374–375

581
invoking secured microservice from client
application 48–50

resources for 384–385
running sample 46–48
scopes 382
security based on 45–46
self-contained access tokens 382–383
service-level authorization with scopes 50–54

obtaining scoped access token 50–51
protecting access to microservice 52–54

throttling token and authorize endpoints 121
OAuth 2.0 Security Best Current Practice

document 344
OAuth 2.0 Threat Model and Security Consider-

ations document 344
object-level authorization, broken 342–344
observability (monitoring and analytics) 401–408

insufficient 348–349
need for 401–403
pillars of 403–408

logging 407–408
metrics 403–404
tracing 404–406
visualization 408

with Prometheus and Grafana 122–129
defining metric in Prometheus 128–129
monitoring Order Processing

microservice 123–127
scraping data from microservices 127
time-series data 128

OCSP (Online Certificate Status Protocol)
overview 155–156
stapling

overview 156–157
requiring 157

OFF mode 328
offline key 242
ON mode 328
ON_WITH_EXCLUSION mode 328
ON_WITH_INCLUSION mode 328
one-time passcode (OTP) 13
one-to-one mapping 164
OPA (Open Policy Agent) 448–469

alternatives to 469
deploying as Docker container 452
enforcing access-control policies at API gateways

with 129–134
evaluating policies 132–133
feeding engine with access-control

policies 131–132
feeding engine with data 130–131
running as Docker container 130

external data 458–466
bundle API 466

JWT 464–466
loading data from filesystem 461–462
overload 462–464
pull data during evaluation 466
push data 459–460

high-level architecture 450–451
integrations 466–469

Istio 467–468
Kafka 469
Kubernetes admission controller 468–469

key components in access control systems
448–450

overview 450
policies 455–458
protecting and deploying OPA servers with

mTLS 453–455
OPA Gatekeeper 469
opaque token 104, 107
Open Container Initiative (OCI) 435
Open Web Application Security Project

(OWASP) 342, 359–360
OpenCensus 406
OpenID Connect 95–103

inspecting Angular web application code
101–102

inspecting authorization server code 103
inspecting resource server code 103
login flow 96–100
overview 383–384
resources for 384–385

openid scope 384
OpenShift Container Platform (OCP) 422, 509
OpenShift Container Registry (OCR) 422
OpenSSL 140, 210–211, 256, 303

creating certificate authority 470–472
generating keys for an application 472–473

OpenTelemetry 406
OpenTracing 406
Operation 218
operation-level throttling 120
Oracle Container Registry 422
Organization for the Advancement of Structured

Information Standards (OASIS) 469
Origin header 92
-out argument 471
out-of-process service mesh 297, 537
OWASP API Security vulnerabilities 342–349

broken authentication 344
broken function-level authorization 346
broken object-level authorization 342–344
excessive data exposure 345
improper asset management 348
injection 347–348
insufficient logging and monitoring 348–349

582
OWASP API Security vulnerabilities (continued)
lack of resources and rate limiting 345–346
mass assignment 346–347
security misconfigurations 347

OWASP ZAP 359–366
passive scanning vs. active scanning 359–360
penetration tests 360–366

P

-p argument 419
partitioned process ID (PID) namespace 435
-passout argument 471
PASSTHROUGH mode 306
pay method 351
payload parameter 388, 391
Payment microservice 201
peer.authz.policy.yaml 333
PeerAUthentication CRD 321–322
PEM Converter Online 324
penetration tests 360–366
permissions 325
PersistentVolume 508
PhoneNumber message 491
--pid argument 435
Pilot component 547
Pipeline tab 356
PKS (Pivotal Container Service) 422, 509
Pods

benefits of running under custom service
account 289–290

creating service accounts and associating them
with 288–289

istio-ingressgateway 554–555
overview 501–502
routing requests from external clients to

528–530
policy administration point (PAP) 26, 448, 540
policy decision point (PDP) 26, 449, 548
policy enforcement point (PEP) 448, 539
policy information point (PIP) 449
policy subcomponent 548
port argument 512
ports array 553
POST method 38, 63, 151, 286, 301, 347, 352
post-request filter 75
@PostMapping annotation 38
prabath ID 422–423
prabath.pub 239
pre string 75
preflight request 91
PreparedStatement construct 348
prerequest filter 75
Principal 218

private key file 554
privilege-based throttling 121–122
privileged processes 247
Process Containers 410
process_start_time_seconds 124
Products microservice 403, 405
Prometheus 122–129

defining metrics 128–129
monitoring Order Processing

microservice 123–127
scraping data from microservices 127
time-series data 128

promsd Service 552
protected attribute 391
proto3 490
Protobuf (Protocol Buffers) 490–492, 543
protocol translation 543
proxy_init container 559
proxy_init image 558
public key infrastructure (PKI) 477
public-key encryption 16
publish method 207
pull command 238, 241
pull model 10
push command 238, 241

Q

QoS (quality-of-service) 20, 58, 297, 538
quota-based throttling 111–113

R

rate limiting 345–346
RBAC (role-based access control)

enforcing 325–328
improvements to since Istio 1.4.0 331–333
in Kubernetes 290–294

associating service account with
ClusterRole 293–294

talking to Kubernetes API server from
STS 292–293

testing end-to-end flow with 328–330
reactive microservices 196–225

Kafka as message broker 202–205
controlling access to topics with ACLs

217–222
developing microservice to push events to

topic 205–207
developing microservice to read events from

topic 207–210
mTLS for authentication 214–217
NATS as message broker 222–225
overview 197–201

583
TLS to protect data in transit 210–214
configuring TLS on Kafka server 212
configuring TLS on microservices 212–214
creating and signing TLS keys and certificates

for Kafka 210–211
read scope 44, 50–51, 53
READY state 497
Red Hat Enterprise Linux 260
Red Hat OpenShift 260
Red Hat OpenShift Service Mesh 541
redirect_uri parameter 378, 380–381
reference token 104, 382
refresh token 76, 372, 375
refresh token grant type 376–377
Rego 131, 455
replay attacks, protecting client applications

from 243–244
replicas argument 442–443
ReplicaSet 513
ReplicationSet controller 528
Report URI Decode PEM Data tool 334
Report URI PEM decoder 276
repositories 420
repository keys 239
RequestAuthentication CRD 322–323
@RequestBody annotation 38
@RequestMapping annotation 38
RequestMethod class 352
--resolve parameter 259, 313, 319, 330, 566–567
Resource 219
resource owner 368
resource owner password 372
resource owner password grant type 374–375
resource server 84, 95, 105, 368
ResourcePattern 219
ResourceServerTokenServices 47
response_type parameter 98, 378, 381
@RestController annotation 38
--rm argument 432
Role object 290
RoleBinding 290
root key 239, 242–243
route filter 75
RPCs (remote procedure calls) 497–498

bidirectional streaming RPCs 498
channels 497
client streaming RPCs 498
request metadata 497
server streaming RPCs 498
unary RPCs 497
See also gRPC

S

same-origin policy vs. CORS 89–91
SAML grant 344
SAML Profile for OAuth 2.0 Client Authentication

and Authorization Grants 372
SAN (Subject Alternate Name) 483
scaling 110–111
scope attribute 172
scope field 76
scope parameter 381
scopes 50–54

binding capabilities to OAuth 2.0 access
tokens 382

obtaining scoped access token 50–51
protecting access to microservice 52–54

SDS (Secret Discovery Service)
deploying TLS certificates to Istio Ingress gate-

way
with no SDS 303–305
with SDS 306–308

key provisioning and rotation with 335–337
secure-sts container 274
securing microservices 3–54

challenges of 7–11
broader attack surface and higher risk of

attack 7–8
deployment complexities and bootstrapping

trust 8–9
distributed nature and sharing user

context 11
distributed security screening and poor

performance 8
immutability of containers and maintainance

of service credentials and access-control
policies 10–11

polyglot architecture and development team
expertise 11

requests spanning multiple microservices and
tracing difficulty 9–10

developing microservices 33–39
edge (entry point) security 18–22

authentication 20–21
authorization 22
passing user context to upstream

microservices 22
role of API gateway in deployment 19–20

fundamentals of 12–18
authentication 12–13
authorization 18
availability 16–18
confidentiality 14–16
integrity 13–14
nonrepudiation 14

584
securing microservices (continued)
north/south traffic security with API

gateways 57–82
OAuth 2.0 45–48

authentication server setup 39–44
invoking secured microservice from client

application 48–50
running sample 46–48
security based on 45–46
service-level authorization with scopes 50–54

reactive microservices 196–225
controlling access to Kafka topics with

ACLs 217–222
Kafka as message broker 202–210
mTLS for authentication 214–217
NATS as message broker 222–225
overview 197–201
TLS to protect data in transit 210–214

service-to-service communication security 22–31
authentication 23–25
authorization 26–27
crossing trust boundaries 28–31
propagating user context between

microservices 27–28
single-page applications for invoking secured

microservices 83–108
securing microservices on Kubernetes 262–295

Kubernetes Secrets 274–278
exploring default token secret in every

container 275–276
how Kubernetes stores Secrets 278
updating STS to use 276–278

managing secrets in Kubernetes
environment 267–274
consuming ConfigMaps from

deployment 271–272
creating ConfigMaps by using kubectl

client 270
defining ConfigMap for application.proper-

ties file 268–269
defining ConfigMap for keystore

credentials 270
defining ConfigMaps for keystore.jks and

jwt.jks files 269
loading keystores with init containers

272–274
using ConfigMap to externalize configura-

tions in Kubernetes 268
role-based access control 290–294

associating service account with
ClusterRole 293–294

talking to Kubernetes API server from
STS 292–293

running Inventory microservice 284–286

running Order Processing microservice
278–283
creating ConfigMaps/Secrets 280–281
creating deployment 281
creating service 282
testing end-to-end flow 282–283

running STS on Kubernetes 263–267
creating STS deployment in Kubernetes

263–264
defining deployment for STS in YAML 263
exposing STS outside Kubernetes

cluster 265–267
troubleshooting deployment 264–265

service accounts 287–290
benefits of running Pod under custom service

account 289–290
creating and associating with Pod 288–289

securing microservices with Istio 296–338
enabling TLS termination at Istio Ingress

gateway 302–314
defining permissive authentication

policy 310–311
deploying certificates 303–308
deploying VirtualServices 308–310
testing end-to-end flow 311–314

key management 333–337
key provisioning and rotation via volume

mounts 333–335
key provisioning and rotation with SDS

335–337
role-based access control 324–333

enforcing 325–328
improvements to since Istio 1.4.0 331–333
testing end-to-end flow with 328–330

securing service-to-service communications with
JWT 317–325
enforcing JWT authentication 317–318
JSON Web Key 324
peer authentication and request

authentication 321–323
testing end-to-end flow with JWT

authentication 318–320
using JWT in service-to-service

communications 323–324
securing service-to-service communications with

mTLS 314–317
setting up Kubernetes deployment 297–302

cleaning up any previous work 299
deploying microservices 299–300
enabling Istio autoinjection 298–299
redeploying Order Processing and STS as

NodePort Services 300
testing end-to-end flow 301–302

self-issued JWTs 166–167

585
selfLink attribute 524
Server Name Indication (SNI) 306
server streaming RPCs 498
server-start-successful message 69
server.port property 36, 43, 144–145
server.ssl.key-store property 213
server.ssl.key-store-password property 213
ServerInterceptor 194
serverIP 489
serverPort 489
Service 265, 442, 503–505, 530
service mesh 538–541

API gateway vs. 541
architecture 539–540

control plane 540
data plane 539–540

implementations 540–541
reasons for using 536–537
See also Istio

Service Mesh pattern 58, 80, 230
service-to-service communication security 22–31

authentication 23–25
JWT 25
mTLS 24–25
trust-the-network approach 23–24

authorization 26–27
crossing trust boundaries 28–31
gRPC

overview 180–185
securing with mTLS 185–190

propagating user context between
microservices 27–28

with JWT 173–175, 317–324
enforcing authentication 317–318
JSON Web Key 324
peer authentication and request

authentication 321–323
testing end-to-end flow 318–320
using in service-to-service

communications 323–324
with mTLS 314–317

serviceAccountName element 289
ServiceRole 325, 328, 551
ServiceRoleBinding 326, 328, 331, 551
servlet filter 5
setCheckTokenEndpointUrl method 48
setEnvironment method 147, 149–150
setName function 491
setns system 435
share system 435
Shipping microservice 489
short-lived certificates 157–158
short-lived JWTs 78
shouldFilter method 117

SHUTDOWN state 497
SIGKILL signal 430
signatures array 391
signed JWT 383
SIGSTOP signal 429
SIGTERM signal 430
Simple Mail Transfer Protocol (SMTP) 140
SIMPLE mode 306
single responsibility principle (SRP) 59, 536
Skylake platform 510
snapshot key 243
socat 255–256
sockets 254
Software Guard Extensions (SGX) 157
software-defined networking (SDN) 260
Solaris Containers 410
Solaris Zones 410
SonarQube 349–351, 354, 357–358
SonarScanner 354
SPAs (single-page applications) 84–108, 397

cross-origin resource sharing 89–95
inspecting source 92–93
overview 91–92
proxying resource server with API

gateways 93–95
same-origin policy vs. 89–91

federated authentication 104–107
building trust between domains 106–107
multiple trust domains 105–106

MPAs vs.
benefits 399
drawbacks 400

overview 397–398
running with Angular 84–89

behind scenes of SPAs 85–89
from source code 84–85

securing with OpenID Connect 95–103
inspecting Angular web application

code 101–102
inspecting authorization server code 103
inspecting resource server code 103
login flow 96–100

spec attribute 518, 524
spec element 289
SPIFFE (Secure Production Identity Framework

for Everyone) 153, 474–487
inspiration behind 477
overview 475–477
SPIFFE ID 477–478
SPIFFE Runtime Environment 478–483
SPIFFE Verifiable Identity Document 483–486

JWT-SVID 485–486
X.509-SVID 483–485

trust bundle 486–487

586
Spinnaker 466
SPIRE (SPIFFE Runtime Environment) 153, 475,

478–483
Spring Boot 142
Spring Boot gRPC module 491
Spring Boot Maven plugin 143
SPRING_CONFIG_LOCATION variable 234, 267
spring-boot plugin 35, 46
SpringApplication class 39
@SpringBootApplication annotation 39
SQL (Structured Query Language) 347, 360
SQLite 466
srcstorepass argument 473
SRP (single responsibility principle) 59, 536
ssl_certificate parameter 257
ssl_certificate_key 258
ssl_client_certificate parameter 258
ssl_verify_client 258
ssl.client.auth 216
ssl.endpoint.identification.algorithm property 213
ssl.principal.mapping.rules property 219–220
ssl.truststore.location property 216
sslContext 189
static code analysis 349–352
status attribute 518
STRICT mode 321
stringData element 277
Structured Query Language (SQL) 347, 360
sts-deployment 557
sts-service 266, 300, 564
sts.ecomm.com 319, 330
STSs (security token services)

engaging Isto to 556–557
Envoy sidecar proxy 558–559
setting up iptables rules 558
sidecar auto injection 557–558

redeploying as NodePort Services 300
running on Kubernetes 263–267

creating STS deployment 263–264
defining deployment for STS in YAML 263
exposing STS outside Kubernetes

cluster 265–267
talking to Kubernetes API server from

STS 292–293
troubleshooting deployment 264–265

setting up to issue JWT 168–170
updating microservice with Istio configurations

creating VirtualService resource 564
redeploying STS 562–563

updating to use Kubernetes Secrets 276–278
Stubby 488
sub attribute 383, 389, 486
sub claim 478

-subj argument 472
Subject Alternate Name (SAN) 483
Subject Alternative Names attribute 334–335, 337
subject_token argument 177
subject_token_type argument 177
SVID (SPIFFE Verifiable Identity Document)

483–486
JWT-SVID 485–486
X.509-SVID 483–485

symmetric-key encryption 16
synchronous actions 198

T

-t option 418
tags 423
target key 239, 243
targetPort type 554
tasks 442
TCP connection 492–495
TCP sockets 254, 415
telemetry subcomponent, Mixer 548
Terraform 466
The Update Framework (TUF) 237
throttling, at API gateway with Zuul 110–122

fair usage policy 113–114
maximum handling capacity 118–119
operation-level throttling 120
privilege-based throttling 121–122
quota-based 111–118
throttling OAuth 2.0 token and authorize

endpoints 121
time-series data 128
timestamp key 243
TLS (Transport Layer Security) 142–149

enabling termination at Ingress gateway
302–314
defining permissive authentication

policy 310–311
deploying certificates 303–308
deploying VirtualServices 308–310
testing end-to-end flow 311–314

reactive microservices 210–214
configuring TLS on Kafka server 212
configuring TLS on microservices 212–214
creating and signing TLS keys and certificates

for Kafka 210–211
securing communication between two micro-

services with TLS 146–149
TLS bridging 15
tls mode 475
TLS tunneling 15
tlscert argument 259

587
tlskey argument 259
tlsverify argument 259
token parameter 464
token validation

enforcing 74–75
OAuth2.0 token introspection profile 76
self-validation

pitfalls of 78–79
without integrating with authorization

server 76–77
TOKEN variable 171, 174, 177, 283, 293, 313, 320,

330, 567
token_type field 44, 76
token-based authentication 455
TokenEndpointURL property 48
tokenServices method 47
topics vs. queues 200
traces 407
tracing 9, 159
TRANSIENT_FAILURE state 497
transport protocol 490
trust bundle 486–487
trust domains

crossing trust boundaries in service-to-service
communication security 28–31

federated authentication
building trust between domains 106–107
multiple trust domains 105–106

sharing user context between microservices in
different trust domains 165–166

trust-the-network approach 23–24
trustCertCollectionFilePath 190
Trusted Platform Module (TPM) 157, 159
type-2 hyperviso 411

U

-u flag 43, 248
ui directory 96
unary RPCs 497
unique identifier (UID) 248
universally unique identifier (UUID) 420
UNIX sockets 254, 256, 336, 415
UNIX Time Sharing (UTS) namespace 436
unprivileged processes 247
Update Framework 237
UpdateInventory method 181–185
UpdateReply method 181–182
upper layer of security 64
usePlaintext 189
user context

passing to upstream microservices 22
propagating among microservices 27–28

sharing among microservices in different trust
domains 165–166

sharing among microservices with shared
JWT 162–163

sharing with new JWT for each service-to-service
interaction 163–165

User element 249
--user flag 248
USER instruction 249
USR namespace 436
--uts argument 436

V

-v argument 432–433
-v flag 439
v1 tag 424
v2 tag 234
vertical scaling 110
VirtualServices 308–310
Visual Studio (VS) 451
VMs (virtual machines) vs. containers 411–413
VMWare 406
VMware Cloud PKS 509
VMWare Workstation Player 411
volume mounts

consuming ConfigMap objects from deployment
with 534

key provisioning and rotation via 333–335
limitations in key provisioning and rotation

via 335
volumes element 274

W

WAF (web application firewall) 121
WebAssembly (WASM) filters 548
WebGoat web application 361, 363
worker nodes 442
workload 475–476
write scope 50–52
wt_access_token value 171
WT_KEYSTORE_PASSWORD key 270
WT_KEYSTORE_SECRET variable 268

X

X.509-SVID format 483–485
X509 certificate 219
xhyve hypervisor 413

588
Y

Yahoo BBAuth 368
YAML files 263, 265, 512
YAML Lint 264
YAML, defining Kubernetes deployment for STS

in 263

Z

zero-trust network 23
Zipkin 13
zones 510
ZooKeeper 203, 207, 212
Zuul

securing communication between microservice
and 79–80
preventing access through firewall 79–80

securing communication between API gate-
way and microservices by using mutual
TLS 80

setting up API gateways with
compiling and running Order Processing

microservice 68–69
compiling and running Zuul proxy 69–70
enforcing OAuth 2.0-based security at Zuul

gateway 71–79
throttling at API gateways with 110–122

fair usage policy 113–114
maximum handling capacity 118–119
operation-level throttling 120
privilege-based throttling 121–122
quota-based throttling 111–118
throttling OAuth 2.0 token and authorize

endpoints 121

Siriwardena ● Dias

ISBN: 978-1-61729-595-9

I
ntegrating independent services into a single system
presents special security challenges in a microservices
deployment. With proper planning, however, you can

build in security from the start. Learn to create secure services
and protect application data throughout development and
deployment.

Microservices Security in Action is fi lled with solutions, teaching
best practices for throttling and monitoring, access control,
and microservice-to-microservice communications. Detailed
code samples, exercises, and real-world use cases help you put
what you’ve learned into production.

What’s Inside
● Microservice security concepts
● Edge services with an API gateway
● Deployments with Docker, Kubernetes, and Istio
● Security testing at the code level
● Communications with HTTP, gRPC, and Kafka

For experienced microservices developers with intermediate
Java skills.

Prabath Siriwardena is the vice president of security architec-
ture at WSO2. Nuwan Dias is the director of API architecture
at WSO2. They have designed secure systems for many For-
tune 500 companies.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/microservices-security-in-action

$69.99 / Can $92.99 [INCLUDING eBOOK]

Microservices Security IN ACTION

SOFTWARE DEVELOPMENT/SECURITY

M A N N I N G

“A complete guide to the
challenges and solutions
in securing microservices

 architectures.”
—Massimo Siani, FinDynamic

“An indispensable
roadmap. . . . Touches on all
the right topics in an order

that makes sense.”—Andrew Bovill, Next Century

“Full of code examples
and detailed explanations
regarding security that can
help anyone secure services

 connected to the internet.”—Gustavo Gomes, Brightcove

“A book that should adorn
the desk of every developer

and architect developing soft-
ware using the microservices

architectural pattern.”—Srihari Sridharan, athenahealth

See first page

	Microservices Security in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the authors
	about the cover illustration
	Part 1 Overview
	1 Microservices security landscape
	1.1 How security works in a monolithic application
	1.2 Challenges of securing microservices
	1.2.1 The broader the attack surface, the higher the risk of attack
	1.2.2 Distributed security screening may result in poor performance
	1.2.3 Deployment complexities make bootstrapping trust among microservices a nightmare
	1.2.4 Requests spanning multiple microservices are harder to trace
	1.2.5 Immutability of containers challenges how you maintain service credentials and access-control policies
	1.2.6 The distributed nature of microservices makes sharing user context harder
	1.2.7 Polyglot architecture demands more security expertise on each development team

	1.3 Key security fundamentals
	1.3.1 Authentication protects your system against spoofing
	1.3.2 Integrity protects your system from data tampering
	1.3.3 Nonrepudiation: Do it once, and you own it forever
	1.3.4 Confidentiality protects your systems from unintended information disclosure
	1.3.5 Availability: Keep the system running, no matter what
	1.3.6 Authorization: Nothing more than you’re supposed to do

	1.4 Edge security
	1.4.1 The role of an API gateway in a microservices deployment
	1.4.2 Authentication at the edge
	1.4.3 Authorization at the edge
	1.4.4 Passing client/end-user context to upstream microservices

	1.5 Securing service-to-service communication
	1.5.1 Service-to-service authentication
	1.5.2 Service-level authorization
	1.5.3 Propagating user context among microservices
	1.5.4 Crossing trust boundaries

	Summary

	2 First steps in securing microservices
	2.1 Building your first microservice
	2.1.1 Downloading and installing the required software
	2.1.2 Clone samples repository
	2.1.3 Compiling the Order Processing microservice
	2.1.4 Accessing the Order Processing microservice
	2.1.5 What is inside the source code directory?
	2.1.6 Understanding the source code of the microservice

	2.2 Setting up an OAuth 2.0 server
	2.2.1 The interactions with an authorization server
	2.2.2 Running the OAuth 2.0 authorization server
	2.2.3 Getting an access token from the OAuth 2.0 authorization server
	2.2.4 Understanding the access token response

	2.3 Securing a microservice with OAuth 2.0
	2.3.1 Security based on OAuth 2.0
	2.3.2 Running the sample

	2.4 Invoking a secured microservice from a client application
	2.5 Performing service-level authorization with OAuth 2.0 scopes
	2.5.1 Obtaining a scoped access token from the authorization server
	2.5.2 Protecting access to a microservice with OAuth 2.0 scopes

	Summary

	Part 2 Edge security
	3 Securing north/south traffic with an API gateway
	3.1 The need for an API gateway in a microservices deployment
	3.1.1 Decoupling security from the microservice
	3.1.2 The inherent complexities of microservice deployments make them harder to consume
	3.1.3 The rawness of microservices does not make them ideal for external exposure

	3.2 Security at the edge
	3.2.1 Understanding the consumer landscape of your microservices
	3.2.2 Delegating access
	3.2.3 Why not basic authentication to secure APIs?
	3.2.4 Why not mutual TLS to secure APIs?
	3.2.5 Why OAuth 2.0?

	3.3 Setting up an API gateway with Zuul
	3.3.1 Compiling and running the Order Processing microservice
	3.3.2 Compiling and running the Zuul proxy
	3.3.3 Enforcing OAuth 2.0–based security at the Zuul gateway

	3.4 Securing communication between Zuul and the microservice
	3.4.1 Preventing access through the firewall
	3.4.2 Securing the communication between the API gateway and microservices by using mutual TLS

	Summary

	4 Accessing a secured microservice via a single-page application
	4.1 Running a single-page application with Angular
	4.1.1 Building and running an Angular application from the source code
	4.1.2 Looking behind the scenes of a single-page application

	4.2 Setting up cross-origin resource sharing
	4.2.1 Using the same-origin policy
	4.2.2 Using cross-origin resource sharing
	4.2.3 Inspecting the source that allows cross-origin requests
	4.2.4 Proxying the resource server with an API gateway

	4.3 Securing a SPA with OpenID Connect
	4.3.1 Understanding the OpenID Connect login flow
	4.3.2 Inspecting the code of the applications

	4.4 Using federated authentication
	4.4.1 Multiple trust domains
	4.4.2 Building trust between domains

	Summary

	5 Engaging throttling, monitoring, and access control
	5.1 Throttling at the API gateway with Zuul
	5.1.1 Quota-based throttling for applications
	5.1.2 Fair usage policy for users
	5.1.3 Applying quota-based throttling to the Order Processing microservice
	5.1.4 Maximum handling capacity of a microservice
	5.1.5 Operation-level throttling
	5.1.6 Throttling the OAuth 2.0 token and authorize endpoints
	5.1.7 Privilege-based throttling

	5.2 Monitoring and analytics with Prometheus and Grafana
	5.2.1 Monitoring the Order Processing microservice
	5.2.2 Behind the scenes of using Prometheus for monitoring

	5.3 Enforcing access-control policies at the API gateway with Open Policy Agent
	5.3.1 Running OPA as a Docker container
	5.3.2 Feeding the OPA engine with data
	5.3.3 Feeding the OPA engine with access-control policies
	5.3.4 Evaluating OPA policies
	5.3.5 Next steps in using OPA

	Summary

	Part 3 Service-to-service communications
	6 Securing east/west traffic with certificates
	6.1 Why use mTLS?
	6.1.1 Building trust between a client and a server with a certificate authority
	6.1.2 Mutual TLS helps the client and the server to identify each other
	6.1.3 HTTPS is HTTP over TLS

	6.2 Creating certificates to secure access to microservices
	6.2.1 Creating a certificate authority
	6.2.2 Generating keys for the Order Processing microservice
	6.2.3 Generating keys for the Inventory microservice
	6.2.4 Using a single script to generate all the keys

	6.3 Securing microservices with TLS
	6.3.1 Running the Order Processing microservice over TLS
	6.3.2 Running the Inventory microservice over TLS
	6.3.3 Securing communications between two microservices with TLS

	6.4 Engaging mTLS
	6.5 Challenges in key management
	6.5.1 Key provisioning and bootstrapping trust
	6.5.2 Certificate revocation

	6.6 Key rotation
	6.7 Monitoring key usage
	Summary

	7 Securing east/west traffic with JWT
	7.1 Use cases for securing microservices with JWT
	7.1.1 Sharing user context between microservices with a shared JWT
	7.1.2 Sharing user context with a new JWT for each service-to-service interaction
	7.1.3 Sharing user context between microservices in different trust domains
	7.1.4 Self-issued JWTs
	7.1.5 Nested JWTs

	7.2 Setting up an STS to issue a JWT
	7.3 Securing microservices with JWT
	7.4 Using JWT as a data source for access control
	7.5 Securing service-to-service communications with JWT
	7.6 Exchanging a JWT for a new one with a new audience
	Summary

	8 Securing east/west traffic over gRPC
	8.1 Service-to-service communications over gRPC
	8.2 Securing gRPC service-to-service communications with mTLS
	8.3 Securing gRPC service-to-service communications with JWT
	Summary

	9 Securing reactive microservices
	9.1 Why reactive microservices?
	9.2 Setting up Kafka as a message broker
	9.3 Developing a microservice to push events to a Kafka topic
	9.4 Developing a microservice to read events from a Kafka topic
	9.5 Using TLS to protect data in transit
	9.5.1 Creating and signing the TLS keys and certificates for Kafka
	9.5.2 Configuring TLS on the Kafka server
	9.5.3 Configuring TLS on the microservices

	9.6 Using mTLS for authentication
	9.7 Controlling access to Kafka topics with ACLs
	9.7.1 Enabling ACLs on Kafka and identifying the clients
	9.7.2 Defining ACLs on Kafka

	9.8 Setting up NATS as a message broker
	Summary

	Part 4 Secure deployment
	10 Conquering container security with Docker
	10.1 Running the security token service on Docker
	10.2 Managing secrets in a Docker container
	10.2.1 Externalizing secrets from Docker images
	10.2.2 Passing secrets as environment variables
	10.2.3 Managing secrets in a Docker production deployment

	10.3 Using Docker Content Trust to sign and verify Docker images
	10.3.1 The Update Framework
	10.3.2 Docker Content Trust
	10.3.3 Generating keys
	10.3.4 Signing with DCT
	10.3.5 Signature verification with DCT
	10.3.6 Types of keys used in DCT
	10.3.7 How DCT protects the client application from replay attacks

	10.4 Running the Order Processing microservice on Docker
	10.5 Running containers with limited privileges
	10.5.1 Running a container with a nonroot user
	10.5.2 Dropping capabilities from the root user

	10.6 Running Docker Bench for security
	10.7 Securing access to the Docker host
	10.7.1 Enabling remote access to the Docker daemon
	10.7.2 Enabling mTLS at the NGINX server to secure access to Docker APIs

	10.8 Considering security beyond containers
	Summary

	11 Securing microservices on Kubernetes
	11.1 Running an STS on Kubernetes
	11.1.1 Defining a Kubernetes Deployment for the STS in YAML
	11.1.2 Creating the STS Deployment in Kubernetes
	11.1.3 Troubleshooting the Deployment
	11.1.4 Exposing the STS outside the Kubernetes cluster

	11.2 Managing secrets in a Kubernetes environment
	11.2.1 Using ConfigMap to externalize configurations in Kubernetes
	11.2.2 Defining a ConfigMap for application.properties file
	11.2.3 Defining ConfigMaps for keystore.jks and jwt.jks files
	11.2.4 Defining a ConfigMap for keystore credentials
	11.2.5 Creating ConfigMaps by using the kubectl client
	11.2.6 Consuming ConfigMaps from a Kubernetes Deployment
	11.2.7 Loading keystores with an init container

	11.3 Using Kubernetes Secrets
	11.3.1 Exploring the default token secret in every container
	11.3.2 Updating the STS to use Secrets
	11.3.3 Understanding how Kubernetes stores Secrets

	11.4 Running the Order Processing microservice in Kubernetes
	11.4.1 Creating ConfigMaps/Secrets for the Order Processing microservice
	11.4.2 Creating a Deployment for the Order Processing microservice
	11.4.3 Creating a Service for the Order Processing microservice
	11.4.4 Testing the end-to-end flow

	11.5 Running the Inventory microservice in Kubernetes
	11.6 Using Kubernetes service accounts
	11.6.1 Creating a service account and associating it with a Pod
	11.6.2 Benefits of running a Pod under a custom service account

	11.7 Using role-based access control in Kubernetes
	11.7.1 Talking to the Kubernetes API server from the STS
	11.7.2 Associating a service account with a ClusterRole

	Summary

	12 Securing microservices with Istio service mesh
	12.1 Setting up the Kubernetes deployment
	12.1.1 Enabling Istio autoinjection
	12.1.2 Clean up any previous work
	12.1.3 Deploying microservices
	12.1.4 Redeploying Order Processing and STS as NodePort Services
	12.1.5 Testing end-to-end flow

	12.2 Enabling TLS termination at the Istio Ingress gateway
	12.2.1 Deploying TLS certificates to the Istio Ingress gateway
	12.2.2 Deploying VirtualServices
	12.2.3 Defining a permissive authentication policy
	12.2.4 Testing end-to-end flow

	12.3 Securing service-to-service communications with mTLS
	12.4 Securing service-to-service communications with JWT
	12.4.1 Enforcing JWT authentication
	12.4.2 Testing end-to-end flow with JWT authentication
	12.4.3 Peer authentication and request authentication
	12.4.4 How to use JWT in service-to-service communications
	12.4.5 A closer look at JSON Web Key

	12.5 Enforcing authorization
	12.5.1 A closer look at the JWT
	12.5.2 Enforcing role-based access control
	12.5.3 Testing end-to-end flow with RBAC
	12.5.4 Improvements to role-based access control since Istio 1.4.0

	12.6 Managing keys in Istio
	12.6.1 Key provisioning and rotation via volume mounts
	12.6.2 Limitations in key provisioning and rotation via volume mounts
	12.6.3 Key provisioning and rotation with SDS

	Summary

	Part 5 Secure development
	13 Secure coding practices and automation
	13.1 OWASP API security top 10
	13.1.1 Broken object-level authorization
	13.1.2 Broken authentication
	13.1.3 Excessive data exposure
	13.1.4 Lack of resources and rate limiting
	13.1.5 Broken function-level authorization
	13.1.6 Mass assignment
	13.1.7 Security misconfiguration
	13.1.8 Injection
	13.1.9 Improper asset management
	13.1.10 Insufficient logging and monitoring

	13.2 Running static code analysis
	13.3 Integrating security testing with Jenkins
	13.3.1 Setting up and running Jenkins
	13.3.2 Setting up a build pipeline with Jenkins

	13.4 Running dynamic analysis with OWASP ZAP
	13.4.1 Passive scanning vs. active scanning
	13.4.2 Performing penetration tests with ZAP

	Summary

	appendix A OAuth 2.0 and OpenID Connect
	A.1 The access delegation problem
	A.2 How does OAuth 2.0 fix the access delegation problem?
	A.3 Actors of an OAuth 2.0 flow
	A.3.1 The role of the resource server
	A.3.2 The role of the client application
	A.3.3 The role of the resource owner
	A.3.4 The role of the authorization server

	A.4 Grant types
	A.4.1 Client credentials grant type
	A.4.2 Resource owner password grant type
	A.4.3 Refresh token grant type
	A.4.4 Authorization code grant type
	A.4.5 Implicit grant type

	A.5 Scopes bind capabilities to an OAuth 2.0 access token
	A.6 Self-contained access tokens
	A.7 What is OpenID Connect?
	A.8 More information about OpenID Connect and OAuth 2.0

	appendix B JSON Web Token
	B.1 What is a JSON Web Token?
	B.2 What does a JWT look like?
	B.2.1 The issuer of a JWT
	B.2.2 The subject of a JWT
	B.2.3 The audience of a JWT
	B.2.4 JWT expiration, not before and issued time
	B.2.5 The JWT identifier

	B.3 JSON Web Signature
	B.4 JSON Web Encryption

	appendix C Single-page application architecture
	C.1 What is single-page application architecture?
	C.2 Benefits of a SPA over an MPA
	C.3 Drawbacks of a SPA compared with an MPA

	appendix D Observability in a microservices deployment
	D.1 The need for observability
	D.2 The four pillars of observability
	D.2.1 The importance of metrics in observability
	D.2.2 The importance of tracing in observability
	D.2.3 The importance of logging in observability
	D.2.4 The importance of visualization in observability

	appendix E Docker fundamentals
	E.1 Docker overview
	E.1.1 Containers prior to Docker
	E.1.2 Docker adding value to Linux containers
	E.1.3 Virtual machines vs. containers
	E.1.4 Running Docker on non-Linux operating systems

	E.2 Installing Docker
	E.3 Docker high-level architecture
	E.4 Containerizing an application
	E.4.1 What is a Docker image?
	E.4.2 Building the application
	E.4.3 Creating a Dockerfile
	E.4.4 Building a Docker image
	E.4.5 Running a container from a Docker image

	E.5 Container name and container ID
	E.6 Docker registry
	E.6.1 Docker Hub
	E.6.2 Harbor
	E.6.3 Docker cloud platforms and registries

	E.7 Publishing to Docker Hub
	E.8 Image name and image ID
	E.8.1 Docker images with no tags (or the latest tag)
	E.8.2 Docker images with a tag
	E.8.3 Working with third-party Docker registries
	E.8.4 Docker Hub official and unofficial images
	E.8.5 Image ID
	E.8.6 Pulling an image with the image ID

	E.9 Image layers
	E.10 Container life cycle
	E.10.1 Creating a container from an image
	E.10.2 Starting a container
	E.10.3 Pausing a running container
	E.10.4 Stopping a running container
	E.10.5 Killing a container
	E.10.6 Destroying a container

	E.11 Deleting an image
	E.12 Persisting runtime data of a container
	E.12.1 Using Docker volumes to persist runtime data
	E.12.2 Using bind mounts to persist runtime data

	E.13 Docker internal architecture
	E.13.1 Containerd
	E.13.2 Containerd-shim
	E.13.3 Runc
	E.13.4 Linux namespaces
	E.13.5 Linux cgroups

	E.14 What is happening behind the scenes of docker run?
	E.15 Inspecting traffic between Docker client and host
	E.16 Docker Compose
	E.17 Docker Swarm
	E.18 Docker networking
	E.18.1 Bridge networking
	E.18.2 Host networking
	E.18.3 No networking
	E.18.4 Networking in a Docker production deployment

	E.19 Moby project

	appendix F Open Policy Agent
	F.1 Key components in an access-control system
	F.2 What is an Open Policy Agent?
	F.3 OPA high-level architecture
	F.4 Deploying OPA as a Docker container
	F.5 Protecting an OPA server with mTLS
	F.6 OPA policies
	F.7 External data
	F.7.1 Push data
	F.7.2 Loading data from the filesystem
	F.7.3 Overload
	F.7.4 JSON Web Token
	F.7.5 Bundle API
	F.7.6 Pull data during evaluation

	F.8 OPA integrations
	F.8.1 Istio
	F.8.2 Kubernetes admission controller
	F.8.3 Apache Kafka

	F.9 OPA alternatives

	appendix G Creating a certificate authority and related keys with OpenSSL
	G.1 Creating a certificate authority
	G.2 Generating keys for an application

	appendix H Secure Production Identity Framework for Everyone
	H.1 What is SPIFFE?
	H.2 The inspiration behind SPIFFE
	H.3 SPIFFE ID
	H.4 How SPIRE works
	H.5 SPIFFE Verifiable Identity Document
	H.5.1 X.509-SVID
	H.5.2 JWT-SVID

	H.6 A trust bundle

	appendix I gRPC fundamentals
	I.1 What is gRPC?
	I.2 Understanding Protocol Buffers
	I.3 Understanding HTTP/2 and its benefits over HTTP/1.x
	I.3.1 Request/response multiplexing and its performance benefits
	I.3.2 Understanding binary framing and streams in HTTP/2

	I.4 The different types of RPC available in gRPC
	I.4.1 Understanding channels
	I.4.2 Understanding request metadata
	I.4.3 What is unary RPC?
	I.4.4 What is server streaming RPC?
	I.4.5 What is client streaming RPC?
	I.4.6 What is bidirectional streaming RPC?

	appendix J Kubernetes fundamentals
	J.1 Kubernetes high-level architecture
	J.1.1 Master nodes
	J.1.2 Worker nodes

	J.2 Basic constructs
	J.2.1 A Pod: The smallest deployment unit in Kubernetes
	J.2.2 A node: A VM or physical machine in a Kubernetes cluster
	J.2.3 A Service: an abstraction over Kubernetes Pods
	J.2.4 Deployments: Representing your application in Kubernetes
	J.2.5 A namespace: Your home within a Kubernetes cluster

	J.3 Getting started with Minikube and Docker Desktop
	J.4 Kubernetes as a service
	J.5 Getting started with Google Kubernetes Engine
	J.5.1 Installing gcloud
	J.5.2 Installing kubectl
	J.5.3 Setting up the default setting for gcloud
	J.5.4 Creating a Kubernetes cluster
	J.5.5 Deleting a Kubernetes cluster
	J.5.6 Switching between multiple Kubernetes clusters

	J.6 Creating a Kubernetes Deployment
	J.7 Behind the scenes of a Deployment
	J.8 Creating a Kubernetes Service
	J.9 Behind the scenes of a Service
	J.10 Scaling a Kubernetes Deployment
	J.11 Creating a Kubernetes namespace
	J.12 Switching Kubernetes namespaces
	J.13 Using Kubernetes objects
	J.13.1 Managing Kubernetes objects

	J.14 Exploring the Kubernetes API server
	J.15 Kubernetes resources
	J.16 Kubernetes controllers
	J.17 Ingress
	J.18 Kubernetes internal communication
	J.18.1 How kubectl run works
	J.18.2 How Kubernetes routes a request from an external client to a Pod

	J.19 Managing configurations
	J.19.1 Hardcoding configuration data in the Deployment definition
	J.19.2 Introducing ConfigMaps
	J.19.3 Consuming ConfigMaps from a Kubernetes Deployment and populating environment variables
	J.19.4 Consuming ConfigMaps from a Kubernetes Deployment with volume mounts

	appendix K Service mesh and Istio fundamentals
	K.1 Why a service mesh?
	K.2 The evolution of microservice deployments
	K.2.1 The Service Mesh architecture
	K.2.2 Service mesh implementations
	K.2.3 Service mesh vs. API gateway

	K.3 Istio service mesh
	K.4 Istio architecture
	K.4.1 Istio data plane
	K.4.2 Istio control plane
	K.4.3 Changes introduced to Istio architecture since Istio 1.5.0 release

	K.5 Setting up Istio service mesh on Kubernetes
	K.5.1 Setting up Istio on Docker Desktop
	K.5.2 Setting up Istio on GKE
	K.5.3 Limitations of Istio on GKE

	K.6 What Istio brings to a Kubernetes cluster
	K.6.1 Kubernetes custom resource definitions
	K.6.2 The istio-system namespace
	K.6.3 Control plane components
	K.6.4 The istio-ingressgateway Service
	K.6.5 The istio-ingressgateway pod
	K.6.6 Istio’s MeshPolicy

	K.7 Setting up the Kubernetes deployment
	K.8 Engaging Istio to STS and the Order Processing microservices
	K.8.1 Sidecar auto injection
	K.8.2 Setting up iptables rules
	K.8.3 Envoy sidecar proxy

	K.9 Running the end-to-end sample
	K.10 Updating the Order Processing microservice with Istio configurations
	K.10.1 Redeploying STS and the Order Processing microservices
	K.10.2 Creating a Gateway resource
	K.10.3 Creating a VirtualService resource for the Order Processing and STS microservices
	K.10.4 Running the end-to-end flow
	K.10.5 Debugging the Envoy proxy

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Microservices Security in Action - back

